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HMM review

 

• HMM 

 

M

 

j

 

 is specified by:

 

+ (initial state probabilities  )

 

• See 

 

e6820/papers/Rabiner89-hmm.pdf
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HMM summary (1)

 

• HMMs are a generative model:
recognition is inference of 

• During generation, behavior of model depends 
only on current state 
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• Given states 

+ observations  

Markov assumption makes

• Given observed emissions 

 

X

 

, can calculate:

p M j X( )

Q q1 q2 … qN, , ,{ }=

X X1
N

x1 x1 … xN, , ,{ }= =

p X Q M,( ) p xn qn( ) p qn qn 1–( )
n∏=

p X M j( ) p X Q M,( ) p Q M( )
all Q∑=
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HMM summary (2)

 

• Calculate  via forward recursion:

• Viterbi (best path) approximation

 

- then backtrace...

 

• Pictorially:

p X M( )

p X1
n

qn
j

,( ) αn j( ) αn 1– i( )aij
i 1=

S

∑ b j xn( )⋅= =

αn
*

j( ) αn 1–
*

i( )aij{ }
i

max b j xn( )⋅=

Q
*

p X Q M,( )
Q

argmax =

Q = {q1,q2,...qn}

M = M*

Q*
X

assumed, hidden observed inferred
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Outline

Hidden Markov Model review

Training HMMs
- Viterbi training
- EM for HMM parameters
- Forward-backward (Baum-Welch)

Language modeling

Discrimination & adaptation
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Training HMMs

• Probabilistic foundation allows us to 
train HMMs to ‘fit’ training data
- i.e. estimate aij, bi(x) given data

- better than DTW...

• Algorithms to improve p(M | X) are key to 
success of HMMs
- maximum-likelihood of models...

• State alignments Q of training examples are 
generally unknown
- else estimating parameters would be easy

→ Viterbi training
- choose ‘best’ labels (heuristic)

→ EM training
- ‘fuzzy labels’ (guaranteed local convergence)

2
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Overall training procedure
Word modelsLabelled training data

two one

four three

five

Data Models

one

two

three

w ah n

w ah n

th r iy

th r iy

th r iy

t uw

f ao

t uw

Fit models to data Repeat
until

convergenceRe-estimate model parameters
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Viterbi training

• “Fit models to data” 
= Viterbi best-path alignment

• “Re-estimate model parameters”:

pdf e.g. 1D Gauss: 

count transitions: 

• And repeat...

• But: converges only if good initialization

th r iy

Data

Viterbi
labels Q*

µi

xnn qi∈∑
# qn

i
( )

-----------------------=

aij

# qn 1–
i

qn
j

→( )

# qn
i

( )
-----------------------------------=
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EM for HMMs

• Expectation-Maximization (EM):
optimizes models with unknown parameters
- finds locally-optimal parameters Θ 

to maximize data likelihood 

- makes sense for decision rules like 

• Principle: 
Adjust Θ to maximize expected log likelihood 
of known x & unknown u:

- for GMMs, unknowns = mix assignments k
- for HMMs, unknowns = hidden state qn

(take Θ to include Mj)

• Interpretation: “fuzzy” values for unknowns

p xtrain Θ( )

p x M j( ) p M j( )⋅

E p x u, Θ( )log[ ] p u x Θold,( ) p x u Θ,( ) p u Θ( )[ ]log
u
∑=
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What EM does

• Maximize data likelihood 
by repeatedly estimating unknowns 
and re-maximizing expected log likelihood:

D
at

a 
lo

g 
lik
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d
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g 

p(
X

 | 
Θ

)

Successive parameter 
estimates Θ

Estimate
unknowns
 p(qn | X,Θ)

Re-estimate
unknowns

etc...

local optimum

Adjust model params Θ to maximize 
expected log likelihood
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EM for HMMs (2)

• Expected log likelihood for HMM:

- closed-form maximization by differentiation etc.

p Qk X Θold,( ) p X Qk Θ,( ) p Qk Θ( )[ ]log
all Qk

∑

p Qk X Θold,( ) p xn qn( )
n
∏ p qn qn 1–( )⋅log

all Qk

∑=

p qn
i

X Θold,( ) p xn qn
i
Θ,( )log

i 1=

S

∑
n 1=

N

∑=

p q1
i

X Θold,( ) p q1
i
Θ( )log

i 1=

S

∑+

p qn 1–
i

qn
j

, X Θold,( ) p qn
j

qn 1–
i

Θ,( )log
j 1=

S

∑
i 1=

S

∑
n 2=

N

∑+
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EM update equations

• For acoustic model (e.g. 1-D Gauss):

• For transition probabilities:

• Fuzzy versions of Viterbi training

- reduce to Viterbi if 

• Require ‘state occupancy probabilities’,

 

µi

p qn
i

X Θold,( ) xn⋅
n∑

p qn
i

X Θold,( )
n∑

-----------------------------------------------------=

p qn
j

qn 1–
i

( ) aij
new

p qn 1–
i

qn
j

, X Θold,( )
n∑

p qn 1–
i

X Θold,( )
n∑

----------------------------------------------------------= =

p q X( ) 1 0⁄=

p qn
i

X1
N

Θold,( )
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The forward-backward algorithm

• We need  for EM updates (Θ implied)

• Forward algorithm gives 

- excludes influence of remaining data 

• Hence, define 

so that 

then 

• Recursive definition for β: 

- recurses backwards from final state N

p qn
i

X1
N

( )

αn i( ) p qn
i

X1
n

,( )=

Xn 1+
N

βn i( ) p Xn 1+
N

qn

i
X1

n
,( )=

αn i( ) βn i( )⋅ p qn
i

X1
N

,( )=

p qn
i

X1
N

( )
αn i( ) βn i( )⋅

αn j( ) βn j( )⋅
j∑

----------------------------------------=

βn i( ) βn 1+ j( )aijb j xn 1+( )
j∑=



E6820 SAPR - Dan Ellis L11 - Training 2003-04-28 - 14

Estimating aij from α & β

• From EM equations:

- prob. of transition normalized by prob. in first

• Obtain from  

p qn
j

qn 1–
i

( ) aij
new

p qn 1–
i

qn
j

, X Θold,( )
n∑

p qn 1–
i

X Θold,( )
n∑

----------------------------------------------------------= =

p qn 1–
i

qn
j

X Θold, ,( )

p Xn 1+
N

qn
j

( ) p xn qn
j

( ) p qn
j

qn 1–
i

( ) p qn 1–
i

X1
n 1–,( )=

βn j( ) b j xn( ) aij αn 1– i( )⋅ ⋅ ⋅=

αn-1(i) βn(j)

aij

bj(xn)

qn
jqn-1

i
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GMM-HMMs in practice

• GMMs as acoustic models: 
train by including mixture indices as unknowns
- just more complicated equations...

• Practical GMMs:
- 9 to 39 feature dimensions
- 2 to 64 Gaussians per mixture

depending on number of training examples

• Lots of data → can model more classes

- e.g context-independent (CI): qi = ae  aa  ax  ...

→context-dependent (CD): qi = b-ae-b  b-ae-k ...

µik

p mk q
i

xn Θold, ,( ) p qn
i

X Θold,( ) xn⋅
n∑

p mk q
i

xn Θold, ,( ) p qn
i

X Θold,( )
n∑

-------------------------------------------------------------------------------------------------=
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HMM training in practice

• EM only finds local optimum
→ critically dependent on initialization
- approximate parameters / rough alignment

• Applicable for more than just words...

ae1 ae2 ae3

dh1 dh2

Model inventory

Uniform
initialization
alignments

Initialization
parameters

Repeat until 
convergence

E-step:
probabilities

of unknowns

M-step:
maximize via
parameters

Labelled training data
dh ax k ae t

s ae t aa n

dh

dh

s ae t aa n

ax

ax

k

k

ae

ae

t
Θinit

p(qn|X1,Θold)i    N

Θ : max E[log p(X,Q | Θ)]
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Training summary

• Training data + basic model topologies
     → derive fully-trained models

- alignment all handled implicitly

• What do the states end up meaning?
- not necessarily what you intended;

whatever locally maximizes data likelihood

• What if the models or transcriptions are bad?
- slow convergence, poor discrimination in models

• Other kinds of data, transcriptions
- less constrained initial models...

TWO ONE

FIVE

ONE  =  w  ah  n
TWO =   t  uw 

sil

w ah n

th r iy

t uw
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Outline

Hidden Markov Models review

Training HMMs

Language modeling
- Pronunciation models
- Grammars
- Decoding

Discrimination & adaptation
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Language models

• Recall, MAP recognition criterion:

• So far, looked at 

• What about  ?

- Mj is a particular word sequence

- ΘL are parameters related to the language

• Two components:

- link state sequences to words 

- priors on word sequences 

3

M
*

p M j X Θ,( )
M j

argmax =

p X M j ΘA,( ) p M j ΘL( )
M j

argmax =

p X M j ΘA,( )

p M j ΘL( )

p Q wi( )

p wi M j( )
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HMM Hierarchy

• HMMs support composition
- can handle time dilation, pronunciation, grammar 

all within the same framework

ae1 ae2 ae3

k
ae

aa
t

THE

CAT

DOG
SAT

ATE

p q M( ) p q Φ w M, ,( )=

p q φ( ) ⋅=

p φ w( ) ⋅

p wn w1
n 1–

M,( )
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Pronunciation models

• Define states within each word 

• Can have unique states for each word
(‘whole-word’ modeling), or ...

• Sharing (tying) subword units between words
to reflect underlying phonology
- more training examples for each unit
- generalizes to unseen words
- (or can do it automatically...)

• Start e.g. from pronouncing dictionary:

ZERO(0.5) z iy r ow
ZERO(0.5) z ih r ow
ONE(1.0) w ah n
TWO(1.0) tcl t uw
...

p Q wi( )
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Learning pronunciations

• ‘Phone recognizer’ transcribes training data as 
phones
- align to ‘canonical’ pronunciations

- infer modification rules
- predict other pronunciation variants

• e.g. ‘d deletion’:
d → Ø  /  l _ [stop]     p = 0.9

• Generate pronunciation variants;
use forced alignment to find weights

Surface Phone String

f ay v y iy r ow l d

f ah ay v y uh r ow l

Baseform Phoneme String
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Grammar

• Account for different likelihoods of different 
words and word sequences 

• ‘True’ probabilities are very complex for LVCSR
- need parses, but speech often agrammatic

→ Use n-grams: 

- e.g. n-gram models of Shakespeare:
n=1 To him swallowed confess hear both. Which. Of save on ...
n=2 What means, sir. I confess she? then all sorts, he is trim, ... 
n=3 Sweet prince, Falstaff shall die. Harry of Monmouth's grave...
n=4 King Henry. What! I will go seek the traitor Gloucester. ... 

• Big win in recognizer WER
- raw recognition results often highly ambiguous
- grammar guides to ‘reasonable’ solutions

p wi M j( )

p wn w1
L

( ) p wn wn K– … wn 1–, ,( )=
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Smoothing LVCSR grammars

• n-grams (n=3 or 4) are estimated from large  
text corpora
- 100M+ words
- but: not like spoken language

• 100,000 word vocabulary → 1015 trigrams!
- never see enough examples
- unobserved trigrams should NOT have Pr=0!

• Backoff to bigrams, unigrams
- p(wn) as an approx to p(wn | wn-1) etc.

- interpolate 1-gram, 2-gram, 3-gram with learned 
weights?

• Lots of ideas e.g. category grammars
- e.g.  p( PLACE | “went”, “to”) · p(wn | PLACE)

- how to define categories?
- how to tag words in training corpus?
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Decoding

• How to find the MAP word sequence?

• States, prons, words define one big HMM
- with 100,000+ individual states for LVCSR!

→ Exploit hierarchic structure
- phone states independent of word
- next word (semi) independent of word history

k

axr

z

s

dow
iy

d

oy

uw

b

root

DO

DECOY DECODES

DECODES

DECODER

DECODE
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Decoder pruning

• Searching ‘all possible word sequences’?
- need to restrict search to most promising ones: 

beam search
- sort by estimates of total probability

= Pr(so far) + lower bound estimate of remains
- trade search errors for speed

• Start-synchronous algorithm:
- extract top hypothesis from queue: 

- find plausible words {wi} starting at time n
→ new hypotheses: 

- discard if too unlikely, or queue is too long
- else re-insert into queue and repeat

Pn w1 … wk, ,{ } n, ,[ ]
pr. so far words next time frame

Pn p Xn
n N 1–+ w

i
( ) p w

i
wk…( )⋅ ⋅ w1 … wk w

i
, , ,{ } n N+, ,[ ]
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Outline

Hidden Markov Models review

Training HMMs

Language modeling

Discrimination & adaptation
- Discriminant models
- Neural net acoustic models
- Model adaptation
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Discriminant models

• EM training of HMMs is maximum likelihood
- i.e. choose single Θ to max p(Xtrn | Θ)

- Bayesian approach: actually p(Θ | Xtrn)

• Decision rule is max p(X | M)·p(M)
- training will increase p(X | Mcorrect)

- may also increase p(X | Mwrong) ...as much?

• Discriminant training tries directly to increase 
discrimination between right & wrong models
- e.g. Maximum Mutual Information (MMI)

4

I M j X Θ,( )
p M j X Θ,( )

p M j Θ( ) p X Θ( )
------------------------------------------log=

p X M j Θ,( )

p X Mk Θ,( ) p Mk Θ( )∑
------------------------------------------------------------log=
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Neural Network Acoustic Models

• Single model generates posteriors directly
for all classes at once = frame-discriminant

• Use regular HMM decoder for recognition

- set 

• Nets are less sensitive to input representation
- skewed feature distributions
- correlated features

• Can use temporal context window to let net 
‘see’ feature dynamics:

bi xn( ) p xn qi( )= p qi xn( ) p qi( )⁄∝

C0

C1

C2

Ck
tn

tn+w

h#
pcl
bcl
tcl
dcl

Feature 
calculation

posteriors
p(qi | X)
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Neural nets: Practicalities

• Typical net sizes:
- input layer: 9 frames x 9-40 features ~ 300 units
- hidden layer: 100-8000 units, dep. train set size
- output layer: 30-60 context-independent phones

• Hard to make context dependent
- problems training many classes that are similar?

• Representation is partially opaque:
Hidden -> Output weights

Input -> Hidden
#187

hidden layer

time frame

fe
at

ur
e 

in
de

x

ou
tp

ut
 la

ye
r 

(p
ho

ne
s)
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Model adaptation

• Practical systems often suffer from mismatch
- test conditions are not like training data:

accent, microphone, background noise ...

• Desirable to continue tuning during recognition
= adaptation
- but: no ‘ground truth’ labels or transcription

• Assume that recognizer output is correct;
Estimate a few parameters from those labels
- e.g. Maximum Likelihood Linear Regression 

(MLLR)

2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5

2 3 4 5 6 7
-1.5

-1

-0.5

0

0.5
Male data Female data
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Recap: Recognizer Structure

• Now we have it all!

Feature
calculation

sound

Acoustic
classifier

feature vectors

Network
weights

HMM
decoder

phone probabilities

phone & word
 labeling

Word models
Language model
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Summary

• Hidden Markov Models
- state transitions and emission likelihoods in one
- best path (Viterbi) performs recognition

• HMMs can be trained
- Viterbi training makes intuitive sense
- EM training is guaranteed to converge
- acoustic models (e.g. GMMs) train at same time

• Language modeling captures higher structure
- pronunciation, word sequences
- fits directly into HMM state structure
- need to ‘prune’ search space in decoding

• Further improvements...
- discriminant training moves models ‘apart’
- adaptation adjusts models in new situations
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