

THE NON-REMARKABLE-MUSICIAN’S

REMARKABLE CHORD CLASSIFIER

Jonathan Rotner

Digital Signal Processing Final Project

ELEN 4810

Fall 2006

Professor Dan Ellis

 2

CONTENTS

 Section Page No.

1. Abstract 3

2. Signal Processing 4

3. Signal Analysis & Storing Data 6

4. Running the Program & Static Analysis 9

5. Dynamic Analysis 11

6. Appendix A: Included Files 15

7. Appendix B: List of Variables 16

 3

ABSTRACT

This program attempts to identify which chord has been played by an acoustic guitar.

The chord is read in, analyzed via digital signal processing techniques, and then

compared both to previously stored data and a table of musical frequencies. These two

subsystems of analysis will hereby be referred to as the static and dynamic sections of the

application. The static system was compiled with 178 different samples from 4 different

guitars giving rise to a total of 35 distinct chords. Thy dynamic system works by

comparing frequencies of the unknown chord with a table of known values. The hope is

that a combination of these two subsystems will allow for an element of universality in

instrument and a reasonable flexibility with regards to tuning.

 4

SIGNAL PROCESSING

The file ver1.m was used to analyze and compile the important frequencies of a chord so

that the actual .wav files could be discarded. We will now go through a step by step

analysis of the program with detailed explanation. The program begins by reading in the

wav file. The request is that the filename be put in single quotes, so that Matlab

recognizes it as a string.

chord = input('Input name of file for importing wrapped in single

quotes: ');

[x, Fs] = wavread(chord);

x is the 1D vector of the time signal, while Fs corresponds to the sampling rate, in

samples/second. For a list of all variables, please refer to Appendix B. Next, we take the

DFT (using the FFT function in Matlab). This converts the signal into the frequency

domain, making a frequency analysis much easier.

NFFT = 2^nextpow2(l);

X = abs(fft(x,NFFT));

The function nextpow2 is used to pad the data with enough zeros to make its length a

power of two for the fastest possible FFT. The abs is used to convert the sequence to

real numbers by taking its magnitude.

Converting the sequence to a dB scale allows for a more direct comparison since the

signal can be now judged in terms of relative loss.

XdB = 20*log10(X);

Plotting the dB values of the sequence is commented out, but the lines of code are still

included for analyzing and debugging purposes.

plot(f,XdB(1:NFFT/2));

The plot only contains half of the frequency because we are restricted by half of the

Nyquist sampling rate. An example of a dB plot is illustrated below:

 5

Figure 1: Amplitude Spectrum (dB) of A7 (1).wav

Figure 2: Zoomed in Amplitude Spectrum (dB) of A7 (1).wav

 6

SIGNAL ANALYSIS & STORING DATA

The next step is to look for the peak amplitudes that correspond to the frequencies of the

notes found in the chord. First we search for the largest peak and its location in terms of

sample number:

[val, idx] = max(XdB(floor(100*len/Fs):floor(len/2)));

idx=idx+100*len/Fs - 1; %idx is in units of length(XdB)/sample

idx=idx*Fs/len;

The search is restricted from 100 Hz to half the sequence (since it is an even function and

we can disregard the second half). idx is normalized and thus converted to frequency

(Hz).

In a for loop, we look through the samples in the first half of the sequence, starting at 100

Hz. We further restrict the search-set to within 20 dB of the maximum peak. Then we

look for local maxima by comparing any given point to its previous and following one; if

it is larger then both, we have a local max and store its amplitude and frequency in the

arrays, peaks and indices, respectively.

j=1;

for i = floor(100*len/Fs):floor(len/2),

 if(XdB(i)>(val-20))

if(XdB(i)>XdB(i-1) & XdB(i)>=XdB(i+1))

peaks(j)=XdB(i);

 tmp=find(XdB==XdB(i));

 indices(j)=(tmp(1)-1)*Fs/len;

 j=j+1;

end; end; end;

Unfortunately, the peaks are not perfect; it is often the case that a peak is really composed

of multiple jagged edges all in close proximity, as illustrated by Figure 3.

 7

Figure 3: A Close Collection of Local Maxima

Thus, we must search through all the indices of local maxima and remove any duplicates

within 5 Hz, while keeping the index with the maximum amplitude. The new amplitudes

and frequencies are stored in pks and inds, respectively. 5 Hz was used as a comparison

because on examination of a list of all musical frequencies, an average distance of 12-13

Hz separated two notes, thus a 5 Hz range on both sides allows for flexibility of out-of-

tune guitars while not infringing on another note’s boundaries.

j=1; i=1;

while(i<=length(peaks)),

 k=i+1;

 while(k<length(peaks) & (indices(k)-indices(i))<5)

 k=k+1;

 end

 s=max(peaks(i:k-1));

 pks(j)=s;

 tmp=find(XdB==s);

 inds(j)=(tmp(1)-1)*Fs/len;

 j=j+1;

 i=k;

end

In the final txt file we wish to store the frequencies at which the 5 maximum amplitudes

are reached. The variable, final_freq will eventually store all local maxima remaining.

But before that step, we have to remove any remaining data within 5 Hz. But wait, didn’t

the last section just do this? Yes, but upon recombination, there may still exist two notes

 8

within 5 Hz of each other that were not originally compared in the previous section, i.e. if

330 Hz is the target frequency, imagine we have the frequencies {325, 327, 329, 331}.

325 Hz would have been the initial basis of comparison (k in the code) and may have

removed 325, 329, and kept 327 as the max frequency. But 331 would not be compared

to the 325 (as it is 6 Hz away). However, 331 still refers to the same note, so 327 and

331 must be compared, as it is done in the next section of code. Also in this section of

code, final_freq will store the resorted frequencies by amplitude.

final_freq=[idx];

[sorted,j]=sort(pks);

for i=1:length(sorted)-1,

 if(abs(inds(j(end-i)) - final_freq) > 5)

 final_freq(i+1)=inds(j(end-i));

 else

 tmp=find(not((abs(inds(j(end-i)) - final_freq)>5)));

 if(pks(j(end-i)>pks(tmp)))

 final_freq(i+1)=inds(j(end-i));

end; end; end

final_freq(final_freq==0)=[];

The last line removes any zeroes due to eliminating any frequency within 5 Hz.

The last portion of ver1.m exports the maximum 5 frequencies to ‘database.txt’ and then

closes all files in case any were opened during debugging.

dlmwrite('Database.txt', final_freq(1:5), 'delimiter', '\t', '-

append');

ST = fclose('all');

 9

RUNNING THE PROGRAM & STATIC ANALYSIS

After storing the unknown chord as a .wav file, we run the program, ver2.m to try to

identify it. The first part of the program is the same as ver1, except with different

variable names. The first line is different: it reads in the .txt file of all stored data:

data = dlmread('database.txt');

Next, we extract all maximum peaks within 20 dB of the global maxima, and store it in

the variable, max_freq. The top 5 are again stored in final_freq.

The first identifier portion of the code is the static program. We begin by looking for a

match between the maximum 5 frequencies, sorted by amplitude, and the 5 frequency

points stored on each line of the database. For a match, the program compares each of

the 5 frequencies in turn and asks if they are within 5 Hz of each other. If a direct match

is found, the row in database.txt is stored in the variable hash (a hash-table will later be

used to convert row number to note). Also, confidence, a variable which will store how

confident the result is, is set to 5 (like a 5-star rating system).

hash = 0; confidence = 0;

N = size(data);

for i=1:N(1)

 if(abs(final_freq - data(i,:)) < 5) %if each peak is within 5 Hz

 hash = i;

 confidence = 5;

 break;

end; end

If no match is found, do not dismay. Next, the program sorts the 5 maximum peaks by

frequency, rather than amplitude, of the current unknown chord as well as all the stored

data in database.txt. If a match is found now, hash takes on the appropriate value, and

confidence is set to 4.

if(confidence == 0)

 sorted_data=sort(data,2);

 sorted_ff=sort(final_freq);

 for i=1:N(1)

 if(abs(sorted_ff - sorted_data(i,:)) < 5)

 hash = i;

 confidence = 4;

 break;

end; end; end

 10

If we still have no luck, we try a second run through on the original, unsorted, stored

data, this time just looking for 4 out of 5 matches. Only if the variable, cnt, has a value of

4, for 4 matches, does hash = i and confidence = 3.

if(confidence == 0)

 for i=1:N(1)

 cnt=0;

 for k=1:5

 if(abs(final_freq(k) - data(i,k)) < 5)

 cnt = cnt+1;

 end; if (cnt==4)

 hash = i;

 break

 end; end;

 if(cnt==4)

 confidence = 3;

 break

end; end; end

One last attempt if we are still unsuccessful. We look for 4/5 matches on the sorted-by-

frequency path. confidence is now set to 2.

if(confidence == 0)

 for i=1:N(1)

 cnt=0;

 for k=1:5

 if(abs(sorted_ff(k) - sorted_data(i,k)) < 5)

 cnt = cnt+1;

 end; if (cnt==4)

 hash = i;

 break

 end; end;

 if(cnt==4)

 confidence = 2;

 break

end; end; end

Now the static program is complete and it is time to display the results. Using the file

hash_table.m (see Appendix A), we retrieve which chord corresponds to the row stored

in hash. Using the file conf.m in a similar manner, we retrieve a string holding our

confidence level. The last line displays the results. If no matches were found, the user is

informed.

if(hash~=0)

 name = hash_table(hash);

 rating = conf(confidence);

 sprintf('The chord you played was %s \n%s according to data

matching', name, rating)

else

 disp('No matches found')

end

 11

DYNAMIC ANALYSIS

Music and chords follow beautiful, mathematical patterns. The dynamic part of the

program aims to capitalize on these relationships in major and minor chords. The

patterns will be reviewed explicitly a little later on.

Before starting on the analysis of the peak frequencies, a little clean up is needed. We do

not wish to check any frequencies over 1000 Hz because the 5 Hz range is no longer

valid in that region. Also, since we are dealing with real-world data, we get some

unwanted and unexpected data. There are always certain notes that blend in with the

chord whether due to the body of the guitar, the sound box or inaccurate strumming.

Upon review of the maximum peaks, I empirically deduced that the unwanted

frequencies were often represented with at most 2 harmonics, while the notes that

belonged had 3 to 4 harmonics. Mathematically speaking, if a note is at 440 Hz (A4),

then its closest harmonics should appear at half and double that frequency (at 220 Hz is

A3, and at 880 Hz is A5). Thus, to eliminate unwanted frequencies, the program sorts

max_freq, (the new variable is sorted_max) and finds and keep only the notes that have 1

harmonic above and 1 harmonic below (within a range of 7 Hz and 5 Hz respectively).

The array, check, stores the old, unsorted location from max_freq.

sorted_max=sort(max_freq);

check = zeros(1,length(sorted_max));

for i = 1:length(sorted_max)

 if(sorted_max(i)==1)

 continue;

 else

 h=find(abs(sorted_max-sorted_max(i)*2)<7);

 l=find(abs(sorted_max-sorted_max(i)/2)<5);

 if(h&l)

 check(i)=1;

end; end; end

sorted_max(find(~check))=0;

sorted_max(sorted_max==0)=[];

We limit the frequencies to one particular octave to make comparisons easier and

eliminate any repeats that may remain.

if(find(sorted_max<320))

 sorted_max(find(sorted_max<320))=sorted_max(find(sorted_max<320))*2;

end

if(find(sorted_max>630))

 sorted_max(find(sorted_max>630))=sorted_max(find(sorted_max>630))/2;

 12

end

%eliminating repeats

sorted_max=sort(sorted_max);

for i=1:length(sorted_max)-1,

 if(sorted_max(i+1)-sorted_max(i)>0 & sorted_max(i+1)-

sorted_max(i)<7)

 sorted_max(i)=0;

 end

end

sorted_max(sorted_max==0)=[];

A new array, notes, is initialized, which will store the actual notes of the chord as strings.

We use the file, freq_table.m, to map frequencies to 5-character strings of the appropriate

note. freq_table.m also returns the variable, add, which will later be used to determine

how many half-steps away the individual notes are from each other. One last line

establishes a long string array, list, which is hard-programmed to hold strings of just

fewer than 2 octaves, starting with ‘E’.

notes=[];

for i=1:length(sorted_max)

 [note,add]=freq_table(sorted_max(i));

 notes=[notes; note];

 adder(i)=add;

end

list = ['E ';'F ';'F#/Gb';'G ';'G#/Ab';'A ';'A#/Bb';'B

';'C ';'C#/Db';'D ';'D#/Eb';'E ';'F ';'F#/Gb';'G

';'G#/Ab';'A ';'A#/Bb';'B ';'C ';'C#/Db';'D '];

At this point all the recognized notes are stored and labeled by frequency and by string.

It is time to match them to a particular pattern. If three notes are recognized, we can map

the chord to a major or a minor progression. A major chord is defined by a Root-3
rd

-5
th

triad. Mathematically, given a starting note, the middle note should be 4 half-steps away,

and the last member of the triad should be 7 half-steps away (a half-step is just the next

note in list). A minor chord is defined by a R b3 5 triad (root, flatted-third and fifth). We

set list(adder(i)) as the root, and i cycles through all known notes, that way every

combination of notes is tried. If the three notes fit into the major or minor pattern, the

variable, answer, is set to 1 and a confidence string is outputted.

answer=0;

for i=1:size(notes,1)

 if(size(notes,1)==3)

 major=[list(adder(i),:);list(adder(i)+4,:);list(adder(i)+7,:)];

 if(sort(major,1) == sort(notes,1))

 sprintf('Your chord is %s %s \nwith a confidence rating of

VERY CONFIDENT according to frequency

matching',num2str(list(adder(i))),'major')

 13

 answer=1;

 break;

 end

 %minor pattern: R b3 5

 minor=[list(adder(i),:);list(adder(i)+3,:);list(adder(i)+7,:)];

 if(sort(minor,1) == sort(notes,1))

 sprintf('Your chord is %s %s \nwith a confidence rating of

VERY CONFIDENT according to frequency

matching',num2str(list(adder(i))),'minor')

 answer=1;

 break;

 end

If four notes are recognized, we can map the chord to a major7 or a minor7 progression.

A major7 progression follows a R 3 5 7 pattern while a minor7 progression follows a

R b3 5 b7 pattern. This portion is still within the same for loop (i.e. the root note is

cycled through all known notes).

 elseif(size(notes,1)==4)

 %major-7 pattern: R 3 5 b7

 major7=[list(adder(i),:);list(adder(i)+4,:);list(adder(i)+7,:);

list(adder(i)+10,:)];

 if(sort(major7,1) == sort(notes,1))

 sprintf('Your chord is %s %s \nwith a confidence rating of

VERY CONFIDENT according to frequency

matching',num2str(list(adder(i))),'major7')

 answer=1;

 break;

 end

 %minor-7 pattern: R b3 5 b7

 minor7=[list(adder(i),:);list(adder(i)+3,:);list(adder(i)+7,:);

list(adder(i)+10,:)];

 if(sort(minor7,1) == sort(notes,1))

 sprintf('Your chord is %s %s \nwith a confidence rating of

VERY CONFIDENT according to frequency

matching',num2str(list(adder(i))),'minor7')

 answer=1;

 break;

 end

If two notes are recognized, we can try and guess what that third note could be, utilizing

the beauty of the musical patterns. We find at what index in list the two known notes are

and take the difference; thus, we can conclude if we are missing the 3
rd

 or 5
th

 part of the

triad. It is assumed that we are not missing the root, because the root note of the chord is

often played on 2 to 3 strings of the guitar, and thus is most often represented. After

taking the difference, we can pin the missing note to a model. If the difference = 3, we

are most likely missing the 5
th

 in a minor chord. If the difference = 4, we are most likely

missing the 5
th

 in a major chord. If the difference = 7, we are missing the 3
rd

. As the

 14

third may or may not be flatted, we do not know if this is a major or minor chord.

Another assumption is that we do not have a major7 or minor7 chord since not capturing

2 notes is far less likely than not capturing 1 note. A different confidence level is also

outputted.

elseif(size(notes,1)==2)

 tempor=find(list(:,1)==notes(1,1));

 tempor(find(list(tempor,2)==notes(1,2)));

 tempor2=find(list(:,1)==notes(2,1));

 tempor2(find(list(tempor2,2)==notes(1,2)));

 diff=tempor2(1)-tempor(1);

 if (diff==3)

 notes(3,:)=list(adder(1)+7,:);

 sprintf('The 2 notes that match are %s %s;\n The third is

most likely %s to complete the minor chord\n with a confidence level of

MOST LIKELY according to frequency matching', num2str(notes(1,:)),

num2str(notes(2,:)),num2str(notes(3,:)))

 answer=1;

 elseif (diff==4)

 notes(3,:)=list(adder(1)+7,:);

 sprintf('The 2 notes that match are %s %s;\n The third is

most likely %s to complete the major chord\n with a confidence level of

MOST LIKELY according to frequency matching', num2str(notes(1,:)),

num2str(notes(2,:)),num2str(notes(3,:)))

 answer=1;

 elseif (diff==7)

 notes(3,:)=list(adder(1)+4,:); %maj

 notes(4,:)=list(adder(1)+3,:); %min

 sprintf('The 2 notes that match are\n %s %s\n The third is

most likely\n %s to complete the major chord or \n %s to complete the

minor chord\n with a confidence level of LIKELY according to frequency

matching', num2str(notes(1,:)), num2str(notes(2,:)),

num2str(notes(3,:)), num2str(notes(4,:)))

 answer=1;

 end

 break;

If the number of notes we recognize is less than 2 or more than 4, an error message is

displayed. Also, if no pattern was found, the user is informed that the dynamic program

did not succeed. The last 2 lines of code displays the dynamic notes found and closes all

files.

 else

 disp('error with length of notes array')

 break;

end; end

if(answer~=1)

 disp('No dynamic match')

end

notes

ST = fclose('all');

 15

APPENDIX A: INCLUDED FILES

Attached, please find the following files:

conf.m

freq_table.m

hash_table.m

ver1.m

ver2.m

database.txt

as well as the following 3 sample files:

1Cmaj.wav

1D7.wav

1F#m.wav

 16

APPENDIX B: LIST OF VARIABLES

Variable Function M-file

add integer that stores index of a note in list ver2, freq_table

adder array of all adds ver2

answer if 0, then no dynamic match; if 1, dynamic match ver2

check if 1, then note has harmonic an octave higher and lower, else 0 ver2

chord input string of filename ver1

confidence integer that stores static confidence rating. Score is out of 5 ver2

data database of stored chord data ver2

f x-dim for plot of X ver1, ver2

final_freq the frequencies of all maximum peaks within 20 dB ver1

final_freq the frequencies of the top 5 maximum peaks ver2

Fs sampling rate (samples/sec) ver1, ver2

hash row in data that matches final_freq; argument to hash_table.m ver2

idx frequency at which global maximum resides ver1, ver2

indices array of frequencies of ALL local maxima within 20 dB ver1, ver2

inds indices with close frequencies (within 5 Hz) removed ver1, ver2

j index mapping between sorted and pks ver1, ver2

l number of points in sample ver1

len length of XdB ver1, ver2

list 23x5 char array with just less than 2 octaves of notes ver2

major 3x5 char array of major pattern with a given root note ver2

match returns string holding name of chord as stored by static program hash_table

max_freq the frequencies of all maximum peaks within 20 dB; final_freq in ver1.m ver2

minor 3x5 char array of minor pattern with a given root note ver2

N amount of rows stored in data ver2

name string holding name of chord as stored by static program ver2

NFFT Next power of 2 from length of sample ver1, ver2

note name of note played as mapped by frequency value ver2, freq_table

notes char array holding the name of all notes found in dynamic program ver2

peaks array of amplitudes of ALL local maxima, sorted by frequency ver1, ver2

pks amplitudes with close frequencies (within 5 Hz) removed ver1, ver2

rating string holding confidence value for static program ver2, conf

sorted pks sorted from lowest to highest amplitude ver1
sorted sorted version of pks ver2
sorted_data database sorted by frequency, rather than by amplitude ver2

sorted_max frequencies of all dynamically found notes within one octave, sorted by frequency ver2

unknown input string of filename; chord in ver1.m ver2

val value of global maxima ver1, ver2

x original sequence ver1, ver2

X the FFT sequence ver1, ver2

XdB the FFT sequence in dB ver1, ver2

