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Start-Synchronous Search for Large
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Abstract—In this paper, we present a novel, efficient search x;xX5 - -+ xr:
strategy for large vocabulary continuous speech recognition. .
The search algorithm, based on a stack decoder framework, W = argmaxP (W |X). (1)
utilizes phone-level posterior probability estimates (produced by w
a connectionist/hi_dde_n Markoy model_acoustic_ r_nodel) as a basis Here, P(W|X) is the a posteriori probability of word se-
for phone deactivation pruning-a highly efficient method of . . .
reducing the required computation. The single-pass algorithm quencel¥ given acoustic datX and Can_be eXpre_SSed (using
is naturally factored into the time-asynchronous processing of Bayes’ rule) as a product of thacoustic modelikelihood
the word sequence and the time-synchronous processing of thep(X|W) and thelanguage modeprior probability P(W):!
hidden Markov model state sequence. This enables the search

to be decoupled from the language model while still maintaining P(WX) = p(X[W)P(W) )
the computational benefits of time-synchronous processing. The p(X)
incorporation of the language model in the search is discussed and x p(X|W)P(W) 3)

computationally cheap approximations to the full language model

are introduced. Experiments were performed on the North Amer- ; s _
ican Business News task using a 60000 word vocabulary and a Note thatp(X ) may be neglected during recognition (selec

trigram language model. Results indicate that the computational tion of the optimal word sequence) since it is independent of

cost of the search may be reduced by more than a factor of 40 the word sequence.
with a relative search error of less than 2% using the techniques ~ The acoustic models generally used in statistically-based

discussed in the paper. speech recognition systems are hidden Markov models
Index Terms—Hidden Markov model, large vocabulary con- (HMM’s) [1], [2]. The language model is typically an

tinuous speech recognition, phone deactivation pruning, search, (n — 1)th-order Markov chain on the word sequence and
stack decoding. is often referred to as am-gram model. Using HMM'’s,

a hierarchical model of speech may be constructed where
an utterance model (a model of a word sequence) is
] ) composed of a series of concatenated word models which,
HE SEARCH problem in large vocabulary continuoug, ym, are composed of subword models. The topology and
speech recognition (LVCSR) can be simply stated: finglyition probabilities of the utterance model are defined by

the most probable sequence of words given a sequenceyff |anguage model, the pronunciation dictionary, and the
acoustic observations, an acoustic model and a 'a”gu‘i‘gﬁologies of the basic subword HMM's.

model. This is a demanding problem since word boundaryBy applying (3), marginalizing over all possible state se-

information is not available in continuous speech and ea 'ﬁencesQ and accounting for the structure of the HMM, we
word in the dictionary may be hypothesized to start at ea y express the MAP recoghnition criterion (1) as '
frame of acoustic data. The problem is further complicated by

the vocabulary size (typically 20 000 words or larger) and the W = argmaxy ~ P(X|Q, W)P(QIW)P(W)  (4)
structure imposed on the search space by the language model. W

When formulated in a statistical manner, the goal of :argmaxP(W)ZP(Q|W)p(X|Q). (5)
w
Q

I. INTRODUCTION

the speech recognizer is to find the word sequeﬁée:
wiws -+~ wpy With the maximuma posteriori (MAP) prob-

ability given the sequence of acoustic observatidds= If the Viterbi criterion is employed, this summation is approx-
imated using the most probable state sequence
W = argmaxt (W) max P(QW)p(X|Q) (6)
W
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Qw = {Q: P(Q, W) > 0}. Although (7) does not directly (maximum log likelihood) in extending the partial hypothesis
optimize the word-recognition criterion specified in (1), it hato a valid complete hypothesis. It has been shown that as long
been shown to work well in practice. asbj (t) is an upper bound on the actual log likelihood, then
The task for the search algorithm is to evaluate (5) dhe search algorithm is admissible [11] (i.e., no errors will be
(7)—i.e., determineW’ given the various models and thentroduced that would not occur if an exhaustive search was
acoustic data. Direct evaluation of all the possible wonderformed).
sequences is impossible (given the large vocabulary) and arstack decoding is a best-first algorithm. Thest(partial)
efficient search algorithm will consider only a very smalhypothesis, [i.e., the hypothesis for whigh(¢) is greatest]
subset of all possible utterance models. Typically, the effectiftom the “stack” of hypotheses under consideration is popped
size of the search space is reduced through pruning of unlikélgm the stack, extended by a word, and the extended hypothe-
hypotheses and/or the elimination of repeated computatioses pushed back onto the stack. Provided the estimatg(of
Two basic classes of search procedure have been usedigadmissible, the first complete hypothesis to be popped from
continuous speech recognition: time-synchronous Viterbi die stack will correspond to the most probable utterance model.

coding and time-asynchronous stack decoding. Such algorithms have been investigated by Behhl. [1],
[12]-[14], Paul [15], Kennyet al. [16], and Soong and Huang
A. Viterbi Decoding [17]. In the statistical framework for speech recognition, (8)

In its basic form, Viterbi decoding (or forward dynamicmay be expressed as

programming) may be regarded as an efficient, recursive

algorithm that performs an optimal exhaustive search [3]. For 1,t

HMM-based speech recognition, the Viterbi algorithm is used fnlt) = 1ng(W’E £ X(lyt)) +log >

to find the most probable path through a probabilistically W

scored time/state latticaViterbi decoding is efficient for small -p(W(“’l’T), X“*LT)‘W,(LI’”, X(lit)). 9)
problems with a finite state language model and is guaranteed

to find the optimal path. However, the computational expense

of an exhaustive dynamir: programming search is top grepﬁe first term on the right hand Sidh)gp(W,(Ll’t), X(l,t)),

for LVCSR problems. Various pruning and data organizatiofhrresponds taz,(¢) in (8) and is the joint log likelihood
techniques have been adopted to reduce the effective sigeine sequence of acoustic vectors to timeand the

of the search space. One such algorithm—beam search {brq sequence hypothesized to that time. The second term,
[7]—defines a pruning beam widthh relative to the most log >y T)p(W(t-l—l,T) X(t+1,T)|Wl(l,t) X(l,t)) corre-
probable hypothesis log likelihootbg Puax(t) at framet.  gnonds tose (¢) in (8) and—in this case—is the sum over all

Hypotheses outside the beam [those with log likelihoods leﬁgssible word sequences that can folml,t) while account-
th?'r;\leoguigaxo(ft )t;nﬁ—]sa;ihprglnnoeudsfr\cl)iigrtl?iedseec%rg% becomdsd for the remaining acoustic evidensg+: 7). Computing
y 9 1S quantity exactly is out of the question in practice! Various

more complex when long-span language models (e.g., tzglclr')proximations have been employed. Batlal. [1], [18]

rams) are introduced. This requires multiple copies of wor .
g ) q P P nored the dependence oW,El’t) and estimated the ex-

models to account for different contexts and can be e
) . (t+1,T) x+1,T)|x L, 0y —
tremely resource-intensive for large vocabulary tasks. AB—eCted value by 1. 1) (W , X X5 5)

. . (t+1,T)|x (1, 1) i irst- -
proaches taken to address this problem include the usepQ{ [ X**%) using a first-order Markov model com

dynamic search structures [8] and multipass search where m Véed from the acoustic training dqta. Keneyal. [16] and
simple, early passes direct the later passes [9]. oong and Huang [17] used a multipass framework where an

initial Viterbi pass with simple acoustic and language models
B. Stack Decoding was used to_appr_oxirr_lafgi(t) for an A* search proceeding
in the opposite direction.

The ideas underpinning stack decoding are those of sequenthe disadvantage of the above approaches to approximating
tial decoding in communications theory [10] and of heuristig: (1) is the requirement to look ahead at the acoustic data. An
search in artificial intelligence, such as th& algorithm alternative approach []_3]_[15]_and the approach presented in
[11]. These search algorithms are time asynchronous—the b@s paper—does not rely on looking ahead. Instegdt) is
scoring path or hypothesis, irrespective of time, is chos@@nstructed such that hypotheses with earlier reference times
for extension and this process is continued until a complei@vays have higher scores than those with later reference
hypothesis is determined. The crucial function for these alggmes. This method is discussed in greater detail in Section II-
rithms is the estimated score (log likelihood in this case) of

hypothesish at timet, f4(t), and is given by Stack decoding has several potential advantages over Viterbi
Fult) = an(t) + b (8). ®) decoding, as follows. _ .
¢ The language model is decoupled from the acoustic model
Here,ay(t) is the score of the partial hypothesis using informa-  and is not used to generate new recognition hypotheses.
tion to timet andbj, (t) is the estimate of the best possible score « |t is easy to incorporate non-Markovian knowledge

2This approach was first used in speech recognition by Vintsyuk [4] and a Sourcesf' (e'g" Iong-span LM,S) without masswely
tutorial by Ortmannst al. can be found in [5]. expanding the state space.
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P(qlx(t)) Since the likelihood is required in the decoding process,
the posterior is converted to a scaled likelihoddx; ¢). This
is computed by dividing the posterior probability estimate of
phone (or HMM state); given the datax by the class prior

Time P(q), as follows:
delay

L(x;q) = Plalx) _ p(xlg) (10)

P(q) p(x)

Fig. 1. Recurrent network architecture used for acoustic modeling in tﬁte)(Q) is estimated as_ the relative freque_ncyqoh th_e training
connectionistHMM approach. The acoustic vectét) is input to the trained data. The assumptions underlying this acoustic model are

network, which outputs posterior phone probability estimdtégx(t)). R(t)  discussed in detail in [21] and [23].
represents the internal state vector of the recurrent network.

Il. SEARCH ORGANIZATION AND ALGORITHM
(1)  DECODE( {

2) startt:=0

3) while start t < utterance length { A. Start—Synchronous Search

) st = stacks[start 1] The single-pass search algorithm presented here utilizes a
% Z;S:::%éﬁg{;’iﬁcﬁ 5 start-synchronousstrategy. This strategy factors the search
%) startt = startt+ 1 into a time-asynchronous processing of the word sequence and
(8) 1 a time-synchronous processing of the HMM state sequence.
O 3} A benefit of this approach is that it enables the search to

Fig. 2. The basic start-synchronous stack decoding algorithm. Stacks Q% _Cle"?m_ly deCOUpled from the Iangu_age deel (LM)’ while
processed in reference time order, each hypothesis on the stack is chedkaintaining the computational benefits of time-synchronous
for validity (inside the pruning beamwidth) and the surviving hypotheses affrocessing.
extended by one word using the tree structured pronunciation mdebelsof). A hypothesish is specified by a reference tintg, a word
string W;, = wp(Dwr(2) - - -wp(ny) and a scorelFy,. LP,
+ The Viterbi assumption is not embedded in the search aisdthe log probability of the word string;, describing the
thus a full maximum likelihood search criterion may bé&coustics from time one to timg,, given the acoustic and
used with little or no computational overhead. language modefsThe Abbot system is based on direct poste-

Disadvantages of the approach include sensitivity to the chofd@" Probability estimation, and thusﬁ htis) an estimate of the
of heuristic [a bad choice o (¢) can lead to an explosion 09 Posterior probabilitylog P(W3|X'%); in a “standard

of the effective search space] and the possibility of repeate!M systemLF;, will correspond to an estimate of the joint
computation. densitylog p(W},, X(1: %)), The search algorithm applies in

either caseL P, may be estimated by summing over all state
B. Search with Abbot sequences as in (5) or by using the Viterbi approximation.
and considering only the most probable state sequence as in
In this paper, we present a search procedure developed (fgy. A stackof hypotheses is a priority queue data structure
the Abbot LVCSR systefn[19], [20]. Abbot is a connection- [24], typically implemented as a binary or Fibonacci heap,
istHMM system [21] and the search procedure takes advaghich efficiently supports the required operations of popping
tage of some features particular to this approach (althougfe most probable hypothesis and inserting new hypotheses.
the search algorithm described in this paper is applicable tojn start-synchronous search, hypotheses are processed in
standard HMM systems as well). This approach differs froficreasing order of reference timg; this is equivalent to
traditional HMM's in that the posterior probability of eachstoring hypotheses in a sequence of stacks, one for each refer-
phone given the acoustic data is directly estimated at eagfice time. This start-synchronous, multistack implementation
frame, rather than the likelihood of a phone model (or statR) used here and the basic decoding algorithm is outlined in
generating the data. This posterior probability estimation psg_ 2. The array of stackstacks is processed sequentially
achieved by using a connectionist network trained as a phaggh the earliest reference time first. The stack of hypotheses
classifier. In the Abbot system, a recurrent network [22] i§ be processed is extended by a single word using the acoustic
used for the acoustic model (Fig. 1). Direct estimation of th@odel. As extended hypotheses are generated with reference
posterior probability distribution using a connectionist networkme ¢/ > ¢,,, they are inserted into the stack of hypotheses with
is attractive since fewer parameters are required for the cqBference time’ (Fig. 3). Hypotheses with the same reference
nectionist model (the posterior distribution is typically lesgme are processed in parallel, allowing different LM contexts
complex than the likelihood) and connectionist architecturgs share the same acoustic model computations.
make very few aSSUmptionS on the form of the distribution. The acoustic model consists of a set of HMM'’s, one for

Additionally, this approach allows pruning to be based on th&ych pronunciation of each word. These word models are
posterior probability estimates (see Section ).
4This term was suggested to us by J. Bridle (personal communication).

3A demonstration version of the system, AbbotDemo, is available from: >Since the time range is unambiguous, the word sequence notation has been
ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/recognition/AbbotDemo/. simplified from W,(f 1o Wy,.
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algorithm
a
efficient search — -
[ ifindsuch | | efficient searching_ |
Sondsuel efficientsearcha | """ efficient search algorithm
efficiency L - - -
““““““ efficient searched
efficient such

t:t’ t=t2 t=t3

Fig. 3. lllustration of the start synchronous search strategy. The stack of hypotheses with reference=titneis being processed. The most probable
hypothesis at this time (“efficient search”) is extended by the most probable one word extensions (“a” and “algorithm” are illustrated). Thie resultan
extended hypotheses are inserted into the stack at their reference time—in this case “algorithm” has @uratign In practice all hypotheses with
identical reference times are extended in parallel.

where QU tw) = g(t;,) - q(t) is the optimal state se-
pecoY @ DECODES  quence (assuming the Viterbi criterion) fof given X (e tu).
° B (The full scaled likelihood may be similarly defined using the
forward probabilities in place of the optimal state sequence.)
To compute L(X®tw): '), the root node of the tree is
D U@ Do initially activated (line 5 of Fig. 5). In this case, the possible
L AXR ) DECODER  get of extension words includes the complete vocabulary. The
th pronunciation tree search is carried out in a breadth-first (time-
- ’ synchronous) manner. When the exit state of a word-end node
/\Q (corresponding to wora@/) is activated at timey,r > ¢, then
an extended hypothesis = & - w’ with reference time;,
& created and pushed onto the stack at tipe with the
corresponding log probability. P, (line 17):

Fig. 4. Fragment of a pronunciation prefix tree. The root node correspo
to a single state pause model that may be skipped.

defined by a pronunciation dictionary and constructed byLPw = LPy, + log (X ') w') 4+ log P(w'|Wy,). (13)

concatenating the relevant subword HMM's. In this wor . ) , .
the subword HMM’s are context-independent phone mo‘iiersr,he LM log probability log P(w/|W),) is accessed when a

although context-dependent phone models have been e d extension is hypothesized. Candidate words are proposed

) : : . fgely by their acoustics. This process continues until all pos-
successfully with this search algorithm [26]. For computatlongP le extended hypotheses have been created and pushed onto

. . .. S|
efficiency, the pronunciation models are represented usi . )
a tree structure (Fig. 4) in which each node corresponds relevant stack. Before addmg a hypothesis to the stack,
an instantiation of a basic subword HMM. Tree structurin check is performed to determine if any of the hypotheses
urrently on the stack are “LM equivalent” (i.e., they have the

[27]-[29] allows pronunciations with a similar prefix to shar . ) .
. : me LM state). If there is an LM equivalent hypothesis, then
memory and computation when being evaluated. The root no% one with lower probability is discarded (Viterbi criterion)

of the tree corresponds to a single state silence model wh}

may be skipped; this allows possible pauses between WOPESthe two hypotheses are merged by summing probabilities

to be modeled. Word ends do not necessarily correspond( %rward degoding criterion). For efﬁgiency, all unpruned

leaves of the tree (nodes without successors): all leaves mr&%?eogggze; ma?asllt:fkl fvztzsft/?/:)igCsozﬁi?rgep:ﬁgiﬂtanr?one

correspond to a word end, but internal nodes of the tree can P ) xt-dep P
dels are not used, then the probability of extending a

also correspond to word ends (as well as being internal no g . :
of other words). (%pothessh by a wordw only depends or: via the LM

A hypothesish is extended by one word: using such a and may be incorporated at the word'efnd (see Sectio'n 11-C).
pronunciation tree, resulting in an extended hypothasis: In the case of cross-word models, additional bookkeeping and

h.w with reference timet,,. This procedure is outlined in de_lrah){ed lrnoo_lttal e\_/aluatl_cl)n IS treqdwijecti [30]. i d h
Fig. 5. Following (10), the scaled likelihood for this extensio IS algorrthm 1S €aslly extended fo generate word graphs

may be written rElattices) without incurring extra computation. The elements
of a word graph consist of the hypothesized word extensions

L(X®n ) gy = L(X B tar); QU 1)y (11) Wwith the corresponding start and stop times, acoustic log
th probabilities and LM probabilities. These terms can all be
= ] L&) q(0)P(q(i)lg(i — 1)) (12) found in (13).
i=ty,
B. Pruning

8Empirical speech recognition results [25] indicate that the connection- . . .
isttHMM approach offers much richer context-independent phone modeIsAS already alluded to in Figs. 2 and 5, the above process will

compared with Gaussian mixture models. be extremely inefficient without an effective pruning algorithm
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(1) lexicon.EXTEND(st,stacks, start 1){ ! j j T grosdy-uo" —
2) t:=startt sl 7\ "backtaceuby - |
3) DEPTH_FIRST_UPDATE.LUB()

) active_list[t].CLEAR() ol

(5 root _node.ACTIVATE()

6) active_list[t].PUSH(root node) sk _
@) while 7 < utterance_length and active_list[t].S1ZE() > 0 { z

®) while active_list[t].S1ZE() > 0 { g o} §
)] node := active_list[t].POP() S

(10 node.FORWARD() s st 4
an node.ACTIVATE_SUCCESSORS(active_list[t]) k! s

12) if node.PRUNE(LU B[t + 1], A) 0 ik e - ]
(13) node.DEACTIVATE() ‘\‘,:/

(14) else S K |
(15) active_list|t + 1].PUSH(node)

(16) if node.exit state.ACTIVE() and node.[S_-WORD_END(} RN

an node EXTEND._HYPS(st, 1, stacks[]) A . . . ‘ .

( 1 8) } 0 200 400 600 800 1000

(19) ti=t+1 timefframes

(20 } Fig. 6. Least upper bound estimates produced by the search algorithm using
@y} the greedy and backtrace strategies. The upper curve is produced by the

greedy strategy and the middle one by the backtrace strategy. The lower curve
Fig. 5. Algorithm for extending a set of hypotheses by one word using th®rresponds to the probability trace of the most probable complete hypothesis.
tree-structured set of pronunciation models. Theve_list[t] contains the set
of nodes activated at timeand the algorithm continues untittive_list[t'], . . o
t' > t, is empty (or the end of the utterance is reached). Fig. 6, together with the log probability trace of the most

probable complete hypothesis.
such as beam search. Beam search requires the comput t'c')A garbage model of any random sequence of words or
" : qui bu asb@ech sounds is used to initialize [0 (¢;,)]. This can either

of a reference score referred to as {hast upper boundn be a separate garbage model evaluated for each frame or an

the log probability of the most likely hypothesis. An aCcuratistimate obtained from the local phone posterior probability

estimate Of. ll_JbP.(th)] (the least upper bound) is essentia stimates in a similar fashion to the “online garbage” approach
if this heuristic is to lead to an efficient search. We hav% [31]. In the online garbage approach which was adopted for
investigated two approaches to estimating[fe(s;, )]: ) 9 9e app b

) . ; this work then most probable phone posteriors (excluding
1) Greedy Strategy.Wh_epever a partial extension to a hy'the most probable) are averaged and converted to a scaled
pothesis has log probability

likelihood by dividing by a uniform prior. This average

[LP, + L(X(th,t); Q(th,t))] > Ub[LP(t)] likelihood is combined with a nominal Markov process score.
The initial estimate of IupLP(#,)] is further refined at
then update each start time (when a set of hypotheses is to be extended
by a word) using a simple depth-first process (line 3 of
IUb[L P(t)] := [LP, + L(X®1; )], Fig. 5). This considers a single path down the tree by always

considering the most probable successor node at any point,
2) Backtrace StrategyUpdate UL P(¢)] using paths ob- yntjl all successor nodes are outside the beam. The initial
tained by backtracing from complete word extensions. Hstimate of IUBLP(#;,)] is then updated by backtracing from
LP;*(t) is the log probability at time of the most probable any complete word extensions found on this path. This process
path for hypothesis: and: is an efficient way to improve the conservative garbage model
initialization of the least upper bound, while requiring few
LB (£) > Wub[LP(®)] extra models to be evaluafepd. | °
Having arrived at an estimate of the least upper bound
on the log probability, beam search pruning may be used
lub[LP(t)] := LP" (t). with lub[LP(¢)] as a reference for a beam with width.
Hypotheses, or partially extended hypotheses, with a log
The greedy strategy requires no additional computation, buobability LF, < (lub[LP(t)] — A) are pruned from the
it is not optimal. In particular, states that do not result isearch. The beam is used in pruning at three points in the
a complete, unpruned word extension may contribute to teearch: when activating nodes in the pronunciation tree (lines
update of IUBLP(t)] and the constraints of the LM on thel2-15 in Fig. 5); when pushing extended hypotheses on to
single word extension are not applied. The backtrace stratdafg relevant stack (line 17 in Fig. 5); and when choosing
involves a little more computational resources, but it ensurbgpotheses to extend (line 5 in Fig. 2).
that lugL P(¢)] is updated using only paths corresponding to State-level pruning of nodes in the pronunciation tree is
complete word extensions. A slightly more elaborate versighe most critical point of pruning. Lef(X = ;) denote
of this idea is used in the envelope search strategy of Gopalatkre scaled likelihood of the acoustic dad&(*-*)¢t being
ishanet al. [14]. A comparison of the backtrace and greedgenerated by a node sequena®t, a, ---, i (where this is
estimates of IUELP(¢;,)] for a typical sentence is shown inthe most probable state sequence through the pronunciation

then update
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tree resulting in state at time¢). If structure (each node may be part of the pronunciation model
for several words) and the parallel extension of hypotheses
(several different LM contexts need to be considered). This

then nodei is pruned from the searctL(X?); ¢) is the also has the effect of coupling the search to the LM.

extension log probability of the most probable state of node 1N€ §imple.sF way to incorpprate I_‘M information into the

i given the acoustic data, so a node is pruned only if all i&earch is to uuh;e LM mformayon which can be precomputed.

states fall outside the pruning beamwidth. Note that a nod¥'€ @pproach is to use a unigram approximation to the LM,

may be reactivated if its parent (or any of its ancestors) remd} computing P(w) for all words w. At each node, the

activated. maximum unigram probability of all words containing this
The pruning beam is also applied at word ends when pu§H)-de in a pronunciation is computed. During the search, this

ing an extended hypothesis onto a stack and when prepa igram upper bound at a node is incorporated as a context-
to extend a hypothesis. In both these cases, if independent estimate of extending any hypothesis through that
node. This method has been referred tauagyram smearing

LP;, < Iub[LP(t)] — A (15) [32]. A second approach involves computing an upper bound

on the LM probability given the context—specifically, if a

then hypothesis: is pruned (not pushed onto the stack, Ohypothesis being extended has final werg then P*(w;) =
not considered for extension). Pruning prior to extension js.. P(w;|w;, wy,) (in the case of a trigram) is used
required since a hypothesis that was not pruned when it wgs, o 2

e approximate the LM probability, with the maximum being
pushed on to a stack may no longer be within the beam wheginted over all possible extension words and the remainder
it is to be extended due to IibP(t;)] being updated by other

; : of the LM context. These approximations may be computed
hypotheses under consideration.

) ) _in advance and stored in a table. We refer to this method as
State-level pruning takes place using the log probabilitye context upper boundpproximation.

of the most probable hypothesis being extended. Hypotheg,act | M probabilities can be used in the search, but

ses are differentiated at word ends where the difference jp gome computational expense. Such information may be
log probability between hypotheses and the LM score ajg.omorated by smearing the LM probabilities through the
co_nS|dered. Thus_ state-level pruning affects all hypothes[?ée: the LM probability for a node given a hypothesis (con-
being propagated in parallel, whereas word end pruning (Whgf) is the maximum LM probability over all words that
pushing extended hypotheses on to appropriate stacks) Selggis through that node. The computational expense involved
betwee_n hypotheses_, being gxtended. i depends on the LM lookup, although this may be decreased
Specn‘lymgl afmaxn‘_num size for each stack provides ayhqugh caching LM probabilities that have been recently
Eecond evel o >pr|un|ng. If @ hypothesis falls within the 5. essed (or are expected to be accessed). An intermediate
eam, ("e"LP’f = Ub[LP_(th)] — A), then it is only ad?'ed position between incorporating exact LM probability upper
to fche appropr!ate stack if the stack has less thagntries bounds at each node and incorporating exact LM proba-
or if LPy, > minye stack LFy. In the case where the staCkyjijes at word ends only is to incorporate probabilities

has s entries, adding a new gntry dgletes the Iea}st pr,c’b"’,‘gl?some nodes and to use the statically computed approx-
hypothesis from the stack. This maximum stack size criterion ~tions for the rest. A reasonable parameter to control

has the same effect as adaptively decreasing the beamxl\{idtl\*}vhich nodes should use exact LM probabilities is based

in areas of the search with many competing hypotheses. on the number of pronunciations passing through a node.
Nodes for which no more than a certain number (referred

C. Language Model to as the “LM incorporation threshold”) of pronunciations

In the basic search organization described above, the LMpigss, incorporate the exact LM probability. The reasoning
applied at word ends only and with all candidate extensiohehind this approach is that the upper bound is only likely
to hypotheses being generated solely by the acoustic modelbe significantly better than the static approximations when
This allows an extremely simple interface between the LM is computed by taking a maximum over relatively few
and the search via a function that returns the probabilityords.
P(wlwy (1), wp(2), ---, wy(n)) of a hypothesig: being ex-  The parallel propagation of hypotheses impacts smearing
tended by a wordv. An important benefit of this relationshipof exact LM probabilities through the tree, since each node
between the search and the LM is the possibility of decodimgquires an LM upper bound for each LM context (each
using a larger acoustic model vocabulary than LM vocabbypothesis). If this information is computed, then it may be
lary—not every word represented in the pronunciation tremwost efficient to prune hypotheses individually at each node
need be represented explicitly in the LM, provided it contaireccording to the hypothesis tree entry probability and the exact
probabilities for “unknown” words. This means that new wordsM upper bound based on the LM context of each hypothesis.
can be added to the recognition system by providing a prohis is referred to astate level hypothesis pruningxperi-
nunciation from which an acoustic model may be constructemients using this and the other LM incorporation strategies are
but without the requirement to recompute the LM. reported in Section IV.

Pruning of the search could be tightened further if the If exact LM probabilities are not incorporated within words,
LM could be applied before word ends. However, earlthen within-word log probabilities will be greater than word-
application of the LM is made more complex by both the treend log probabilities. This can be taken advantage of crudely

LP, +log L(X®; i) < lUb[LP()] - A  (14)
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(but effectively) by using a smaller pruning beamwidth at thier this task, containing 8.5 million trigram probabilities and

state level compared with the word level. 7.4 million bigram probabilities. The Abbot acoustic model
consisted of two context-independent recurrent networks with
I1l. PHONE DEACTIVATION PRUNING 53 context-independent phone classes (plus silence). One

network estimated the phone posterior probability distribution

In addition to the likelihood-based pruning described abov 5 each frame given a sequence of twelfth-order perceptual
we have also developed a posterior probability-based prLin—

ing strategy that takes advantage of the connectionist/HMM <2 p_redwtpn feat.ures.. Thg other network performed the
same distribution estimation with features presented in reverse

h. Thi i loits the f hat th o ) .
approach. ThiS pruning strateg)_/ exploits t c act t at_ .t.oerder,7 and the two probability estimates were averaged in
connectionist acoustic model estimates posterior probabiliti Se lod domain
rather than likelihoods. [Posteriors may be regarded as dtIS- 9 :

S . . The criteria that we have used to evaluate the search
criminative probabilities that do not incorporate an estlmatq )
of P(x)]. Direct estimation of the phone posteriors avoids thaegonthm are as follows.
) 1) Word Error Rate: The transcription word error rate ob-

need to sum over baseform HMM'’s, which would be required . . . . : o
. . o talned by summing the deletion, insertion and substitution
to carry out an equivalent approach in a I|keI|hood-baseer ors

system—a costly computation for a large, context-dependéen .
Y y P ge, P ) Search Error: The error due to the search algorithm

system. runing the most probable complete hypothesis at some in-
For each frame of data, the connectionist acoustic moc[)efJ 9 P P yp

: ermediate point. It is quantified as the increase in word error
produces a complete vector of context-independent posterio : . :
. rate relative to the unpruned case. Note that an increase in
phone probabilities. These phone posteriors may be regarded . L “ ”
funing can cause a reduction in word error rate due to “lucky

as a local estimate of the presence of a phone at a partic@g{r}lrch errors in which a hypothesis has a fewer number of
time frame. If the posterior probability estimate of a phone yp

given a frame of acoustic data is below a threshold, then fjs%hlbstltutmn, deletion or insertion errors compared to one with

L : igher probability.
words containing that phone at that time frame may be prune ) AcF;ive Mod)él Count:The mean number of phone model
(deactivated), i.e., :

evaluations per frame, (i.e., the mean number of nodes in the
if P(g;|x) < threshold then P(g¢;|x) := 0. pronunciation tree evaluated per frame). Phone models may

) o ) be evaluated multiple times at each frame corresponding to
We refer to this process gshone deactivation pruninB3].  oyiensions from different start times.

The posterior probability threshold used to make the pruning4) Hypothesis Creation CountThe mean number of ex-
decision may be empirically determined using a developme@hded hypotheses created each frame.
set and is constant for all phones. The effect of varying 5y phone Deactivation LevelThe effectiveness of phone
this threshold on both recognition accuracy and CPU time {8, ctivation pruning can be expressed by the percentage of
reported in Section IV. phone models that are pruned at each time frame, averaged
Phone deactivation pruning is related to the cf_1annel-bar‘3g7er all time frames. The raw percentage will tend to be
based approach of Gopalakrishneh al. [34], which uses 4, oyer-estimate of the computational saving of this pruning
likelihoods to carry out a S|m|!ar pruning operation. Howevanethod, since it is not weighted by the prior probabilities
the channel-bank approach is somewhat more complex g§thhones, (i.e., pruning frequently occurring phones leads to
requires phone-dependent thresholds. Reported expenmegﬁ[?ber computational savings than pruning infrequent phones).
results for the channel-bank_ approach |nd_|cated thgt it offe_r erefore, we report the phone deactivation level as the per-
a factor of two speedup with a 5-10% increase in relat"@entage of phones pruned weighted by phone prior probability
search error. (estimated using the relative frequencies in the training data).
We also express the performance in terms of the run-
IV. EXPERIMENTS ning time of the software implementation (on a Sun Ultra
Experiments have been carried out with the StarﬂlG?)—a” figures refer to the search time and do not include
synchronous search algorithm using the DARMorth the computation time needed to perform the feature extraction
American Business NewWBIAB) task. This large vocabulary, and run the recurrent networks (which is around 1:25
speaker-independent, continuous speech recognition t&#Rltime on this machine). All results are averaged over the
uses read speech data. The experiments reported here Westset of 300 utterances.
performed using the Abbot system trained on the WSJO short-The experiments on the phone deactivation and beam prun-
term speaker training corpus (SI-84), consisting of aroutidg (Sections IV-A and IV-B, respectively) were carried out
15 h of speech from 84 speakers. The test set used in thE§#g & maximum stack size of 31 hypotheses per reference
experiments was the DARPA/NIST Hub 3 Evaluation Tedtme (determined empirically on development test data). These
Set (1995)/Sennheiser microphone (CO condition), consistifigeeriments did not use exact incorporation of the LM within
of roughly 45 m of speech (300 utterances) recorded from ¥®rds, but some LM information was incorporated using the
speakers. Parameters and search strategies were not develgpeigxt upper bound method (Section II-C). Here, we report
on this evaluation set: other NAB development data sets were
used for this purpose. A 60000 word vocabulary was used7Note that recurrent networks maintain contextual information via the state
with the standard (1995) back-off trigram language modeits and are time-asymmetric.
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deactivation level. A phone deactivation level of 0.0 corresponds to no prunCF

i o
(threshold= 0), a phone deactivation level of 64% corresponds to a thresh %'ﬁ?/.e oﬁzl?r:eOfl?es S::&Z?Seigotrh\e/e{esgtsggO(r;% ?J?tiﬁg\rﬁt;gn Is;/il erk:geal\lﬁré
of 70.0 x 10~ and a phone deactivation level of 82% corresponds to %at the relationship between the phone deactivation Ievelpandpthe oéterior
pruning threshold 02000.0 x 10~%. The search used a beam of 6.0 and etl p p p

“state beam” of 5.0, together with the backtrace LUB estimation. probability threshold is speaker-dependent.

These results indicate that a substantial amount of phone
on experiments in which LM probabilities were incorporateggctivation pruning may be applied without a significant
in the search at the state level. impact on search accuracy. In particular, the average number
of phone model evaluations may be reduced by a factor of 7
with around 1% search error and by a factor of 30 or more with
around 8% search error. In this case, the running time scales

The first set of experiments investigated the effectiveneabnost linearly with the active model count: on an UltraSparc
of the posterior probability based phone deactivation pruninty167, the decoding ran in 99 realtime if phone deactivation
A wide beamwidth was chosen so that the base case in whiotuning was not applied (at this setting of the beam); with a
phone deactivation pruning was not applied could be regardelidbne deactivation level of 64%, the run time was reduced to
as having no search errors. In this case, the overall word erfid@r x realtime (with a relative search error of 1%).
was 15.3% and all search errors are computed relative to thisThe tradeoff between search error and computation is rel-
value. Fig. 7 shows the search error and the active model coatively independent of speaker. As in all search algorithms,
plotted against the phone deactivation level. At the phome mismatch between training and testing acoustics, (e.g.,
level, an operating curve for the phone deactivation prunifggh noise level, etc.) results in less differentiation between
process may be obtained by plotting the phone deactivatioompeting hypotheses causing a slower process. The relative
level against the “correct phone” deactivation level. Thignprovements in the speed, however, remain the same. Fig. 9
measures the percentage of “correct” phones (obtained bghows the search error plotted against the phone deactivation
Viterbi alignment) that are pruned (Fig. 8). level for five of the fifteen speakers in the test set.

A. Phone Deactivation Pruning
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timate. When the pruning beamwidth is larger, there is little
to choose between the two strategies—indeed, the greedy
strategy may be preferable since it does not have the memory
and computational expense of storing backtrace information.
However, the backtrace strategy is more stable to reductions
in the state-level beam relative to the word-level beam and
has vastly better performance if small search errors may
be tolerated. For example, if a search error of less than
5% is acceptable, then the best parameter setting for the
greedy strategy results in around 5000 active models/frame
(approximately X realtime). The backtrace strategy, however,
can achieve less than 5% search error with an active model
e TRREE count of roughly 2300 (less thanx2realtime). If realtime

. . processing is desired (at this level of phone deactivation
8000 10000 %% pruning), then the backtrace strategy achieves this with under
(@) 10% search error, whereas the performance of the greedy
strategy explodes to over 30% search error.

T
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C. Language Model Incorporation

ol | 1 The previous experiments did not incorporate LM informa-
5 ‘ tion at the state-level, except through the context upper bound
g ol f . | method described in Section II-C. In this section we report on
£ L a set of experiments in which LM information is incorporated
# bt 5 at the state level. There is a trade-off between the accuracy of

L | the state level LM information and the computation required
4 to incorporate the LM at the state level. The degrees of LM

2r ¥ A . 1 incorporation we consider are the following.
i I o co 1) No LM incorporation.
ol e p- s 500 2) Context upper-bound approachpper bound on LM
ypathesis creation court probability is computed by maximizing over possible
(b) long-term current words and long-term contexts given

Fig. 10. Plot of search error versus: (a) active model count and (b) hypothesis ~ the preceding word.
creation count for the greedy and backtrace LL}B_e_stimation stra'tegies. Eacrg) Unigram LM approximation at the state Ievel—unigram
curve has an equal word-level beam and the individual data points on each . . . .
curve correspond to varying state-level beams (equal to and less than the ~SMearng LM approximation for each node is the max-
word-level beam). imum unigram probability of all words whose pronun-
ciations pass through the node.
4) Exact LM incorporation Exact LM applied at nodes
which contribute to a number of pronunciations below
The next set of experiments investigated the influence of  the LM incorporation threshold.
the beam search on the behavior of the algorithm. Sincerpe approximations used in approaches (2) and (3) (see
the least upper bound contains LM information covering th§action I-C) may be computed in advance and may be applied
current frame (at least in the case of the backtrace strategy}, those nodes above the LM incorporation threshold if
more efficient pruning can be achieved using a narrowgpproach (4) is used.
beam within words (as compared with word ends) when only Fig. 11 shows the effect of the context upper bound and
minimal LM information is incorporated within words. Fig. 10ynigram smearing approximations. These results indicate that
illustrates how the search error and two measures of Seamhgram Smearing is an effective LM approxima’[ion, whereas
effort (active model count and hypothesis creation counfje context upper bound has no appreciable effect (and is even
vary with changing beamwidths. This figure indicates thabunter-productive at higher pruning levels). At the cost of
the active model count is largely dependent on the staign additional number of search errors, the size of the active
level beamwidth and independent of word-level beamwidtBearch space (and hence the running time) is reduced by a
while the opposite is true for the hypothesis creation cour&ctor of two or more when unigram smearing is applied. Since
Active model evaluation and and hypothesis creation are tti unigram LM approximation at the state level can be an
most CPU intensive portions of the algorithm and the overaHaccurate estimate, (e.g., when an infrequent word occurs in
running time depends linearly on both counts. a specific context), the best tradeoff between search error and
The results in Fig. 10 also show the difference betweettive model count occurs when the state-level beam is a little
the greedy and backtrace strategies for setting the LUB éarger than the word-level beam (in contrast to the previous

B. Beam Search and LUB Estimation
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exact LM probabilities are applied at the state level. The labels “inclm-syot incorporated at the state level. On each graph, the lower curve corresponds

and “inclm-nil” indicate that the unigram smearing and no LM techniquegg the number of active models used and the upper curve is the CPU time
respectively, have been applied to the state level nodes above the thresheioo is realtime on an Ultra-167).

experiments where better performance was observed whengBemore nodes in the pronunciation prefix tree use exact LM
state-level beam was smaller than the word-level beam). bounds. However, there is not a concomitant reduction in
Figs. 12 and 13 show the performance of incorporatinginning time. In the case where unigram smearing is not
exact LM probabilities at the state-level for those nodes thapplied to those nodes above the threshold, LM incorporation
fall below the LM incorporation threshold. Two methods fofs worthwhile at the state level, with the minimum in running
dealing with nodes above the incorporation threshold—nigne being at an LM incorporation threshold of about 80
LM and uniform smearing—were evaluated. Fig. 12 indicatggonunciations per node. Although this level of incorporation
that there is a consistent 1-2% search error due to unigraavers over 99.9% of all nodes in the tree, those nodes which
smearing, as well a gradual increase of up to an extra 4%e incorporated in over 80 pronunciations are predominantly
search error as the LM is applied to an increasing numbertbi first and second phones of a pronunciation and are hence
nodes. activated more often. On average, around 22% of active nodes
Fig. 13 shows how the computational cost varies with there above this LM incorporation threshold. The same tradeoff
LM incorporation threshold in the cases when the unigram Lislpplies when unigram smearing is applied to those nodes that
approximation is or is not applied to those nodes above the not incorporate exact LM bounds. In this case the unigram
threshold. Two measures of computational cost are used: #pmproximation to the exact LM upper bound is sufficiently
active model count and the running time. The lower curve gbod, resulting in a very small improvement in active model
each graph plots the active model count; the upper curve tt@unt resulting from exact LM incorporation. In this case,
running time. As expected, the active model count decreasasning time reaches a minimum at an LM incorporation
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threshold of one, when exact LM probabilities are used onigformation may be stored about a hypothesis, (e.g., interword
for those nodes which contribute to the pronunciation of @auses) without affecting the language model state.

single word. We have focused primarily on context-independent phone
modeling, largely because the Abbot system has very good
D. Extensions performance using context-independent models. However, the

A ioned in Section II-C. it i ibl ; algorithm can be immediately applied to context-dependent
S mentioned in section 1I-C, it is possible to perform &,,qe|s. This has been done for within-word context-dependent
decoding with a larger acoustic model vocabulary than L%odels [26] and the method used by Ravishankar [30] for

vocabulary, so not every word represented in the pronunciati&ra)ss_word context-dependent models may be applied in
tree need be in the LM provided there is some mechaniﬁmS case

for specifying (default) probabilities for “unknown” words.

O.nﬁ. apk;])roai:/lh 'SI ;o |n(r:]Iude a gen;}a‘ral. “unl:jnown" wohrd Claiﬁ e of specific features of the connectionisHMM approach.
wit km the ¢ ’ atd Olljg more ZOp |3t|gate apr;roac ?S MBhone deactivation pruning uses the local posterior probabili-
make use of word classes produced by some form of taggels oqtimated directly by the recurrent network, pruning those

_(s_tgnstlcal, semantic_or syntactlc)._ We have p?Fformeo‘_ Pones with a local posterior probability below a threshold.
initial experiment using a system trained on the British Engli is approach can reliably prune around 64% of the phones,

database WSJCAMO [35] using a 20 K language mod sulting in a speed improvement of a factor of seven (or

(the 1994 DARPA NAB language ”.“.’de') anq a 357 OO91ore) with a search error of about 1%. Recent work by Willett
word prqngnuaﬂon d|ct|.on'ary (the British English Exampl%t al. [37] has extended the phone deactivation approach
Pronunciation (BEEP) dictionaf/The 337 000 words not in to “traditional,” likelihood-based HMM systems, in which

the language model were_mapped to the_unknown symtmb local state posterior probabilities are estimated using an
(UNK) and the LM probabilities of UNK (given a context) efficiently computed estimate gf(x)

were scaled by the number of unigrams. Although the resultantIn summary we have developed an efficient search algo-
pronunciation tree was 20 times larger c.ompared vyith the 20r m, specifically tuned to the connectionistHMM approach,
vocabulary, the avgra“ge number of acalve noqes increasedy ¥ enaples close to realtime decoding of large vocabu-
?‘facmr OT 3.6. This proof-qf-concept experlme_nt resulte ry continuous speech recognition problems with minimal
in a relative search error increase of 6%. This result é?earch error.

encouraging since it indicates the search algorithm can clearly

scale favorably with vocabulary size. Note that there are clear

improvements that could be made to the language model and ACKNOWLEDGMENT
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