Lecture 11:
ASR: Training & Systems

1. Training HMMs
2. Language modeling
3. Discrimination & adaptation

Dan Ellis <dpwe@ee.columbia.edu>
http://www.ee.columbia.edu/~dpwe/e6820/

Columbia University Dept. of Electrical Engineering
Spring 2003
HMM review

- HMM M_j is specified by:
 - states q^i
 - transition probabilities a_{ij}
 \[p(q_n^j | q_{n-1}^i) \equiv a_{ij} \]
 - emission distributions $b_i(x)$
 \[p(x | q^i) \equiv b_i(x) \]
 + (initial state probabilities $p(q_1^i) \equiv \pi_i$)

- See e6820/papers/Rabiner89-hmm.pdf
HMM summary (1)

- HMMs are a generative model: recognition is inference of \(p(M_j | X) \)

- During generation, behavior of model depends only on current state \(q_n \):
 - transition probabilities \(p(q_{n+1} | q_n) = a_{ij} \)
 - observation distributions \(p(x_n | q_n) = b_i(x) \)

- Given states \(Q = \{ q_1, q_2, \ldots, q_N \} \)

+ observations \(X = X_1^N = \{ x_1, x_1, \ldots, x_N \} \)

Markov assumption makes
\[
p(X, Q | M) = \prod_n p(x_n | q_n) p(q_n | q_{n-1})
\]

- Given observed emissions \(X \), can calculate:
\[
p(X | M_j) = \sum_{Q} p(X | Q, M) p(Q | M)
\]
HMM summary (2)

- **Calculate** $p(X|M)$ via **forward recursion**:

 $$ p(X^n_i, q^n_j) = \alpha_n(j) = \left[\sum_{i=1}^{S} \alpha_{n-1}(i)a_{ij} \right] \cdot b_j(x_n) $$

- **Viterbi** (best path) approximation

 $$ \alpha^*_n(j) = \left[\max_i \{ \alpha^*_{n-1}(i)a_{ij} \} \right] \cdot b_j(x_n) $$

 - then backtrace...

 $$ Q^* = \operatorname{argmax}_Q p(X, Q|M) $$

- **Pictorially:**

 $M = \circ \rightsquigarrow \circ \rightsquigarrow \circ \rightsquigarrow \circ$

 $Q = \{q_1, q_2, \ldots, q_n\}$

 assumed, hidden observed inferred
Outline

1. Hidden Markov Model review

2. Training HMMs
 - Viterbi training
 - EM for HMM parameters
 - Forward-backward (Baum-Welch)

3. Language modeling

4. Discrimination & adaptation
Training HMMs

• Probabilistic foundation allows us to train HMMs to ‘fit’ training data
 - i.e. estimate a_{ij}, $b_i(x)$ given data
 - better than DTW...

• Algorithms to improve $p(M \mid X)$ are key to success of HMMs
 - maximum-likelihood of models...

• State alignments Q of training examples are generally unknown
 - else estimating parameters would be easy

 → **Viterbi training**
 - choose ‘best’ labels (heuristic)

 → **EM training**
 - ‘fuzzy labels’ (guaranteed local convergence)
Overall training procedure

Labelled training data

- two
- one
- five
- four
- three

Word models

- one
- two
- three

Data

Models

Fit models to data

Re-estimate model parameters

Repeat until convergence
Viterbi training

• “Fit models to data”
 = Viterbi best-path alignment

\[
\begin{align*}
\text{Data} & \quad \begin{array}{cc}
\text{Viterbi} & \text{labels}
\end{array} \\
Q^* & \quad \begin{array}{cccc}
\text{th} & \text{r} & \text{i} & \text{y}
\end{array}
\end{align*}
\]

• “Re-estimate model parameters”:

pdf e.g. 1D Gauss:
\[
\mu_i = \frac{\sum_{n \in q^i} x_n}{\#(q_n)}
\]

count transitions:
\[
a_{ij} = \frac{\#(q_{n-1}^i \to q_n^j)}{\#(q_n^i)}
\]

• And repeat...

• But: converges only if good initialization
EM for HMMs

- **Expectation-Maximization (EM):** optimizes models with unknown parameters
 - finds locally-optimal parameters Θ
 - to maximize data likelihood $p(x_{\text{train}}|\Theta)$
 - makes sense for decision rules like
 $p(x|M_j) \cdot p(M_j)$

- **Principle:**
 Adjust Θ to maximize expected log likelihood of known x & unknown u:

$$E[\log p(x, u|\Theta)] = \sum_u p(u|x, \Theta_{\text{old}}) \log[p(x|u, \Theta)p(u|\Theta)]$$

 - for GMMs, unknowns = mix assignments k
 - for HMMs, unknowns = hidden state q_n
 (take Θ to include M_j)

- **Interpretation:** “fuzzy” values for unknowns
What EM does

- Maximize data likelihood by repeatedly estimating unknowns and re-maximizing expected log likelihood:

\[
\log p(X | \Theta)
\]

Successive parameter estimates \(\Theta \)

Estimate unknowns \(p(q_n | X, \Theta) \)

Re-estimate unknowns

Adjust model params \(\Theta \) to maximize expected log likelihood

local optimum

eq...
EM for HMMs (2)

- Expected log likelihood for HMM:

\[
\sum_{Q_k} p(Q_k | X, \Theta_{old}) \log \left[p(X | Q_k, \Theta) p(Q_k | \Theta) \right]
\]

\[
= \sum_{Q_k} p(Q_k | X, \Theta_{old}) \log \left[\prod_n p(x_n | q_n) \cdot p(q_n | q_{n-1}) \right]
\]

\[
= \sum_{n=1}^{N} \sum_{i=1}^{S} p(q_n^i | X, \Theta_{old}) \log p(x_n | q_n^i, \Theta)
\]

\[
+ \sum_{i=1}^{S} p(q_1^i | X, \Theta_{old}) \log p(q_1^i | \Theta)
\]

\[
+ \sum_{n=2}^{N} \sum_{i=1}^{S} \sum_{j=1}^{S} p(q_{n-1}^i, q_n^j | X, \Theta_{old}) \log p(q_n^j | q_n^i, \Theta)
\]

- closed-form maximization by differentiation etc.
EM update equations

- For acoustic model (e.g. 1-D Gauss):
 \[
 \mu_i = \frac{\sum_n p(q_n^i|X, \Theta_{\text{old}}) \cdot x_n}{\sum_n p(q_n^i|X, \Theta_{\text{old}})}
 \]

- For transition probabilities:
 \[
 p(q_n^j|q_{n-1}^i) = a_{ij}^{\text{new}} = \frac{\sum_n p(q_{n-1}^i, q_n^j|X, \Theta_{\text{old}})}{\sum_n p(q_{n-1}^i|X, \Theta_{\text{old}})}
 \]

- Fuzzy versions of Viterbi training
 - reduce to Viterbi if \(p(q|X) = 1/0 \)

- Require ‘state occupancy probabilities’,
 \[
 p(q_n^i|X_1^N, \Theta_{\text{old}})
 \]
The forward-backward algorithm

- We need $p(q_n^i | X_1^N)$ for EM updates (Θ implied)

- Forward algorithm gives $\alpha_n(i) = p(q_n^i, X_1^n)$
 - excludes influence of remaining data X_{n+1}^N

- Hence, define $\beta_n(i) = p(X_{n+1}^N | q_n^i, X_1^n)$
 so that $\alpha_n(i) \cdot \beta_n(i) = p(q_n^i, X_1^N)$

- Then $p(q_n^i | X_1^N) = \frac{\alpha_n(i) \cdot \beta_n(i)}{\sum_j \alpha_n(j) \cdot \beta_n(j)}$

- Recursive definition for β:
 $\beta_n(i) = \sum_j \beta_{n+1}(j)a_{ij}b_j(x_{n+1})$
 - recurses backwards from final state N
Estimating a_{ij} from α & β

- From EM equations:

$$p(q_n^j | q_{n-1}^i) = a_{ij}^{\text{new}} = \frac{\sum_n p(q_{n-1}^i, q_n^j | X, \Theta_{\text{old}})}{\sum_n p(q_{n-1}^i | X, \Theta_{\text{old}})}$$

 - prob. of transition normalized by prob. in first

- Obtain from $p(q_{n-1}^i, q_n^j, X | \Theta_{\text{old}})$

$$= p(X_{n+1}^N | q_n^j) p(x_n | q_n^j) p(q_n^j | q_{n-1}^i) p(q_{n-1}^i, X_1^{n-1})$$

$$= \beta_n(j) \cdot b_j(x_n) \cdot a_{ij} \cdot \alpha_{n-1}(i)$$
GMM-HMMs in practice

- **GMMs as acoustic models:**
 train by including mixture indices as unknowns
 - just more complicated equations...

$$\mu_{ik} = \frac{\sum_n p(m_k | q^i, x_n, \Theta_{old}) p(q^i | X, \Theta_{old}) \cdot x_n}{\sum_n p(m_k | q^i, x_n, \Theta_{old}) p(q^i | X, \Theta_{old})}$$

- **Practical GMMs:**
 - 9 to 39 feature dimensions
 - 2 to 64 Gaussians per mixture
 depending on number of training examples

- **Lots of data → can model more classes**
 - e.g context-independent (CI): $$q^i = ae \ aa \ ax \ ...$$
 - context-dependent (CD): $$q^i = b-ae-b \ bae-k \ ...$$
HMM training in practice

- EM only finds **local optimum**
 → critically dependent on **initialization**
 - approximate parameters / rough alignment

Model inventory

- **Labelled training data**

Initialization parameters

E-step: probabilities of unknowns

M-step: maximize via parameters

Uniform initialization alignments

- Applicable for more than just words...
Training summary

• **Training data** + basic model topologies → derive fully-trained models

 - alignment all handled implicitly

• **What do the states end up meaning?**
 - not necessarily what you intended; whatever locally maximizes data likelihood

• **What if the models or transcriptions are bad?**
 - slow convergence, poor discrimination in models

• **Other kinds of data, transcriptions**
 - less constrained initial models...
Outline

1. Hidden Markov Models review
2. Training HMMs
3. Language modeling
 - Pronunciation models
 - Grammars
 - Decoding
4. Discrimination & adaptation
Language models

- **Recall, MAP recognition criterion:**
 \[M^* = \arg\max_{M_j} p(M_j \mid X, \Theta) \]
 \[= \arg\max_{M_j} p(X \mid M_j, \Theta_A) p(M_j \mid \Theta_L) \]

- **So far, looked at** \(p(X \mid M_j, \Theta_A) \)

- **What about** \(p(M_j \mid \Theta_L) \)?
 - \(M_j \) is a particular word sequence
 - \(\Theta_L \) are parameters related to the language

- **Two components:**
 - link state sequences to words \(p(Q \mid w_i) \)
 - priors on word sequences \(p(w_i \mid M_j) \)
HMM Hierarchy

- HMMs support **composition**
 - can handle time dilation, pronunciation, grammar all within the same framework

\[
p(q|M) = p(q, \Phi, w|M) = p(q|\phi) \cdot p(\phi|w) \cdot p(w_n|w_1^{n-1}, M)
\]
Pronunciation models

- Define states within each word \(p(Q | w_i) \)
- Can have **unique states** for each word ('whole-word' modeling), or ...
- Sharing (tying) **subword units** between words to reflect underlying phonology
 - more training examples for each unit
 - generalizes to unseen words
 - (or can do it automatically...)
- Start e.g. from pronouncing **dictionary**:

 ZERO(0.5) z iy r ow
 ZERO(0.5) z ih r ow
 ONE(1.0) w ah n
 TWO(1.0) tcl t uw
 ...
Learning pronunciations

• ‘Phone recognizer’ transcribes training data as phones
 - align to ‘canonical’ pronunciations

 Baseform Phoneme String

 - infer modification rules
 - predict other pronunciation variants

• e.g. ‘d deletion’:
 \[
 d \rightarrow \emptyset \ / \ _ [\text{stop}] \quad p = 0.9
 \]

• **Generate pronunciation variants**;
 use forced alignment to find weights
Grammar

• Account for different likelihoods of different words and word sequences \(p(w_i|M_j) \)

• ‘True’ probabilities are very complex for LVCSR
 - need parses, but speech often agrammatic

→ Use n-grams:

\[
p(w_n|w_1^L) = p(w_n|w_{n-K}, \ldots, w_{n-1})
\]

- e.g. n-gram models of Shakespeare:

 n=1 To him swallowed confess hear both. Which. Of save on ...
 n=2 What means, sir. I confess she? then all sorts, he is trim, ...
 n=3 Sweet prince, Falstaff shall die. Harry of Monmouth's grave...
 n=4 King Henry. What! I will go seek the traitor Gloucester. ...

• Big win in recognizer WER
 - raw recognition results often highly ambiguous
 - grammar guides to ‘reasonable’ solutions
Smoothing LVCSR grammars

- **n-grams (n=3 or 4)** are estimated from large text corpora
 - 100M+ words
 - but: not like spoken language

- **100,000 word vocabulary →** 10^{15} trigrams!
 - never see enough examples
 - unobserved trigrams should NOT have Pr=0!

- **Backoff to bigrams, unigrams**
 - $p(w_n)$ as an approx to $p(w_n | w_{n-1})$ etc.
 - interpolate 1-gram, 2-gram, 3-gram with learned weights?

- **Lots of ideas e.g. category grammars**
 - e.g. $p(\text{PLACE} | \text{“went”, “to”}) \cdot p(w_n | \text{PLACE})$
 - how to define categories?
 - how to tag words in training corpus?
Decoding

- How to find the MAP word sequence?
- States, prons, words define one big HMM
 - with 100,000+ individual states for LVCSR!

→ Exploit hierarchic structure
 - phone states independent of word
 - next word (semi) independent of word history
Decoder pruning

- Searching ‘all possible word sequences’?
 - need to restrict search to most promising ones: beam search
 - sort by estimates of total probability
 - \(\text{Pr(so far)} + \text{lower bound estimate of remains} \)
 - trade search errors for speed

- **Start-synchronous algorithm:**
 - extract top hypothesis from queue:
 \[
 [P_n, \{w_1, \ldots, w_k\}, n] \\
 \text{pr. so far words next time frame}
 \]
 - find plausible words \(\{w^i\} \) starting at time \(n \)
 \(\rightarrow \) new hypotheses:
 \[
 [P_n \cdot p(X_{n+N-1}^n | w^i) \cdot p(w^i | w_k \ldots), \{w_1, \ldots, w_k, w^i\}, n + N]
 \]
 - discard if too unlikely, or queue is too long
 - else re-insert into queue and repeat
Outline

1. Hidden Markov Models review
2. Training HMMs
3. Language modeling
4. Discrimination & adaptation
 - Discriminant models
 - Neural net acoustic models
 - Model adaptation
4 Discriminant models

- EM training of HMMs is maximum likelihood
 - i.e. choose single Θ to max $p(X_{trn} | \Theta)$
 - Bayesian approach: actually $p(\Theta | X_{trn})$

- Decision rule is $\max p(X | M) p(M)$
 - training will increase $p(X | M_{correct})$
 - may also increase $p(X | M_{wrong})$...as much?

- Discriminant training tries directly to increase discrimination between right & wrong models
 - e.g. Maximum Mutual Information (MMI)

\[
I(M_j, X | \Theta) = \log \frac{p(M_j, X | \Theta)}{p(M_j | \Theta)p(X | \Theta)}
\]

\[
= \log \frac{p(X | M_j, \Theta)}{\sum p(X | M_k, \Theta)p(M_k | \Theta)}
\]
Neural Network Acoustic Models

- Single model generates posteriors directly for all classes at once = frame-discriminant

- Use regular HMM decoder for recognition
 - set $b_i(x_n) = p(x_n|q^i) \propto p(q^i|x_n)/p(q^i)$

- Nets are less sensitive to input representation
 - skewed feature distributions
 - correlated features

- Can use temporal context window to let net ‘see’ feature dynamics:
Neural nets: Practicalities

- **Typical net sizes:**
 - input layer: 9 frames x 9-40 features ~ 300 units
 - hidden layer: 100-8000 units, dep. train set size
 - output layer: 30-60 context-independent phones

- **Hard to make context dependent**
 - problems training many classes that are similar?

- **Representation is partially opaque:**
 - Hidden -> Output weights
 - Input -> Hidden

![Input -> Hidden #187](image)
Model adaptation

- **Practical systems often suffer from mismatch**
 - test conditions are not like training data: accent, microphone, background noise ...

- **Desirable to continue tuning during recognition**
 = **adaptation**
 - but: no ‘ground truth’ labels or transcription

- **Assume that recognizer output is correct;**
 Estimate a few parameters from those labels
 - e.g. Maximum Likelihood Linear Regression (MLLR)
Recap: Recognizer Structure

- Now we have it all!
Summary

• **Hidden Markov Models**
 - state transitions and emission likelihoods in one
 - best path (Viterbi) performs recognition

• **HMMs can be trained**
 - Viterbi training makes intuitive sense
 - EM training is guaranteed to converge
 - acoustic models (e.g. GMMs) train at same time

• **Language modeling captures higher structure**
 - pronunciation, word sequences
 - fits directly into HMM state structure
 - need to ‘prune’ search space in decoding

• **Further improvements...**
 - discriminant training moves models ‘apart’
 - adaptation adjusts models in new situations