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@ Music transcription
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Music Transcription

@ Basic idea: recover the score
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@ Is it possible? Why is it hard?

» music students do it
but they are highly trained; know the rules

o

@ Motivations

» for study: what was played?
» highly compressed representation (e.g. MIDI)
> the ultimate restoration system. ..

@ Not trivial to turn a “piano roll” into a score

> meter determination, rhythmic quantization
> key finding, pitch spelling
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Transcription framework

@ Recover discrete events to explain signal
Note events ————p 7 Observations
{tw P ¢ synthesis X[k,n]
» analysis-by-synthesis?
o Exhaustive search?

» would be possible given exact note waveforms
or just a 2-dimensional ‘note’ template?

note
template

| |~ e
2D e e ——
convolution

> but superposition is not linear in |[STFT| space
@ Inference depends on all detected notes

> is this evidence ‘available’ or ‘used’?

» full solution is exponentially complex
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Problems for transcription

@ Music is practically worst case!
> note events are often synchronized
— defeats common onset
» notes have harmonic relations (2:3 etc.)
— collision/interference between harmonics
» variety of instruments, techniques, ...
@ Listeners are very sensitive to certain errors
and impervious to others
@ Apply further constraints

> like our ‘'music student’
» maybe even the whole score!
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Types of transcription

Full polyphonic transcriptions is hard, but maybe unnecessary

Melody transcription

» the melody is produced to stand out
» useful for query-by-humming, summarization, score following

@ Chord transcription

» consider the signal holistically
» useful for finding structure

Drum transcription

» very different from other instruments
> can't use harmonic models
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Spectrogram Modeling

@ Sinusoid model

> as with synthesis, but signal is more 3000 -
25001
complex 2 ool
@ Break tracks Z1500|

. s . = 10001
> need to detect new ‘onset’ at single

frequencies 0

0.06 -

0.04

0.02 ,
0

0 0.5 1 15 time/s

@ Group by onset & common harmonicity
» find sets of tracks that start around the ]
same time A T |

+ stable harmonic pattern

i{{iﬂ
-

@ Pass on to constraint-based filtering. ..
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Searching for multiple pitches (Klapuri, 2005)

@ At each frame:
» estimate dominant fy by checking for harmonics
» cancel it from spectrum

> repeat until no fy is prominent

audio
frame

Subtract

& iterate

Harmonics enhancement

Predominant fO estimation

0
(] 1000 2000 3000 frq/Hz

[

(] 100 200 300 f0/Hz

fO spectral smoothing

|

o
0 1000 2000 3000 froHz

!

Stop when no more prominent fOs

@ Can use pitch predictions as features for further processing

e.g. HMM
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Probabilistic Pitch Estimates (Goto, 2001)

@ Generative probabilistic model of spectrum as weighted
combination of tone models at different fundamental
frequencies:

p(F) = [ (X wlF miplx() | o)) o

m
. Tone Model (m=2))  ___....-- p(x1|F.2,10F,2)
o '‘Knowledge’ in terms of tone )
. — . (Tone Model (=1 GFD)  (3F.2)
models + prior distributions for fy: Pl P ) ‘ O,
e EM (RT) results: et cary

Michael Mandel (E6820 SAPR) Music analysis April 17, 2008 9 / 40



Generative Model Fitting (Cemgil et al., 2006)

® © >

o Multi-level graphical model

> rj+: piano roll note-on indicators

sj.+: oscillator state for each harmonic

yj+: time-domain realization of each note separately

y¢: combined time-domain waveform (actual observation)

v vy

@ Incorporates knowledge of high-level musical structure

and low-level acoustics

@ Inference exact in some cases, approximate in others

» special case of the generally intractable switching Kalman filter
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Transcription as Pattern Recognition (Poliner and Ellis)

@ Existing methods use prior knowledge
about the structure of pitched notes

i.e. we know they have regular harmonics

@ What if we didn't know that,

but just had examples and features?
> the classic pattern recognition problem

o Could use music signal as evidence for pitch class in a

black-box classifier:

Audio

> Trained

classifier

—— p("CO"|Audio)
——— p("C#0"|Audio)
———— p("DO0"|Audio)
——— p("'D#0"|Audio)
——— p("EO0"|Audio)

- p("FO"|Audio)

» nb: more than one class at once!

@ But where can we get labeled training data?
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Ground Truth Data

@ Pattern classifiers need training data

i.e. need {signal, note-label} sets
i.e. MIDI transcripts of real music. .. already exists?

@ Make sound out of midi

> “play” midi on a software synthesizer
» record a player piano playing the midi

Make midi from monophonic tracks in a multi-track recording
» for melody, just need a capella tracks

Distort recordings to create more data

» resample/detune any of the audio and repeat
> add in reverb or noise

Use a classifier to train a better classifier

» alignment in the classification domain
» run SVM & HMM to label, use to retrain SVM
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Polyphonic Piano Transcription (Poliner and Ellis, 2007)

@ Training data from player piano
Bach 847 Disklavier

> >
[

freq / pitch

>
S
5

A3 11 t iy - e o s 0
U i 4 1 )
LM i ¥ i -10
A2 I i ;| 1
Al | ' . -20
0 1 2 3 4 5 6 7 8 9 level / dB
time / sec

@ Independent classifiers for each note
> plus a little HMM smoothing
@ Nice results

when test data resembles training

Algorithm Errs False Pos False Neg d
SVM 43.3% 27.9% 15.4% 3.44
Klapuri & Ryyninen 66.6% 28.1% 38.5% 2.71
Marolt 84.6% 36.5% 48.1% 2.35
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Outline

@ Score alignment and musical structure
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Midi-audio alignment

@ Pattern classifiers need training data

i.e. need {signal, note-label} sets
i.e. MIDI transcripts of real music. .. already exists?

@ lIdea: force-align MIDI and original

> can estimate time-warp relationships
» recover accurate note events in real music!

@ Also useful by itself

» comparing performances of the same piece
» score following, etc.
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Which features to align with?

Transcription

classifier

A0
&

Playback piano Recorded Audio

7 . ’ll \‘II\II.‘I ‘I‘"

|

‘IU\I’ II lJIHI‘I

chroma

Reference MIDI
1

Warping

Function Synthesized Audio

@ Audio features: STFT, chromagram, classification posteriors
@ Midi features: STFT of synthesized audio, derived

chromagram, midi score
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Alignment example

@ Dynamic time warp can overcome timing variations
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Segmentation and structure

e Find contiguous regions that are internally similar and
different from neighbors

e.g. “self-similarity” matrix (Foote, 1997)

DYWMB - self similarity

time / 183ms frames
B oR B e oo
5§ 83 8 8 8 & 8 8
8 8 8 8 8 8 8 8

N
8
8

» 2D convolution of checkerboard down diagonal
= compare fixed windows at every point
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BIC segmentation
@ Use evidence from whole segment, not just local window
@ Do ‘significance test’ on every possible division of every

possible context

last candidate current
segmentation point boundary context limit
| > 4 .
0 i N time
L(X ;M) \ L(X9,M7)
L(X;My)
BIC:  log LXUMILOGIM:) o A o nyi(m)
L(X; Mo) <2
@ Eventually, a boundary is found:
| | ! ! ! ! ! baundarypamf !
o last : : : : : L .
§ psgigt : current
o1 o - ; \‘\ ‘context
@ — . 2 Timit
- boundary found \_ :
200 v,;gh[ g;;gnearr‘}[::on‘;gxt N \\: ;
20 21 2 ' 28 m 25

time /min
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HMM segmentation

@ Recall, HMM Viterbi path is joint classification and
segmentation
e.g. for singing/accompaniment segmentation

@ But: HMM states need to be defined in advance
» define a ‘generic set'? (MPEGTY)

» learn them from the piece to be segmented? (Logan and Chu,

2000; Peeters et al., 2002)
@ Result is ‘anonymous’ state sequence characteristic of
particular piece

U2-The_Joshua_Tree-01-Where_The_Streets_Have_No_Name 33677
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Finding Repeats

@ Music frequently repeats main phrases

@ Repeats give off-diagonal ridges in Similarity matrix (Bartsch
and Wakefield, 2001)

DYWMB - self similarity

time / 183ms frames

0 500 1000 1500
time / 183ms frames

@ Or: clustering at phrase-level . ..
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Music summarization

@ What does it mean to ‘summarize’'?
» compact representation of larger entity
» maximize ‘information content’
» sufficient to recognize known item

@ So summarizing music?

» short version e.g. < 10% duration (< 20s for pop)
» sufficient to identify style, artist
e.g. chorus or ‘hook’?

o Why?
» browsing existing collection

» discovery among unknown works
» commerce. ..
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Outline

© Music information retrieval
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Music Information Retrieval

@ Text-based searching concepts for music?

“Google of music”

» finding a specific item

» finding something vague
» finding something new

v

@ Significant commercial interest

@ Basic idea: Project music into a space where
neighbors are “similar”

o (Competition from human labeling)
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Music IR: Queries & Evaluation

@ What is the form of the query?

@ Query by humming
» considerable attention, recent demonstrations
> need/user base?

@ Query by noisy example
» “Name that tune” in a noisy bar

» Shazam Ltd.: commercial deployment
» database access is the hard part?

@ Query by multiple examples

> “Find me more stuff like this"
o Text queries? (Whitman and Smaragdis, 2002)
@ Evaluation problems

> requires large, shareable music corpus!
> requires a well-defined task
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Genre Classification (Tzanetakis et al., 2001)

@ Classifying music into genres would get you some way towards
finding “more like this”

@ Genre labels are problematic, but they exist

@ Real-time visualization of “GenreGram”:

GenreGram

» O spectral and 8 rhythm features every 200ms
» 15 genres trained on 50 examples each
» single Gaussian model — ~ 60% correct
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Artist Classification (Berenzweig et al., 2002)

@ Artist label as available stand-in for genre
@ Train MLP to classify frames among 21 artists
@ Using only “voice” segments:

» Song-level accuracy improves 56.7% — 64.9%

Track 117 - Aimee Mann (dynvox=Aimee, unseg=Aimee)
true voice mm mm I - . . BN N BN | N . -
Wichael Penn F= T T 1T T T T TT I TR TT]
The foors |1 Tk |
The Woes
Eric Matthews n
Arto Lindsay FlIP| (0 (e 0 i L I (]
O I

Clrr i Ty

Mercury Rev

Belle & Sebasnan
ugariasic

Boards of Canad

0 50 100 150 200 time / sec

Track 4 - Arto Lindsay (dynvox=Arto, unseg=Oval)
true voif - | | I - -
ch?:s\:‘?ﬂnhn 1 T m_oq T TN T T T I T ‘I

S
3
1

The Moles
Eric Matthews
Arto Lindsay
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o
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Textual descriptions

@ Classifiers only know about the sound of the music

not its context

@ So collect training data just about the sound
» Have humans label short, unidentified clips
» Reward for being relevant and thorough

— MajorMiner Music game

Malor Miner: clip - Mozilla Firefox = 0 ]

Flle Edit View History Bookmarks Tools Help

£ a9 T - [S 13 ©-
[LEYEMiner

mim's score: . . .
681 Describe this clip
New clip
Summary ® Your tags: slow, harp, female, sad, love, fiddle, violin
Change password
Admin
Logout New clip Game summary
feaders Tag colors: 2 points, 1 point, no points yet (but
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Tag classification

@ Use tags to train classifiers

» ‘autotaggers’

o Treat each tag separately, easy

to evaluate performance
@ No ‘true’ negatives

» approximate as absence of
one tag in the presence of

others
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Outline

@ Music browsing and recommendation
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Music browsing

@ Most interesting problem in music IR is finding new music
> is there anything on myspace that | would like?
@ Need a feature space where music/artists are arranged
according to perceived similarity
@ Particularly interested in little-known bands

» little or no ‘community data’ (e.g. collaborative filtering)
» audio-based measures are critical

@ Also need models of personal preference

» where in the space is stuff | like
> relative sensitivity to different dimensions
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Unsupervised Clustering (Rauber et al., 2002)

@ Map music into an auditory-based space
@ Build ‘clusters’ of nearby — similar music

» “Self-Organizing Maps” (Kohonen)

@ Look at the results:

@ ‘“Islands of music”
» quantitative evaluation?
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Artist Similarity

@ Artist classes as a basis for overall similarity:
Less corrupt than ‘record store genres'?

a_mumba abba
. T /ealfifen_cdngk braxton foxette
e But: what is similarity Jessica_SmRsgRan carey - new_orde
. _Janet Jacks%n y%hﬂﬁ'
between artists? i e 65 whitney 1B
. line_diohet shop_boys
.. Iaur)ﬁ:ﬂ'ﬁm'”a_agu”e%ua
> pattern recognition spears | < ollsaip sade S%frtrn?é”
H _ _ Spide_girlpelinBRdMse
systems give a number. .. a0 quai nelly_4sioennox .
ace_of_base . seal savage_gar
faith il matthaw cwaat
Which artist is most similar to: . .
Janet Jackson? @ Need subjective ground truth:
L R Kelly Collected via web site
2, Paula Abdul
3. Aalivah 3
i > Www.musicseer.com
5. En Vogue .
& s @ Results: 1800 users, 22,500 judgments
7. Garbage
8 Bk collected over 6 months

9. Christina & guilera
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Anchor space

@ A classifier trained for one artist (or genre) will respond
partially to a similar artist

@ A new artist will evoke a particular pattern of responses over a
set of classifiers

@ We can treat these classifier outputs as a new feature space in
which to estimate similarity

Anchor |
- Space”
Feature Anchor
ur classifier [~ P@.x)
Audio calculation P — ) GMM —
| Modeling

ot Anchor
(Class) classifier - Similarity
b0 c
N
Modeling

Audio
Input
(Class j)

KL-d, EMD, etc.

Conversion to Anchorspace

e

Conversion to Anchorspace

@ “Anchor space” reflects subjective qualities?
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Playola interface ( http://www.playola.org )

@ Browser finds closest matches to single tracks
or entire artists in anchor space

@ Direct manipulation of anchor space axes

T
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Michael Mandel (E6820 SAPR)

The Woodbury Muffin. 4,00 ey

Outbreak

The Woodbury Muffin 5,57 e

Outbreak

The Woodbury Muffin
2k

Outbre:

The Woodbury Muffin
Outbreak 313 EEEEITT]

1:48

The W ury Muffin 4,
The Woodbury Mulfin. 4,04 emErTTY

CollegeRock NN

AltNGrunge N

Country I
DanceRock NN
Electronica I
MetalNPunk

Newwave NSRRI
Rap EEEER EEEEEIIT I TTI]
RnBSoul

g

r Songs:

» P2 number five
» . Waiting for Your
» 2 excernt from ‘o’

Music analysis

Baby I Forgot To Tell
>H

0
SoftRock
TradRock
Female
HiFi

e oy
»

The Woodbury Muffin

Outbreak o.00 >
Bizi Chyld o7 s
Love Toto ooz Wy
Weirdomusic 0os M




Tag-based search ( http://majorminer.com/search )

@ Two ways to search MajorMiner tag data

@ Use human labels directly

> (almost) guaranteed to be relevant
» small dataset

@ Use autotaggers trained on human labels

» can only train classifiers for labels with enough clips
» once trained, can label unlimited amounts of music
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Music recommendation

Similarity is only part of recommendation
> need familiar items to build trust
... in the unfamiliar items (serendipity)
Can recommend based on different amounts of history

> none: particular query, like search
> lots: incorporate every song you've ever listened to

@ Can recommend from different music collections

» personal music collection: “what am | in the mood for?”
» online databases: subscription services, retail

Appropriate music is a subset of good music?
Transparency builds trust in recommendations
See (Lamere and Celma, 2007)
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Evaluation

@ Are recommendations good or bad?
@ Subjective evaluation is the ground truth

but subjects don't know the bands being recommended
» can take a long time to decide if a recommendation is good

@ Measure match to similarity judgments
e.g. musicseer data
@ Evaluate on “canned” queries, use-cases

» concrete answers: precision, recall, area under ROC curve
» applicable to long-term recommendations?
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Summary

Music transcription
» hard, but some progress

Score alignment and musical structure
» making good training data takes work, has other benefits
Music IR

> alternative paradigms, lots of interest

@ Music recommendation
» potential for biggest impact, difficult to evaluate

Parting thought J

Data-driven machine learning techniques are valuable in each case
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