
ELEN E4810 Digital Signal Processing Final Solutions

Tuesday 2011-12-20 Dan Ellis <dpwe@ee.columbia.edu>

1. (a) This is the classic reciprocal-conjugate-symmetric all-zero diagram of a linear-phase FIR filter.
It has zeros on the unit circle (frequency axis) for higher frequencies, but away from the unit
circle for lower frequencies, so it is low pass. It has eight zeros, so it is an 8th order filter.

(b) There are several ways to construct linear-phase FIR filters, including windowing the IDTFT of
an ideal response, but in order to ensure a minimax-optimal filter (i.e., a filter that minimizes the
maximum deviation from a piecewise-constant ideal specification), the way we know is via the
Parks-McClellan approach. In fact. this filter was designed in Matlab as:
>> h = firpm(8, [0 0.55 0.65 1], [1 1 0 0]);
That is, it’s an equiripple low-pass filter with equal-sized ripples in both pass and stop band,
with a passband edge at 0.55π rad/samp, and a stopband edge at 0.65π rad/sec.

(c) This is the simplest path by which we could convert this filter to a DT highpass:

• Pre-warp the DT band edge ωc = 0.5 rad/samp to the CT domain via the inverse of our
standard bilinear transform warp, so Ω+c = tan(ωc/2) ≈ 0.2553.
• The actual magnitude and phase response are shown below:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−500

−400

−300

−200

−100

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−60

−50

−40

−30

−20

−10

0

10

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

From the zero locations in the pole-zero diagram, we know the magnitude response will go
to zero at around 0.7π and 0.9π, and will have a minimum in the passband around 0.2π
at the point of closest approach to the reciprocal pairs of non-unit-magnitude zeros. We
can infer that it will have local maxima at ω = 0 and ω = π, although according to the
alternation theorem only one of those values will have to be at the limit of the error. Here
we see that the local maximum at ω = 0 does not, in fact, touch the error limit.
In this case, the maximum deviation in both passband and stopband is equal, although
that’s hard to tell from the pole-zero diagram. In this case, the largest gain in the passband
is about 1.2× (0.2 away from the target gain of 1), or about 1.6 dB, and the largest gain in
the stopband is 0.2 (i.e., also 0.2 away from the target gain of 0), or about -14 dB.

1

The phase response must be linear, but it would be valid to draw it as identically zero
since we’ve been vague about the precise temporal alignment of this filter. The most usual
interpretation, however, would be to treat this as a causal filter and thus the delay would
be 4 samples, and the phase response will have a slope of -4. It wraps, of course, when it
reaches −π, and it shows π jumps when the magnitude response goes through zero.
• The actual impulse response is shown below:

−5 0 5
−1

−0.5

0

0.5

1

n - nmid / samples

h[
n]

It has to be nine points long, and symmetric in time. It’s going to have a vaguely sinc-
like shape since it is a low-pass filter. The mainlobe width is inversely proportional to the
cutoff frequency, so we could guess it was going to be fairly narrow for a filter that passes
frequencies beyond ω = π/2.

2. (a) An allpass filter has reciprocal zeros “balancing” the magnitude impact of each pole, but not
the phase effects. Thus, this second order system will have zeros at the reciprocals of the pole
locations:

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

Since this is an allpass filter, its magnitude response is identically 1 (0 dB) at all frequencies. But
its phase response is more complicated. By thinking about the angle subtended from the roots
and how it changes as ω goes from 0 to 2π, we can understand that the angle from the zeros will
change one way, then the other, but will end up the same after the complete 2π revolution. The
angle from the poles, however, increases monotonically (leading to a monotonic decrease in the
phase response), and is 2π larger, per pole (i.e. 4π total), by the time ω = 2π. By symmetry, the
phase response must achieve half of this overall change after half a revolution (ω = π), thus we
see a phase response going from zero at ω = 0 to −2π at ω = π:

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

Normalized frequency (�� rad/sample)

P
ha

se
 (
��

 r
ad

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

Normalized Frequency (�� rad/sample)

M
ag

ni
tu

de
 (

dB
)

We know the phase change will be fastest for values of ω where z = ejω comes closest to the
roots, so that gives us the overall shape. (I wasn’t worried about the peak slope, although I guess
it could be estimated).

(b) The point about this structure is to notice that although the magnitude response of the direct and
the allpass branches will be the same, their phases will not. In particular, since the allpass filter
has a phase response of zero at ω = 0 and 2π at ω = π, it will be in phase with the direct path
for those two extreme frequencies. But at frequencies close to the pole/zero pairs, the phase
shift approaches π, which means it will be out-of-phase. g = 1 corresponds to adding the two
branches; the in-phase components will reinforce (giving a 6 dB gain boost), but the out-of phase
components (which, remember, both have a magnitude of 1) will cancel, creating a zero in the
overall response, or a notch in the magnitude response. g = −1 is the opposite case, with full
cancellation at the two extreme frequencies, and a 6 dB boost at the “critical” frequency defined
by the roots:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

Normalized frequency (�� rad/sample)

ga
in

 /
dB

g = −1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20
g = +1

ga
in

 /
dB

Normalized frequency (�� rad/sample)

3

(c) Clearly, for g = 0, the system is just a pass-through, so the gain (and phase) are flat. So from
g = 0 to +1, we see a gradual deepening of the bandstop notch, and for g = 0 to −1, we see
a gradual growth of the bandpass peak. Here, for your interest, is a superposition of a range of
values for g from -1 to 1 in steps of 0.2:

r = 0.9;
the = pi/3;
a = [1, -2*r*cos(the), r*r];
b = fliplr(a);
for g = -1:0.2:1; ...

[H,W] = freqz(a+g*b,a); ...
plot(W/pi, 20*log10(abs(H))); ...
hold on; ...

end
grid
axis([0 1 -20 20])

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

−10

0

10

20

Normalized frequency (�� rad/sample)

ga
in

 /
dB

g = −1:0.2:1

Thus, we have a filter which is continuously variable between a band-stop (notch) and a band-
pass according to the value of g, all thanks to the variation in phase interactions (cancellation
and reinforcement) at different frequencies.

(d) “Varying the characteristics” of the 2nd order allpass system means changing the angle and ra-
dius of the poles (which then fixes the zeros at the reciprocal locations). This, in turn, modifies
the allpass phase response to have its point of maximum slope (knee) occur at different frequen-
cies (as the pole angle varies), and have the rapidity of phase change across the knee get greater
or smaller (as the radius gets closer to or further away from one). The knee frequency corre-
sponds to the center frequency of the bandpass/bandstop response from the previous sections,
and the knee “sharpness” determines the bandwidth of those characteristics, with a sharper knee
(pole closer to the unit circle) corresponding to a narrower bandpass or bandstop response.
Thus, with three parameters: pole angle (0 to π), pole radius (0 to 1), and mixing gain (-1 to 1),
we have a parametric filter capable of producing either bandpass or bandstop response for any
frequency and of variable bandwidth. This is the basis of the “parametric eq” (equalizer) block
that is the stable of a recording engineer’s mixing desk. By providing a couple of these per input
channel, the sounds of different instruments can be tweaked over a wide range of characteristics
to make them mix together more pleasantly.

3. (a) According to the bilinear transform relations, to achieve a DT-domain band edge at ω = 0.25π,
we need to have a CT band edge at ΩL = tan(ωL/2) = tan(π/8) ≈ 0.41. So, we have to
“scale” all the prototype frequencies by 0.41, making the high-side band edge appear at ΩU =
1.5 tan(π/8) ≈ 0.62 rad/sec. Then, when we put this through the bilinear transform, it will
appear at ωU = 2 tan−1(ΩU) ≈ 1.11 ≈ 0.35π rad/samp.

(b) The DT magnitude response will be a bandpass filter with a passband that is 3dB down at ωL =
0.25π and ωU ≈ 0.35π rad/samp. Since it based on a Butterworth, it will be monotonic with
no ripples. We can see from the s-plane pole-zero diagram that it has zeros at zero frequency;
thanks to the mapping of the bilinear transform, which maps the remaining four “virtual” zeros

4

at infinite frequency in the CT domain to ω = π in the DT domain, it will also have zeros at the
Nyquist frequency. Thus the plot will have minima at these two extremes and one maximum at
a frequency roughly in the middle of the passband. Here’s the actual plot from Matlab:

[B,A] = butter(4, [1 1.5], ’s’);
[b,a] = bilinear(B,A,0.5/tan(pi/8));
[H,W] = freqz(b,a);
subplot(211)
plot(W/pi, 20*log10(abs(H)))
axis([0 1 -200 5])
grid
xlabel(’Freq (\times\pi rad/samp)’)
ylabel(’gain / dB’);
subplot(212)
plot(W/pi, 20*log10(abs(H)))
axis([0.2 0.4 -20 5])
grid
xlabel(’Freq (\times\pi rad/samp)’)
ylabel(’gain / dB’);
title(’Pass band detail’);

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−20

−15

−10

−5

0

5

Normalized frequency (×π rad/sample)

ga
in

 /
dB

Pass band detail

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

Normalized frequency (×π rad/sample)

ga
in

 /
dB

(c) This is an 8-pole, 8-zero system, so it will need to be composed of 4 second-order sections, each
implementing one conjugate pair of poles and one conjugate pair of zeros. All the zeros are
either at ω = 0 or ω = π. Although we haven’t seen the the DT pole-zero diagram, it’s easy
to imagine, with a set of four poles in a little semicircle just inside the unit circle during the
passband. According to the discussion of second-order section implementations in lecture 7, we
want to group the poles with the closest zeros, so the two poles with the larger angle should be
matched with zeros at ω = pi, and the other two with ω = 0, although in this case it isn’t going to
make much difference. Note that two zeros at ω = 0 correspond to (1−z−1)2 = 1−2z−1+z−2,
and for ω = π we get (1 + z−1)2 = 1 + 2z−1 + z−2, so the feed-forward (zero) portions have
simple parameters. Also note that if put one ω = 0 zero and one ω = π zero together in each
second-order section, we’d get (1 + z−1)(1 − z−1) = 1 − z−2, which would actually save
us one operation in each second-order section (since the z−1 coefficient is zero). However, I
didn’t require you to note this for full marks. If the poles occur at locations λi = rie

±jθi , the
feedback coefficients will come from (1− λiz−1)(1− λ∗i z−1) = 1− 2<{λi}z−1 + |λi|2z−2 =
1 − 2ri cos(θi)z−1 + r2z−2. When you expand this out into an actual flow diagram, the signs
of the feedback coefficients flip, so the the feedback gains are actually 2ri cos θi from the first
delay, and −r2i from the second delay. Hence, I was looking for a block diagram something like
the one below:

z-1

z-1

+ +
-

2r1 cosθ1

– r12

z-1

z-1

+ +
-

2r2 cosθ2

– r22

z-1

z-1

+ +
-

2r3 cosθ3

– r32

z-1

z-1

+ +
-

2r4 cosθ4

– r42

x[n] y[n]

5

(d) This is making a comb filter out of the structure; replacing every z in the system function by
z2 keeps all the same magnitude and phase values for H(z) on the unit circle, but now they
get repeated twice for each cycle around the unit circle, leading to a magnitude response with
two bandpass regions. Note that since we are compressing the symmetric, periodic structure
of the DTFT by a factor of two, the bandpass regions are actually symmetric around ω = 0
and ω = π, i.e., while the first passband is squeezed down to lie between π/4/2 = π/8 and
0.35π/2 ≈ 0.18π, the second appears at ω = π − 0.18π to π − π/8. Here’s the Matlab (note
that you were not asked to sketch the phase response, but freqz plotted it anyway):

b = [b;zeros(1, length(b))];
b = b(:)’;
a = [a;zeros(1, length(a))];
a = a(:)’;
freqz(b,a)
axis([0 1 -200 5])

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1500

−1000

−500

0

Normalized Frequency (�� rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−200

−150

−100

−50

0

Normalized Frequency (�� rad/sample)
M

ag
ni

tu
de

 (
dB

)

4. (a) As we saw in the introduction to the Fourier transform, a square wave consists of odd-numbered
harmonics, with magnitudes decaying as 1/n. Thus, its Fourier transform actually consists of a
set of impulses at the frequencies corresponding to odd multiples of the fundamental Ω0, with
weights equal to the cks of the Fourier series, where

ck =
1
τ0

∫ τ0/2

−τ0/2
x(t)e−j

2πk
τ0

t
dt

=
1
τ0

(∫ 0

−τ0/2
−e−j

2πk
τ0

t
dt+

∫ τ0/2

0
e
−j 2πk

τ0
t
dt

)

=
1
τ0

([
τ0
j2πk

e
−j 2πk

τ0
t
]0

−τ0/2
−
[
τ0
j2πk

e
−j 2πk

τ0
t
]τ0/2

0

)
=

1
j2πk

(
1− e−jπk − e−jπk + 1

)
=

1
jπk

(
1− e−jπk

)
=

1
jπk

(
1− (−1)k

)
6

Thus, ck is zero for all even k (when (−1)k evaluates to 1), and |ck| = 2
kπ for odd k, so the

weights of the first few impulses in the spectrum should be around 2/π ≈ 0.64, 2/(3π) ≈ 0.21,
2/(5π) ≈ 0.13 etc.

Ω0 3Ω0 5Ω0 7Ω0 9Ω0 11Ω0
Ω

|H(jΩ)|

13Ω0

2/π

2/(3π)
2/(5π)

(b) From lecture 11, when we convert a continuous spectrum into a discrete-time spectrum by sam-
pling in the time domain, the resulting discrete-time spectrum is simply the superposition of a
set of scaled versions of the continuous-time spectrum, thus:

Hdt(ejω) =
1
T

∑
`

H(j
(ω
T
− `Ωsamp

)
)

For clarity in the figure, let’s assume T is a little smaller than τ0/5, so the sampling frequency
falls just above the impulse at 5Ω0. In the figure below, I essentially duplicated the line spectrum
from above and centered it over each multiple of ω = 2π, i.e. the sampling frequency. I gave
each set of impulses a different color so you can get some idea where they come from. The
first set on the positive side are green, and the first set on the negative side (centered around
ω = −2π) are in red.

ω0
= Ω0

3ω0

|Hdt(ejω)|

2/πΤ

T

2π
= Ωsamp/T

−2π −π
ω

The point is that, since the original square wave has lots of significant energy above the Nyquist
rate (fsamp/2, it all aliases down to make a complex pattern of harmonics in the “principal range”
of DT frequencies, ω = −π . . . π (shown as the shaded box in the figure).

(c) The figure below focuses on the range ω = 0 . . . π, and shows how each of the harmonics in that
range from the sketch above will move as the fundamental changes. The point is that, in contrast
to a regular harmonic signal, where all the harmonics move in the same direction in proportion
to their frequency, here most of the harmonics are aliases from one place or another, and they all

7

move in different directions with no clear dependence on their frequency. The result is a sound
that changes in character in a distinctly unnatural and “impure” way.

ω0

+εω0

−5εω0

π
ω

|Hdt(ejω)|

+7εω0+9εω0 +11εω0

−3εω0
−9εω0

(d) What I’m getting at here is that by sampling, we end up with a signal that is nothing like a
band-limited square wave. We need to implement an anti-aliasing filter prior to the sampling to
avoid these harmonics. The case illustrated was particularly severe because there was only one
harmonic (the fundamental) within the Nyquist limit. More commonly, you would be working
with a fundamental far below the Nyquist frequency, and would get many “legitimate” harmon-
ics in your discrete time spectrum before you started getting aliases. However, the aliases will
still be there, and since the harmonics die away so slowly with frequency for a signal like the
squarewave that has discontinuities, they will be very significant. If you come to my music sig-
nal processing class next semester, you’ll be able to hear the sound of this kind of un-anti-aliased
discrete-time square-wave oscillator, and it’s quite alarmingly bad.
To improve this, we could generate our continuous-time square wave, then put it through a
low-pass filter to remove any energy above the Nyquist, and then sample it. But the whole
point of this approach is that, to generate a discrete-time square wave on a computer, you never
actually have to calculate the continuous-time signal (and how would you, anyway?). Instead,
you implement x[n] = 1 or − 1, depending on n, as a piece of conditional logic, and you
might think you’re done. To add anti-aliasing on top of this kind of algorithm, one approach is to
figure the impulse response of your anti-alias (lowpass) filter, the sum it into a signal once every
half-period, with alternating sounds, to generate an anti-aliased representation of an impulse
train with alternating polarities. You can then integrate this signal to get the band-limited square
wave.
However, a simpler approach is just to control a bank of phase-locked sinewave oscillators at
odd multiples of the fundamental and with amplitudes set in inverse proportion to their harmonic
number, and do a direct Fourier synthesis of a bandlimited square wave. Then, as Ω0 varies, you
can suppress and reintroduce harmonics as they pass above and below the Nyquist frequency,
ensuring there is no aliasing.

8

