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Abstract—In this paper, we present a novel, efficient search
strategy for large vocabulary continuous speech recognition.
The search algorithm, based on a stack decoder framework,
utilizes phone-level posterior probability estimates (produced by
a connectionist/hidden Markov model acoustic model) as a basis
for phone deactivation pruning—a highly efficient method of
reducing the required computation. The single-pass algorithm
is naturally factored into the time-asynchronous processing of
the word sequence and the time-synchronous processing of the
hidden Markov model state sequence. This enables the search
to be decoupled from the language model while still maintaining
the computational benefits of time-synchronous processing. The
incorporation of the language model in the search is discussed and
computationally cheap approximations to the full language model
are introduced. Experiments were performed on the North Amer-
ican Business News task using a 60 000 word vocabulary and a
trigram language model. Results indicate that the computational
cost of the search may be reduced by more than a factor of 40
with a relative search error of less than 2% using the techniques
discussed in the paper.

Index Terms—Hidden Markov model, large vocabulary con-
tinuous speech recognition, phone deactivation pruning, search,
stack decoding.

I. INTRODUCTION

T HE SEARCH problem in large vocabulary continuous
speech recognition (LVCSR) can be simply stated: find

the most probable sequence of words given a sequence of
acoustic observations, an acoustic model and a language
model. This is a demanding problem since word boundary
information is not available in continuous speech and each
word in the dictionary may be hypothesized to start at each
frame of acoustic data. The problem is further complicated by
the vocabulary size (typically 20 000 words or larger) and the
structure imposed on the search space by the language model.

When formulated in a statistical manner, the goal of
the speech recognizer is to find the word sequence

with the maximuma posteriori (MAP) prob-
ability given the sequence of acoustic observations
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:

argmax (1)

Here, is the a posteriori probability of word se-
quence given acoustic data and can be expressed (using
Bayes’ rule) as a product of theacoustic modellikelihood

and thelanguage modelprior probability :1

(2)

(3)

Note that may be neglected during recognition (selec-
tion of the optimal word sequence) since it is independent of
the word sequence.

The acoustic models generally used in statistically-based
speech recognition systems are hidden Markov models
(HMM’s) [1], [2]. The language model is typically an

th-order Markov chain on the word sequence and
is often referred to as ann-gram model. Using HMM’s,
a hierarchical model of speech may be constructed where
an utterance model (a model of a word sequence) is
composed of a series of concatenated word models which,
in turn, are composed of subword models. The topology and
transition probabilities of the utterance model are defined by
the language model, the pronunciation dictionary, and the
topologies of the basic subword HMM’s.

By applying (3), marginalizing over all possible state se-
quences and accounting for the structure of the HMM, we
may express the MAP recognition criterion (1) as

argmax (4)

argmax (5)

If the Viterbi criterion is employed, this summation is approx-
imated using the most probable state sequence

argmax (6)

argmax (7)

where is the set of HMM state sequences
that correspond to the word sequence :

1As usual,P and p denote the probability mass and density functions,
respectively. Precise notation requires conditioning these statistical quantities
on the acoustic and language models. For clarity, however, we drop the explicit
dependence.
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. Although (7) does not directly
optimize the word-recognition criterion specified in (1), it has
been shown to work well in practice.

The task for the search algorithm is to evaluate (5) or
(7)—i.e., determine given the various models and the
acoustic data. Direct evaluation of all the possible word
sequences is impossible (given the large vocabulary) and an
efficient search algorithm will consider only a very small
subset of all possible utterance models. Typically, the effective
size of the search space is reduced through pruning of unlikely
hypotheses and/or the elimination of repeated computations.
Two basic classes of search procedure have been used for
continuous speech recognition: time-synchronous Viterbi de-
coding and time-asynchronous stack decoding.

A. Viterbi Decoding

In its basic form, Viterbi decoding (or forward dynamic
programming) may be regarded as an efficient, recursive
algorithm that performs an optimal exhaustive search [3]. For
HMM-based speech recognition, the Viterbi algorithm is used
to find the most probable path through a probabilistically
scored time/state lattice.2 Viterbi decoding is efficient for small
problems with a finite state language model and is guaranteed
to find the optimal path. However, the computational expense
of an exhaustive dynamic programming search is too great
for LVCSR problems. Various pruning and data organization
techniques have been adopted to reduce the effective size
of the search space. One such algorithm—beam search [6],
[7]—defines a pruning beam width relative to the most
probable hypothesis log likelihood at frame .
Hypotheses outside the beam [those with log likelihoods less
than ] are pruned from the search.

The use of time-synchronous Viterbi decoding becomes
more complex when long-span language models (e.g., tri-
grams) are introduced. This requires multiple copies of word
models to account for different contexts and can be ex-
tremely resource-intensive for large vocabulary tasks. Ap-
proaches taken to address this problem include the use of
dynamic search structures [8] and multipass search where more
simple, early passes direct the later passes [9].

B. Stack Decoding

The ideas underpinning stack decoding are those of sequen-
tial decoding in communications theory [10] and of heuristic
search in artificial intelligence, such as the algorithm
[11]. These search algorithms are time asynchronous—the best
scoring path or hypothesis, irrespective of time, is chosen
for extension and this process is continued until a complete
hypothesis is determined. The crucial function for these algo-
rithms is the estimated score (log likelihood in this case) of
hypothesis at time , , and is given by

(8)

Here, is the score of the partial hypothesis using informa-
tion to time and is the estimate of the best possible score

2This approach was first used in speech recognition by Vintsyuk [4] and a
tutorial by Ortmannset al. can be found in [5].

(maximum log likelihood) in extending the partial hypothesis
to a valid complete hypothesis. It has been shown that as long
as is an upper bound on the actual log likelihood, then
the search algorithm is admissible [11] (i.e., no errors will be
introduced that would not occur if an exhaustive search was
performed).

Stack decoding is a best-first algorithm. Thebest (partial)
hypothesis, [i.e., the hypothesis for which is greatest]
from the “stack” of hypotheses under consideration is popped
from the stack, extended by a word, and the extended hypothe-
ses pushed back onto the stack. Provided the estimate of
is admissible, the first complete hypothesis to be popped from
the stack will correspond to the most probable utterance model.
Such algorithms have been investigated by Bahlet al. [1],
[12]–[14], Paul [15], Kennyet al. [16], and Soong and Huang
[17]. In the statistical framework for speech recognition, (8)
may be expressed as

(9)

The first term on the right hand side, ,
corresponds to in (8) and is the joint log likelihood
of the sequence of acoustic vectors to timeand the
word sequence hypothesized to that time. The second term,

, corre-
sponds to in (8) and—in this case—is the sum over all
possible word sequences that can follow while account-
ing for the remaining acoustic evidence . Computing
this quantity exactly is out of the question in practice! Various
approximations have been employed. Bahlet al. [1], [18]
ignored the dependence on and estimated the ex-
pected value of

using a first-order Markov model com-
puted from the acoustic training data. Kennyet al. [16] and
Soong and Huang [17] used a multipass framework where an
initial Viterbi pass with simple acoustic and language models
was used to approximate for an search proceeding
in the opposite direction.

The disadvantage of the above approaches to approximating
is the requirement to look ahead at the acoustic data. An

alternative approach [13]–[15]—and the approach presented in
this paper—does not rely on looking ahead. Instead, is
constructed such that hypotheses with earlier reference times
always have higher scores than those with later reference
times. This method is discussed in greater detail in Section II-
A.

Stack decoding has several potential advantages over Viterbi
decoding, as follows.

• The language model is decoupled from the acoustic model
and is not used to generate new recognition hypotheses.

• It is easy to incorporate non-Markovian knowledge
sources, (e.g., long-span LM’s) without massively
expanding the state space.
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Fig. 1. Recurrent network architecture used for acoustic modeling in the
connectionist/HMM approach. The acoustic vectorx(t) is input to the trained
network, which outputs posterior phone probability estimatesP (qjx(t)).R(t)
represents the internal state vector of the recurrent network.

Fig. 2. The basic start-synchronous stack decoding algorithm. Stacks are
processed in reference time order, each hypothesis on the stack is checked
for validity (inside the pruning beamwidth) and the surviving hypotheses are
extended by one word using the tree structured pronunciation models (lexicon).

• The Viterbi assumption is not embedded in the search and
thus a full maximum likelihood search criterion may be
used with little or no computational overhead.

Disadvantages of the approach include sensitivity to the choice
of heuristic [a bad choice of can lead to an explosion
of the effective search space] and the possibility of repeated
computation.

B. Search with Abbot

In this paper, we present a search procedure developed for
the Abbot LVCSR system3 [19], [20]. Abbot is a connection-
ist/HMM system [21] and the search procedure takes advan-
tage of some features particular to this approach (although
the search algorithm described in this paper is applicable to
standard HMM systems as well). This approach differs from
traditional HMM’s in that the posterior probability of each
phone given the acoustic data is directly estimated at each
frame, rather than the likelihood of a phone model (or state)
generating the data. This posterior probability estimation is
achieved by using a connectionist network trained as a phone
classifier. In the Abbot system, a recurrent network [22] is
used for the acoustic model (Fig. 1). Direct estimation of the
posterior probability distribution using a connectionist network
is attractive since fewer parameters are required for the con-
nectionist model (the posterior distribution is typically less
complex than the likelihood) and connectionist architectures
make very few assumptions on the form of the distribution.
Additionally, this approach allows pruning to be based on the
posterior probability estimates (see Section III).

3A demonstration version of the system, AbbotDemo, is available from:
ftp://svr-ftp.eng.cam.ac.uk/pub/comp.speech/recognition/AbbotDemo/.

Since the likelihood is required in the decoding process,
the posterior is converted to a scaled likelihood, . This
is computed by dividing the posterior probability estimate of
phone (or HMM state) given the data by the class prior

, as follows:

(10)

is estimated as the relative frequency ofin the training
data. The assumptions underlying this acoustic model are
discussed in detail in [21] and [23].

II. SEARCH ORGANIZATION AND ALGORITHM

A. Start-Synchronous Search

The single-pass search algorithm presented here utilizes a
start-synchronous4 strategy. This strategy factors the search
into a time-asynchronous processing of the word sequence and
a time-synchronous processing of the HMM state sequence.
A benefit of this approach is that it enables the search to
be cleanly decoupled from the language model (LM), while
maintaining the computational benefits of time-synchronous
processing.

A hypothesis is specified by a reference time, a word
string and a score .
is the log probability of the word string describing the
acoustics from time one to time , given the acoustic and
language models.5 The Abbot system is based on direct poste-
rior probability estimation, and thus is an estimate of the
log posterior probability ; in a “standard”
HMM system will correspond to an estimate of the joint
density . The search algorithm applies in
either case. may be estimated by summing over all state
sequences as in (5) or by using the Viterbi approximation
and considering only the most probable state sequence as in
(7). A stackof hypotheses is a priority queue data structure
[24], typically implemented as a binary or Fibonacci heap,
which efficiently supports the required operations of popping
the most probable hypothesis and inserting new hypotheses.

In start-synchronous search, hypotheses are processed in
increasing order of reference time; this is equivalent to
storing hypotheses in a sequence of stacks, one for each refer-
ence time. This start-synchronous, multistack implementation
is used here and the basic decoding algorithm is outlined in
Fig. 2. The array of stacks,stacks, is processed sequentially
with the earliest reference time first. The stack of hypotheses
to be processed is extended by a single word using the acoustic
model. As extended hypotheses are generated with reference
time , they are inserted into the stack of hypotheses with
reference time (Fig. 3). Hypotheses with the same reference
time are processed in parallel, allowing different LM contexts
to share the same acoustic model computations.

The acoustic model consists of a set of HMM’s, one for
each pronunciation of each word. These word models are

4This term was suggested to us by J. Bridle (personal communication).
5Since the time range is unambiguous, the word sequence notation has been

simplified fromW
(1; t)
h

to Wh.
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Fig. 3. Illustration of the start synchronous search strategy. The stack of hypotheses with reference timet = t1 is being processed. The most probable
hypothesis at this time (“efficient search”) is extended by the most probable one word extensions (“a” and “algorithm” are illustrated). The resultant
extended hypotheses are inserted into the stack at their reference time—in this case “algorithm” has durationt3 � t1. In practice all hypotheses with
identical reference times are extended in parallel.

Fig. 4. Fragment of a pronunciation prefix tree. The root node corresponds
to a single state pause model that may be skipped.

defined by a pronunciation dictionary and constructed by
concatenating the relevant subword HMM’s. In this work,
the subword HMM’s are context-independent phone models,6

although context-dependent phone models have been used
successfully with this search algorithm [26]. For computational
efficiency, the pronunciation models are represented using
a tree structure (Fig. 4) in which each node corresponds to
an instantiation of a basic subword HMM. Tree structuring
[27]–[29] allows pronunciations with a similar prefix to share
memory and computation when being evaluated. The root node
of the tree corresponds to a single state silence model which
may be skipped; this allows possible pauses between words
to be modeled. Word ends do not necessarily correspond to
leaves of the tree (nodes without successors): all leaves must
correspond to a word end, but internal nodes of the tree can
also correspond to word ends (as well as being internal nodes
of other words).

A hypothesis is extended by one word using such a
pronunciation tree, resulting in an extended hypothesis

with reference time . This procedure is outlined in
Fig. 5. Following (10), the scaled likelihood for this extension
may be written

(11)

(12)

6Empirical speech recognition results [25] indicate that the connection-
ist/HMM approach offers much richer context-independent phone models
compared with Gaussian mixture models.

where is the optimal state se-
quence (assuming the Viterbi criterion) for given .
(The full scaled likelihood may be similarly defined using the
forward probabilities in place of the optimal state sequence.)
To compute , the root node of the tree is
initially activated (line 5 of Fig. 5). In this case, the possible
set of extension words includes the complete vocabulary. The
pronunciation tree search is carried out in a breadth-first (time-
synchronous) manner. When the exit state of a word-end node
(corresponding to word ) is activated at time , then
an extended hypothesis with reference time
is created and pushed onto the stack at time with the
corresponding log probability (line 17):

(13)

The LM log probability is accessed when a
word extension is hypothesized. Candidate words are proposed
solely by their acoustics. This process continues until all pos-
sible extended hypotheses have been created and pushed onto
the relevant stack. Before adding a hypothesis to the stack,
a check is performed to determine if any of the hypotheses
currently on the stack are “LM equivalent” (i.e., they have the
same LM state). If there is an LM equivalent hypothesis, then
the one with lower probability is discarded (Viterbi criterion)
or the two hypotheses are merged by summing probabilities
(forward decoding criterion). For efficiency, all unpruned
hypotheses in a stack with reference timeare popped and
extended in parallel. If cross-word context-dependent phone
models are not used, then the probability of extending a
hypothesis by a word only depends on via the LM
and may be incorporated at the word end (see Section II-C).
In the case of cross-word models, additional bookkeeping and
delayed model evaluation is required [30].

This algorithm is easily extended to generate word graphs
(lattices) without incurring extra computation. The elements
of a word graph consist of the hypothesized word extensions
with the corresponding start and stop times, acoustic log
probabilities and LM probabilities. These terms can all be
found in (13).

B. Pruning

As already alluded to in Figs. 2 and 5, the above process will
be extremely inefficient without an effective pruning algorithm
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Fig. 5. Algorithm for extending a set of hypotheses by one word using the
tree-structured set of pronunciation models. Theactive list[t] contains the set
of nodes activated at timet and the algorithm continues untilactive list[t0],
t0 > t, is empty (or the end of the utterance is reached).

such as beam search. Beam search requires the computation
of a reference score referred to as theleast upper boundon
the log probability of the most likely hypothesis. An accurate
estimate of lub (the least upper bound) is essential
if this heuristic is to lead to an efficient search. We have
investigated two approaches to estimating lub :

1) Greedy Strategy:Whenever a partial extension to a hy-
pothesis has log probability

lub

then update

lub

2) Backtrace Strategy:Update lub using paths ob-
tained by backtracing from complete word extensions. If

is the log probability at time of the most probable
path for hypothesis and:

lub

then update

lub

The greedy strategy requires no additional computation, but
it is not optimal. In particular, states that do not result in
a complete, unpruned word extension may contribute to the
update of lub and the constraints of the LM on the
single word extension are not applied. The backtrace strategy
involves a little more computational resources, but it ensures
that lub is updated using only paths corresponding to
complete word extensions. A slightly more elaborate version
of this idea is used in the envelope search strategy of Gopalakr-
ishanet al. [14]. A comparison of the backtrace and greedy
estimates of lub for a typical sentence is shown in

Fig. 6. Least upper bound estimates produced by the search algorithm using
the greedy and backtrace strategies. The upper curve is produced by the
greedy strategy and the middle one by the backtrace strategy. The lower curve
corresponds to the probability trace of the most probable complete hypothesis.

Fig. 6, together with the log probability trace of the most
probable complete hypothesis.

A garbage model of any random sequence of words or
speech sounds is used to initialize lub . This can either
be a separate garbage model evaluated for each frame or an
estimate obtained from the local phone posterior probability
estimates in a similar fashion to the “online garbage” approach
in [31]. In the online garbage approach which was adopted for
this work the most probable phone posteriors (excluding
the most probable) are averaged and converted to a scaled
likelihood by dividing by a uniform prior. This average
likelihood is combined with a nominal Markov process score.

The initial estimate of lub is further refined at
each start time (when a set of hypotheses is to be extended
by a word) using a simple depth-first process (line 3 of
Fig. 5). This considers a single path down the tree by always
considering the most probable successor node at any point,
until all successor nodes are outside the beam. The initial
estimate of lub is then updated by backtracing from
any complete word extensions found on this path. This process
is an efficient way to improve the conservative garbage model
initialization of the least upper bound, while requiring few
extra models to be evaluated.

Having arrived at an estimate of the least upper bound
on the log probability, beam search pruning may be used
with lub as a reference for a beam with width.
Hypotheses, or partially extended hypotheses, with a log
probability lub are pruned from the
search. The beam is used in pruning at three points in the
search: when activating nodes in the pronunciation tree (lines
12–15 in Fig. 5); when pushing extended hypotheses on to
the relevant stack (line 17 in Fig. 5); and when choosing
hypotheses to extend (line 5 in Fig. 2).

State-level pruning of nodes in the pronunciation tree is
the most critical point of pruning. Let denote
the scaled likelihood of the acoustic data being
generated by a node sequence (where this is
the most probable state sequence through the pronunciation
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tree resulting in state at time ). If

lub (14)

then node is pruned from the search. is the
extension log probability of the most probable state of node

given the acoustic data, so a node is pruned only if all its
states fall outside the pruning beamwidth. Note that a node
may be reactivated if its parent (or any of its ancestors) remain
activated.

The pruning beam is also applied at word ends when push-
ing an extended hypothesis onto a stack and when preparing
to extend a hypothesis. In both these cases, if

lub (15)

then hypothesis is pruned (not pushed onto the stack, or
not considered for extension). Pruning prior to extension is
required since a hypothesis that was not pruned when it was
pushed on to a stack may no longer be within the beam when
it is to be extended due to lub being updated by other
hypotheses under consideration.

State-level pruning takes place using the log probability
of the most probable hypothesis being extended. Hypothe-
ses are differentiated at word ends where the difference in
log probability between hypotheses and the LM score are
considered. Thus state-level pruning affects all hypotheses
being propagated in parallel, whereas word end pruning (when
pushing extended hypotheses on to appropriate stacks) selects
between hypotheses being extended.

Specifying a maximum size for each stack provides a
second level of pruning. If a hypothesis falls within the
beam, (i.e., lub ), then it is only added
to the appropriate stack if the stack has less thanentries
or if . In the case where the stack
has entries, adding a new entry deletes the least probable
hypothesis from the stack. This maximum stack size criterion
has the same effect as adaptively decreasing the beamwidth
in areas of the search with many competing hypotheses.

C. Language Model

In the basic search organization described above, the LM is
applied at word ends only and with all candidate extensions
to hypotheses being generated solely by the acoustic model.
This allows an extremely simple interface between the LM
and the search via a function that returns the probability

of a hypothesis being ex-
tended by a word . An important benefit of this relationship
between the search and the LM is the possibility of decoding
using a larger acoustic model vocabulary than LM vocabu-
lary—not every word represented in the pronunciation tree
need be represented explicitly in the LM, provided it contains
probabilities for “unknown” words. This means that new words
can be added to the recognition system by providing a pro-
nunciation from which an acoustic model may be constructed,
but without the requirement to recompute the LM.

Pruning of the search could be tightened further if the
LM could be applied before word ends. However, early
application of the LM is made more complex by both the tree

structure (each node may be part of the pronunciation model
for several words) and the parallel extension of hypotheses
(several different LM contexts need to be considered). This
also has the effect of coupling the search to the LM.

The simplest way to incorporate LM information into the
search is to utilize LM information which can be precomputed.
One approach is to use a unigram approximation to the LM,
by computing for all words . At each node, the
maximum unigram probability of all words containing this
node in a pronunciation is computed. During the search, this
unigram upper bound at a node is incorporated as a context-
independent estimate of extending any hypothesis through that
node. This method has been referred to asunigram smearing
[32]. A second approach involves computing an upper bound
on the LM probability given the context—specifically, if a
hypothesis being extended has final word then

(in the case of a trigram) is used
to approximate the LM probability, with the maximum being
computed over all possible extension words and the remainder
of the LM context. These approximations may be computed
in advance and stored in a table. We refer to this method as
the context upper boundapproximation.

Exact LM probabilities can be used in the search, but
at some computational expense. Such information may be
incorporated by smearing the LM probabilities through the
tree: the LM probability for a node given a hypothesis (con-
text) is the maximum LM probability over all words that
pass through that node. The computational expense involved
depends on the LM lookup, although this may be decreased
through caching LM probabilities that have been recently
accessed (or are expected to be accessed). An intermediate
position between incorporating exact LM probability upper
bounds at each node and incorporating exact LM proba-
bilities at word ends only is to incorporate probabilities
at some nodes and to use the statically computed approx-
imations for the rest. A reasonable parameter to control
which nodes should use exact LM probabilities is based
on the number of pronunciations passing through a node.
Nodes for which no more than a certain number (referred
to as the “LM incorporation threshold”) of pronunciations
pass, incorporate the exact LM probability. The reasoning
behind this approach is that the upper bound is only likely
to be significantly better than the static approximations when
it is computed by taking a maximum over relatively few
words.

The parallel propagation of hypotheses impacts smearing
of exact LM probabilities through the tree, since each node
requires an LM upper bound for each LM context (each
hypothesis). If this information is computed, then it may be
most efficient to prune hypotheses individually at each node
according to the hypothesis tree entry probability and the exact
LM upper bound based on the LM context of each hypothesis.
This is referred to asstate level hypothesis pruning.Experi-
ments using this and the other LM incorporation strategies are
reported in Section IV.

If exact LM probabilities are not incorporated within words,
then within-word log probabilities will be greater than word-
end log probabilities. This can be taken advantage of crudely
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(but effectively) by using a smaller pruning beamwidth at the
state level compared with the word level.

III. PHONE DEACTIVATION PRUNING

In addition to the likelihood-based pruning described above,
we have also developed a posterior probability-based prun-
ing strategy that takes advantage of the connectionist/HMM
approach. This pruning strategy exploits the fact that the
connectionist acoustic model estimates posterior probabilities
rather than likelihoods. [Posteriors may be regarded as dis-
criminative probabilities that do not incorporate an estimate
of ]. Direct estimation of the phone posteriors avoids the
need to sum over baseform HMM’s, which would be required
to carry out an equivalent approach in a likelihood-based
system—a costly computation for a large, context-dependent
system.

For each frame of data, the connectionist acoustic model
produces a complete vector of context-independent posterior
phone probabilities. These phone posteriors may be regarded
as a local estimate of the presence of a phone at a particular
time frame. If the posterior probability estimate of a phone
given a frame of acoustic data is below a threshold, then all
words containing that phone at that time frame may be pruned
(deactivated), i.e.,

if threshold then

We refer to this process asphone deactivation pruning[33].
The posterior probability threshold used to make the pruning
decision may be empirically determined using a development
set and is constant for all phones. The effect of varying
this threshold on both recognition accuracy and CPU time is
reported in Section IV.

Phone deactivation pruning is related to the channel-bank-
based approach of Gopalakrishnanet al. [34], which uses
likelihoods to carry out a similar pruning operation. However,
the channel-bank approach is somewhat more complex and
requires phone-dependent thresholds. Reported experimental
results for the channel-bank approach indicated that it offered
a factor of two speedup with a 5–10% increase in relative
search error.

IV. EXPERIMENTS

Experiments have been carried out with the start-
synchronous search algorithm using the DARPANorth
American Business News(NAB) task. This large vocabulary,
speaker-independent, continuous speech recognition task
uses read speech data. The experiments reported here were
performed using the Abbot system trained on the WSJ0 short-
term speaker training corpus (SI–84), consisting of around
15 h of speech from 84 speakers. The test set used in these
experiments was the DARPA/NIST Hub 3 Evaluation Test
Set (1995)/Sennheiser microphone (C0 condition), consisting
of roughly 45 m of speech (300 utterances) recorded from 15
speakers. Parameters and search strategies were not developed
on this evaluation set: other NAB development data sets were
used for this purpose. A 60 000 word vocabulary was used
with the standard (1995) back-off trigram language model

for this task, containing 8.5 million trigram probabilities and
7.4 million bigram probabilities. The Abbot acoustic model
consisted of two context-independent recurrent networks with
53 context-independent phone classes (plus silence). One
network estimated the phone posterior probability distribution
for each frame given a sequence of twelfth-order perceptual
linear prediction features. The other network performed the
same distribution estimation with features presented in reverse
order,7 and the two probability estimates were averaged in
the log domain.

The criteria that we have used to evaluate the search
algorithm are as follows.

1) Word Error Rate: The transcription word error rate ob-
tained by summing the deletion, insertion and substitution
errors.

2) Search Error: The error due to the search algorithm
pruning the most probable complete hypothesis at some in-
termediate point. It is quantified as the increase in word error
rate relative to the unpruned case. Note that an increase in
pruning can cause a reduction in word error rate due to “lucky”
search errors in which a hypothesis has a fewer number of
substitution, deletion or insertion errors compared to one with
higher probability.

3) Active Model Count:The mean number of phone model
evaluations per frame, (i.e., the mean number of nodes in the
pronunciation tree evaluated per frame). Phone models may
be evaluated multiple times at each frame corresponding to
extensions from different start times.

4) Hypothesis Creation Count:The mean number of ex-
tended hypotheses created each frame.

5) Phone Deactivation Level:The effectiveness of phone
deactivation pruning can be expressed by the percentage of
phone models that are pruned at each time frame, averaged
over all time frames. The raw percentage will tend to be
an over-estimate of the computational saving of this pruning
method, since it is not weighted by the prior probabilities
of phones, (i.e., pruning frequently occurring phones leads to
bigger computational savings than pruning infrequent phones).
Therefore, we report the phone deactivation level as the per-
centage of phones pruned weighted by phone prior probability
(estimated using the relative frequencies in the training data).

We also express the performance in terms of the run-
ning time of the software implementation (on a Sun Ultra
1/167)—all figures refer to the search time and do not include
the computation time needed to perform the feature extraction
and run the recurrent networks (which is around 1.25
realtime on this machine). All results are averaged over the
test set of 300 utterances.

The experiments on the phone deactivation and beam prun-
ing (Sections IV-A and IV-B, respectively) were carried out
using a maximum stack size of 31 hypotheses per reference
time (determined empirically on development test data). These
experiments did not use exact incorporation of the LM within
words, but some LM information was incorporated using the
context upper bound method (Section II-C). Here, we report

7Note that recurrent networks maintain contextual information via the state
units and are time-asymmetric.
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(a)

(b)

Fig. 7. (a) Variation of search error and (b) active model count with phone
deactivation level. A phone deactivation level of 0.0 corresponds to no pruning
(threshold= 0), a phone deactivation level of 64% corresponds to a threshold
of 70:0 � 10�6 and a phone deactivation level of 82% corresponds to a
pruning threshold of2000:0� 10�6. The search used a beam of 6.0 and a
“state beam” of 5.0, together with the backtrace LUB estimation.

on experiments in which LM probabilities were incorporated
in the search at the state level.

A. Phone Deactivation Pruning

The first set of experiments investigated the effectiveness
of the posterior probability based phone deactivation pruning.
A wide beamwidth was chosen so that the base case in which
phone deactivation pruning was not applied could be regarded
as having no search errors. In this case, the overall word error
was 15.3% and all search errors are computed relative to this
value. Fig. 7 shows the search error and the active model count
plotted against the phone deactivation level. At the phone
level, an operating curve for the phone deactivation pruning
process may be obtained by plotting the phone deactivation
level against the “correct phone” deactivation level. This
measures the percentage of “correct” phones (obtained by a
Viterbi alignment) that are pruned (Fig. 8).

Fig. 8. Plot of the “correct phone” deactivation pruning level versus the
phone deactivation pruning level.

Fig. 9. Plot of the search error versus phone deactivation level per speaker,
for five of the 15 speakers in the test set (20 utterances per speaker). Note
that the relationship between the phone deactivation level and the posterior
probability threshold is speaker-dependent.

These results indicate that a substantial amount of phone
deactivation pruning may be applied without a significant
impact on search accuracy. In particular, the average number
of phone model evaluations may be reduced by a factor of 7
with around 1% search error and by a factor of 30 or more with
around 8% search error. In this case, the running time scales
almost linearly with the active model count: on an UltraSparc
1/167, the decoding ran in 90 realtime if phone deactivation
pruning was not applied (at this setting of the beam); with a
phone deactivation level of 64%, the run time was reduced to
15 realtime (with a relative search error of 1%).

The tradeoff between search error and computation is rel-
atively independent of speaker. As in all search algorithms,
a mismatch between training and testing acoustics, (e.g.,
high noise level, etc.) results in less differentiation between
competing hypotheses causing a slower process. The relative
improvements in the speed, however, remain the same. Fig. 9
shows the search error plotted against the phone deactivation
level for five of the fifteen speakers in the test set.
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(a)

(b)

Fig. 10. Plot of search error versus: (a) active model count and (b) hypothesis
creation count for the greedy and backtrace LUB estimation strategies. Each
curve has an equal word-level beam and the individual data points on each
curve correspond to varying state-level beams (equal to and less than the
word-level beam).

B. Beam Search and LUB Estimation

The next set of experiments investigated the influence of
the beam search on the behavior of the algorithm. Since
the least upper bound contains LM information covering the
current frame (at least in the case of the backtrace strategy),
more efficient pruning can be achieved using a narrower
beam within words (as compared with word ends) when only
minimal LM information is incorporated within words. Fig. 10
illustrates how the search error and two measures of search
effort (active model count and hypothesis creation count)
vary with changing beamwidths. This figure indicates that
the active model count is largely dependent on the state-
level beamwidth and independent of word-level beamwidth,
while the opposite is true for the hypothesis creation count.
Active model evaluation and and hypothesis creation are the
most CPU intensive portions of the algorithm and the overall
running time depends linearly on both counts.

The results in Fig. 10 also show the difference between
the greedy and backtrace strategies for setting the LUB es-

timate. When the pruning beamwidth is larger, there is little
to choose between the two strategies—indeed, the greedy
strategy may be preferable since it does not have the memory
and computational expense of storing backtrace information.
However, the backtrace strategy is more stable to reductions
in the state-level beam relative to the word-level beam and
has vastly better performance if small search errors may
be tolerated. For example, if a search error of less than
5% is acceptable, then the best parameter setting for the
greedy strategy results in around 5000 active models/frame
(approximately 5 realtime). The backtrace strategy, however,
can achieve less than 5% search error with an active model
count of roughly 2300 (less than 2realtime). If realtime
processing is desired (at this level of phone deactivation
pruning), then the backtrace strategy achieves this with under
10% search error, whereas the performance of the greedy
strategy explodes to over 30% search error.

C. Language Model Incorporation

The previous experiments did not incorporate LM informa-
tion at the state-level, except through the context upper bound
method described in Section II-C. In this section we report on
a set of experiments in which LM information is incorporated
at the state level. There is a trade-off between the accuracy of
the state level LM information and the computation required
to incorporate the LM at the state level. The degrees of LM
incorporation we consider are the following.

1) No LM incorporation.
2) Context upper-bound approach: Upper bound on LM

probability is computed by maximizing over possible
long-term current words and long-term contexts given
the preceding word.

3) Unigram LM approximation at the state level—unigram
smearing: LM approximation for each node is the max-
imum unigram probability of all words whose pronun-
ciations pass through the node.

4) Exact LM incorporation: Exact LM applied at nodes
which contribute to a number of pronunciations below
the LM incorporation threshold.

The approximations used in approaches (2) and (3) (see
Section II-C) may be computed in advance and may be applied
for those nodes above the LM incorporation threshold if
approach (4) is used.

Fig. 11 shows the effect of the context upper bound and
unigram smearing approximations. These results indicate that
unigram smearing is an effective LM approximation, whereas
the context upper bound has no appreciable effect (and is even
counter-productive at higher pruning levels). At the cost of
an additional number of search errors, the size of the active
search space (and hence the running time) is reduced by a
factor of two or more when unigram smearing is applied. Since
the unigram LM approximation at the state level can be an
inaccurate estimate, (e.g., when an infrequent word occurs in
a specific context), the best tradeoff between search error and
active model count occurs when the state-level beam is a little
larger than the word-level beam (in contrast to the previous
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Fig. 11. Graph of search error versus active model count for different
state-level language model approximations. “su” uses unigram smearing,
“cub” uses the context upper bound method, “su-cub” uses both (added in
log domain), and “nil” uses no state-level incorporation of LM information.

Fig. 12. Graph of search error versus LM incorporation threshold when the
exact LM probabilities are applied at the state level. The labels “inclm-su”
and “inclm-nil” indicate that the unigram smearing and no LM techniques,
respectively, have been applied to the state level nodes above the threshold.

experiments where better performance was observed when the
state-level beam was smaller than the word-level beam).

Figs. 12 and 13 show the performance of incorporating
exact LM probabilities at the state-level for those nodes that
fall below the LM incorporation threshold. Two methods for
dealing with nodes above the incorporation threshold—no
LM and uniform smearing—were evaluated. Fig. 12 indicates
that there is a consistent 1–2% search error due to unigram
smearing, as well a gradual increase of up to an extra 4%
search error as the LM is applied to an increasing number of
nodes.

Fig. 13 shows how the computational cost varies with the
LM incorporation threshold in the cases when the unigram LM
approximation is or is not applied to those nodes above the
threshold. Two measures of computational cost are used: the
active model count and the running time. The lower curve of
each graph plots the active model count; the upper curve the
running time. As expected, the active model count decreases

(a)

(b)

Fig. 13. Graph of “computational cost” versus degree of LM incorporation.
(a) No LM information is used at the state level for nodes which contribute to a
number of pronunciations that is greater than the LM incorporation threshold.
(b) The unigram approximation is used when the exact LM probabilities are
not incorporated at the state level. On each graph, the lower curve corresponds
to the number of active models used and the upper curve is the CPU time
(1000 is realtime on an Ultra-167).

as more nodes in the pronunciation prefix tree use exact LM
bounds. However, there is not a concomitant reduction in
running time. In the case where unigram smearing is not
applied to those nodes above the threshold, LM incorporation
is worthwhile at the state level, with the minimum in running
time being at an LM incorporation threshold of about 80
pronunciations per node. Although this level of incorporation
covers over 99.9% of all nodes in the tree, those nodes which
are incorporated in over 80 pronunciations are predominantly
the first and second phones of a pronunciation and are hence
activated more often. On average, around 22% of active nodes
are above this LM incorporation threshold. The same tradeoff
applies when unigram smearing is applied to those nodes that
do not incorporate exact LM bounds. In this case the unigram
approximation to the exact LM upper bound is sufficiently
good, resulting in a very small improvement in active model
count resulting from exact LM incorporation. In this case,
running time reaches a minimum at an LM incorporation
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threshold of one, when exact LM probabilities are used only
for those nodes which contribute to the pronunciation of a
single word.

D. Extensions

As mentioned in Section II-C, it is possible to perform a
decoding with a larger acoustic model vocabulary than LM
vocabulary, so not every word represented in the pronunciation
tree need be in the LM provided there is some mechanism
for specifying (default) probabilities for “unknown” words.
One approach is to include a general “unknown” word class
within the LM, although more sophisticated approaches may
make use of word classes produced by some form of tagger
(statistical, semantic or syntactic). We have performed an
initial experiment using a system trained on the British English
database WSJCAM0 [35] using a 20 K language model
(the 1994 DARPA NAB language model) and a 357 000
word pronunciation dictionary (the British English Example
Pronunciation (BEEP) dictionary.8 The 337 000 words not in
the language model were mapped to the unknown symbol
(UNK) and the LM probabilities of UNK (given a context)
were scaled by the number of unigrams. Although the resultant
pronunciation tree was 20 times larger compared with the 20 K
vocabulary, the average number of active nodes increased by
a factor of 3.6. This “proof-of-concept” experiment resulted
in a relative search error increase of 6%. This result is
encouraging since it indicates the search algorithm can clearly
scale favorably with vocabulary size. Note that there are clear
improvements that could be made to the language model and
pronunciation dictionary if we were developing a complete
350 000 word system.

This algorithm is well suited to the generation of word
graphs. Unlike some Viterbi-based approaches, (e.g., [5], [36]),
this algorithm does not use an estimate of the most probable
boundary between two words. While this results in a lower
probability of search errors (although the evidence suggests
that the word pair boundary approximation is not a signif-
icant contributor to search errors), it also results in word
graphs of a higher density. Typical word graphs produced
by this algorithm have a density of 50–100 compared to
10–20 in those produced by the approach that uses optimal
word-pair boundaries [5]. However, word graphs produced
by this algorithm may be further pruned. Using this start-
synchronous stack-based search architecture, less constrained
approximations than the word-pair may be applied with little
extra computational cost.

V. CONCLUSION

We have presented a search architecture and algorithm for
large vocabulary continuous speech recognition. The start-
synchronous stack-based search operates in a single pass and
because there is a simple, well-defined interface between
the search and the language model allows the application
of arbitrary, long-span language models. Furthermore, extra

8Version 0.7, available by anonymous ftp from ftp://svr-
ftp.eng.cam.ac.uk/pub/comp.speech/dictionaries/beep.tar.gz.

information may be stored about a hypothesis, (e.g., interword
pauses) without affecting the language model state.

We have focused primarily on context-independent phone
modeling, largely because the Abbot system has very good
performance using context-independent models. However, the
algorithm can be immediately applied to context-dependent
models. This has been done for within-word context-dependent
models [26] and the method used by Ravishankar [30] for
cross-word context-dependent models may be applied in
this case.

We have also developed pruning techniques that take advan-
tage of specific features of the connectionist/HMM approach.
Phone deactivation pruning uses the local posterior probabili-
ties estimated directly by the recurrent network, pruning those
phones with a local posterior probability below a threshold.
This approach can reliably prune around 64% of the phones,
resulting in a speed improvement of a factor of seven (or
more) with a search error of about 1%. Recent work by Willett
et al. [37] has extended the phone deactivation approach
to “traditional,” likelihood-based HMM systems, in which
the local state posterior probabilities are estimated using an
efficiently computed estimate of .

In summary we have developed an efficient search algo-
rithm, specifically tuned to the connectionist/HMM approach,
that enables close to realtime decoding of large vocabu-
lary continuous speech recognition problems with minimal
search error.
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