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Applying the Harmonic Plus Noise Model in
Concatenative Speech Synthesis

Yannis Stylianou, Member, IEEE

Abstract—This paper describes the application of the harmonic
plus noise model (HNM) for concatenative text-to-speech (TTS)
synthesis. In the context of HNM, speech signals are represented
as a time-varying harmonic component plus a modulated noise
component. The decomposition of a speech signal into these two
components allows for more natural-sounding modifications of
the signal (e.g., by using different and better adapted schemes
to modify each component). The parametric representation of
speech using HNM provides a straightforward way of smoothing
discontinuities of acoustic units around concatenation points.
Formal listening tests have shown that HNM provides high-quality
speech synthesis while outperforming other models for synthesis
(e.g., TD-PSOLA) in intelligibility, naturalness, and pleasantness.

Index Terms—Concatenative speech synthesis, fast amplitude,
harmonic plus noise models, phase estimation, pitch estimation.

I. INTRODUCTION

I N THE context of speech synthesis based on concatenation
of acoustic units, speech signals may be encoded by speech

models. These models are required to ensure that the concate-
nation of selected acoustic units results in a smooth transition
from one acoustic unit to the next. Discontinuities in the prosody
(e.g., pitch period, energy), in the formant frequencies and in
their bandwidths, and in phase (interframe incoherence) would
result in unnatural sounding speech.

There are various methods of representation and concate-
nation of acoustic units. TD-PSOLA [1] performs a pitch-
synchronous “analysis” and synthesis of speech. Because
TD-PSOLA does not model the speech signal in any explicit
way it is referred to as “null” model. Although it is very easy to
modify the prosody of acoustic units with TD-PSOLA, its non-
parametric structure makes their concatenation a difficult task.
MBROLA [2] tries to overcome concatenation problems in the
time domain by resynthesizing voiced parts of the speech data-
base with constant phase and constant pitch. During synthesis,
speech frames are linearly smoothed between pitch periods at
unit boundaries. Sinusoidal models have been proposed also for
synthesis [3], [4]. These approaches perform concatenation by
making use of an estimator of glottal closure instants, a process
which is not always successful [3]. In order to assure interframe
coherence, a minimum phase hypothesis has been used some-
times [4]. LPC-based methods such as impulse driven LPC and
residual excited LP (RELP) have also been proposed for speech
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synthesis [5]. In LPC-based methods, modifications of the LP
residual have to be coupled with appropriate modifications of
the vocal tract filter. If the interaction of the excitation signal
and the vocal tract filter is not taken into account, the modified
speech signal is degraded. This interaction seems to play a
more dominant role in speakers with high pitch (e.g., female
and child voice). However, these kinds of interactions are not
fully understood yet. This is a possible reason for the failure
of LPC-based methods in producing good quality speech for
female and child speakers. An improvement of the synthesis
quality in the context of LPC can be achieved with “careful”
modification of the residual signal. Such a method has been
proposed in [6] at British Telecom (Laureate text-to-speech
(TTS) system). It is based upon pitch-synchronous resampling
of the residual signal during the glottal open phase (a phase of
the glottal cycle which is perceptually less important) while
the characteristics of the residual signal near the glottal closure
instants are retained.

Most of the previously reported speech models and concate-
nation methods have been proposed in the context of diphone-
based concatenative speech synthesis. In an effort to reduce er-
rors in modeling of the speech signal and to reduce degrada-
tions from prosodic modifications using signal processing tech-
niques, an approach of synthesizing speech by concatenating
nonuniform units selected from large speech databases has been
proposed [7]–[9]. CHATR [10] is based on this concept. It uses
the natural variation of the acoustic units from a large speech
database to reproduce the desired prosodic characteristics in the
synthesized speech. A variety of methods for the optimum se-
lection of units has been proposed. For instance, in [11], a target
cost and a concatenation cost is attributed in each candidate unit.
The target cost is calculated as the weighted sum of the differ-
ences between elements such as prosody and phonetic context
of the target and candidate units. The concatenation cost is also
determined by the weighted sum of cepstral distance at the point
of concatenation and the absolute differences in log power and
pitch. The total cost for a sequence of units is the sum of the
target and concatenation costs. Then, optimum unit selection is
performed with a Viterbi search. Even though a large speech
database is used, it is still possible that a unit (or sequence of
units) with a large target and/or concatenation cost has to be se-
lected because a better unit (e.g., with prosody close to the target
values) is lacking. This results in a degradation of the output
synthetic speech. Moreover, searching large speech databases
can slow down the speech synthesis process. An improvement
of CHATR has been proposed in [12] by using sub-phonemic
waveform labeling with syllabic indexing (reducing, thus, the
size of the waveform inventory in the database).
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AT&T’s Next-Generation TTS Synthesis System [9] is based
on an extension of the unit selection algorithm of the CHATR
synthesis system, and it is implemented within the framework
of the Festival Speech Synthesis System [13]. One of the pos-
sible “back-ends” in AT&T’s Next-Generation TTS for speech
synthesis is the Harmonic plus Noise Model, HNM. HNM
has shown the capability of providing high-quality copy syn-
thesis and prosodic modifications [14]. Combining the capa-
bility of HNM to efficiently represent and modify speech sig-
nals with a unit selection algorithm may alleviate previously
reported difficulties of the CHATR synthesis system. Indeed,
if prosody modification and concatenation of selected units is
assured by the synthesis method, one may be able to decrease
the importance of prosodic characteristics and of concatenation
costs of the candidate units while increasing the importance
of other parameters, e.g., the context information from where
units come from.

This paper presents the application of HNM in speech syn-
thesis in the context of AT&T’s Next-Generation TTS synthesis
system. The first part of the chapter is devoted to the analysis
of speech using HNM. This is followed by the description of
synthesis of speech based on HNM. Finally, results from formal
listening tests using HNM are reported in the last section.

II. A NALYSIS OF SPEECHUSING HNM

HNM assumes the speech signal to be composed of a har-
monic part and a noise part. The harmonic part accounts for the
quasiperiodic component of the speech signal while the noise
part accounts for its nonperiodic components (e.g., fricative or
aspiration noise, period-to-period variations of the glottal exci-
tation etc.). The two components are separated in the frequency
domain by a time-varying parameter, referred to asmaximum
voiced frequency, . The lower band of the spectrum (below

) is assumed to be represented solely by harmonics while
the upper band (above ) is represented by a modulated noise
component. While these assumptions are clearly not-valid from
a speech production point of view1 they are useful from a per-
ception point of view: they lead to a simple model for speech
which provides high-quality (copy) synthesis and modifications
of the speech signal.

This section presents a brief description of the family of Har-
monic plus Noise Models for speech. One of these models is
selected for speech synthesis and the estimation of its param-
eters is then discussed. This is followed by the description of
thepost-analysisprocess, where phases from voiced frames are
corrected in order to remove phase mismatch problems between
frames during synthesis.

A. Harmonic Plus Noise Models for Speech

Based on the previous discussion, HNM assumes the speech
spectrum to be divided into two bands. The bands are separated
by the maximum voiced frequency, which is a time-varying pa-

1For example, voiced speech signal is quasiperiodic; the lower frequencies
also contain noise components, while the higher frequencies contain both noise
and quasiperiodic components.

rameter. The lower band, or the harmonic part, is modeled as
sum of harmonics

(1)

where denotes the number of harmonics included in the
harmonic part, denotes the fundamental frequency while

can take on one of the following forms:

(2)

(3)

(4)

where , and are assumed to be com-
plex numbers with
(assumption of constant phase),2 where, arg, denotes the phase
angle of a complex number. These parameters are measured at
time referred to as analysis time instants. The number of
harmonics, , depends on the fundamental frequency
as well as on the maximum voiced frequency . For
small, HNM assumes that and .

Using the first expression for , a simple stationary har-
monic model (referred to as ) is obtained while the other
two expressions lead to more complicated models (referred to as

and , respectively). These two last models try to
model dynamic characteristics of the speech signal. It has been
shown that and are more accurate models for
speech with to be more robust in additive noise [15],
[16]. However, , in spite of its simplicity, is capable of
producing speech which is perceptually almost indistinguish-
able from the original speech signal. Also, prosodic modifica-
tions are considered to be of high quality [14]. On the other
hand, due to the simple formula of , smoothing of its
parameters across concatenation points should not be a compli-
cated task. Taking into account all these points, it was decided
to use for speech synthesis. Thereafter, we will refer to

, simply as HNM.
HNM assumes the upper band of a voiced speech spectrum

to be dominated bymodulatednoise. In fact, high frequencies
of voiced speech exhibit a specific time-domain structure in
terms of energy localization (noise bursts); the energy of this
high-pass information does not spread over the whole speech
period [17], [18]. HNM follows this observation. The noise part
is described in frequency by a time-varying autoregressive (AR)
model, , and its time domain structure is imposed by a
parametric envelope, , which modulates the noise compo-
nent. Thus, the noise part, , is given by

(5)

where denotes convolution and is white Gaussian noise.
Finally, the synthetic signal, , is given by

(6)

It is important that the noise part, , be synchronized with
the harmonic part, [17], [18]. If this is not the case, then

2Note thatb (t ) is free to have a different phase thana (t ).
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the noise part is notperceptuallyintegrated (fused) with the har-
monic part but is perceived as a separate sound distinct from the
harmonic part.

B. Estimation of HNM Parameters

The first step of HNM analysis is the estimation of the funda-
mental frequency (pitch) and the maximum voiced frequency.
These two parameters are estimated every 10 ms. The length of
the window depends on the minimum fundamental frequency
that is allowed. First, an initial pitch estimation is obtained by
searching the minimum value of an error function, as proposed
in [19], over a prespecified set of pitch periods. The error func-
tion is given by

(7)

where is the speech signal, is the analysis window and
is defined as

(8)

In order to eliminate gross pitch errors (e.g., halving and
doubling of pitch) a pitch tracking method based on dynamic
programming proposed in [19] was used. This kind of errors
are crucial for the efficient representation and modification of
speech signals based on HNM. The initial pitch estimation is
used for voicing decisions in both time and frequency domains
as well as for further refining of the pitch estimation. The
voiced/unvoiced estimation is based on a criterion which takes
into account how close the harmonic model is to the original
speech signal. Thus, using the initial fundamental frequency,
we generate a synthetic signal, , as the sum of harmonically
related sinusoids with amplitudes and phases estimated by the
DFT algorithm. Denoting to be the synthetic spectrum
and to be the original spectrum, the voiced/unvoiced
decision is made by comparing the normalized error over the
first four harmonics to a given threshold (15 dB is typical)

(9)

where is the initial fundamental frequency estimate. If the
error is below the threshold this frame is marked as voiced;
otherwise, it is marked as unvoiced.

For voiced frames, the estimation of the maximum voiced fre-
quency, , is based on the following peak picking algorithm.
The largest sine-wave amplitude (peak) in the frequency range

is found. Let denote the frequency location of
the peak and let denote the amplitude (in decibels) at.
For a better separation between true and spurious peaks, we also
use a second amplitude measure referred as cumulative ampli-
tude, . This amplitude is defined as a non-normalized sum of

the amplitudes of all of the samples from the previous valley to
the following valley of the peak [20]. The peaks in the frequency
range are also considered and the two
types of the amplitudes are calculated for each peak. Letde-
note the frequencies of these peaks and let and
be the amplitude and cumulative amplitude, respectively, at.
Denote by the mean value of these cumulative ampli-
tudes, and by the number of the nearest harmonic to, the
following “harmonic test” is applied to the peak at if

(10)

or

dB (11)

then, if

(12)

frequency is declared voiced; otherwise is declared un-
voiced. Having classified frequency as voiced or as unvoiced,
then the interval is searched for
its largest peak and the same “harmonic test” is applied. The
process is continued throughout the speech band. In many cases
the voiced regions of the spectrum are not clearly separated from
the unvoiced ones. To counter this, a vector of binary decisions is
formed, adopting the convention that the frequencies declared as
voiced will be noted as 1 and the others as 0. Filtering this vector
by a three-point median smoothing filter, the two regions are
separated. Then, the highest nonzero entry in the filtered vector
provides the maximum voiced frequency.

In an effort to reduce modeling errors by representing voiced
speech by HNM, an accurate pitch estimation is necessary.
Using the initial pitch estimation, and the frequencies
classified as voiced from the previous step, the refined pitch,

, is defined as the value which minimizes the error

(13)

where is the number of the detected voiced frequencies,.
The importance of the pitch refining may be seen in Fig. 1;
Fig. 1(a) shows the original magnitude spectrum overlaid with
the synthetic magnitude spectrum based on the initial pitch esti-
mation, while Fig. 1(b) shows the same magnitude spectra, how-
ever, this time using the refined pitch value.

A detailed presentation of the pitch and maximum voiced fre-
quency estimation algorithm is available in [21].

Using the stream of the estimated pitch values, , the po-
sition of the analysis instants,, are set to a pitch-synchronous
rate for voiced frames

(14)

and to a constant rate (e.g., 10 ms) for unvoiced frames. It is
important to note that while the distances between contiguous
analysis time instants are equal to corresponding local pitch pe-
riods,the center of the analysis window is independent of the po-
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(a) (b)

Fig. 1. (a) Original (continuous line) and synthetic (dashed line) magnitude spectra using the initial pitch estimation. (b) Original (continuous line) and synthetic
(dashed line) magnitude spectra using the refined pitch value.

sition of glottal closure instants. On one hand, this is an advan-
tage of HNM because the estimation of glottal closure instants
is avoided. On the other hand, this introduces an interframe in-
coherence between voiced frames when such frames are con-
catenated. The solution to this problem will be discussed later,
in Section II-C.

In voiced frames, the harmonic amplitudes and phases are
estimated around each analysis time instant,, by minimizing
a weighted time-domain least-squares criterion with respect to

(15)

where
original speech signal;
harmonic signal to estimate;
weighting window (which is typically a Hanning
window);
local fundamental period ( ).

The above criterion has a quadratic form for the parameters of
HNM and can be solved by inverting an over-determined system
of linear equations [22]. However, we will show that the matrix
to be inverted in solving these equations is Toeplitz which means
that fast algorithms can be used to solve the respective linear set
of equations. In fact, writing the harmonic part, , in matrix
notation as3

(16)

where is a -by- matrix defined by

...
...
...

... (17)

where is the number of harmonics, is a -by-1
vector corresponding toth harmonic and it is defined by

(18)

where denotes transpose operation andis a -by-1
vector which contains the unknown parameters4

(19)

3To simplify the notation, we will uset both for continuous and discrete time,
assuming a normalized sampling frequency to unity

4Note thatA = A , where� denotes conjugate operation.

Then, the solution to least-squares problem is given by the
normal equations

(20)

where is a -by- diagonal matrix with
diagonal elements

(21)

and is a -by-1 vector which contains the original
speech samples

(22)

Equation (20) can be written as

(23)

where and .
Note that is a -by- matrix with elements

given by

(24)

with and and that is a
-by-1 vector with th element given by

(25)

Matrix is a Toeplitz matrix because

(26a)

(26b)

(26c)

for all . Hence, fast algorithms (e.g., the Levinson algo-
rithm) may be used to solve the linear system of equations in
(23).

The last step of the analysis consists of estimating the pa-
rameters of the noise part. Ineachanalysis frame, the spectral
density of the original speech signal is modeled by a tenth-order
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TABLE I
HNM PARAMETERS ESTIMATED IN EACH ANALYSIS FRAME

AR filter using a correlation-based approach [23]. The correla-
tion function is estimated over a 20-ms window. To model the
time-domain characteristics of sounds like stops, the analysis
window is divided into subwindows with a length of 2 ms each,
and then, the variance of the signal in each of these subwindows
is estimated (a total of ten values of variance are estimated per
frame).

Table I summarizes which and how many HNM parameters
are estimated in every frame depending on the voicing of the
frame. Note that for voiced frames, the number of estimated
HNM parameters is varied.

In the context of speech synthesis based on unit selection,
large speech databases are recorded. The compression of these
databases is, in general, desirable. Currently, all of the HNM
parameters can efficiently be quantized except of the phase in-
formation. In fact, an algorithm for the quantization of the har-
monic amplitudes has recently been proposed [24]. While the
quantization of the other parameters is trivial (e.g., pitch), the
quantization of the phase is not a trivial problem. The solution
of minimum phase with the use of all-pass filters [25], [26] re-
sults in a speech quality that can not be used for high-quality
speech synthesis. Therefore, a quantization scheme of the phase
information is one of our future goals.

C. Post-Analysis Processing

As discussed earlier, the HNM analysis windows are placed in
a pitch synchronous way regardless, however, of where glottal
closure instants are located. While this simplifies the analysis
process, it increases the complexity of synthesis. In synthesis,
the interframe incoherence problem (phase mismatch between
frames from different acoustic units) has to be taken into ac-
count. In previously reported versions of HNM for synthesis
[27], [28], cross-correlation functions have been used for es-
timating phase mismatches. However, this approach increased
the complexity of the synthesizer while sometimes lacking effi-
ciency.

A novel method for synchronization of signals has been pre-
sented recently [29]. The method is based on the notion ofcenter
of gravityapplied to speech signals.

The center of gravity, , of signal is given by

(27)

where is the th moment of

(28)

(a) (b)

Fig. 2. Phase correction based on the center of gravity method. Position of
analysis window (a) before and (b) after phase correction.

With being the Fourier transform of signal
, we can show that [29], [30]

(29)

This means that the center of gravity,, of is a function
only of the first derivative of the phase spectrum at the origin
( ).

Based on the fact that the speech signal is a real signal
( ), and on the assumption that the excitation signal
for voiced speech can be approximated with a train of impulses
we have further shown that the derivative of the phase of the
speech signal at the origin is given by [29]

(30)

where .
If denote the phase spectrum of a speech frame of two

pitch periods long, measured at time and denote the
unknown phase at the center of gravity,, of the speech frame
( ), then

(31)

since

(32)

Then, from (30)–(32) it follows that if the estimated phase, ,
at the frequency samples is corrected by

(33)

then all the voiced frames will be synchronized around their
center of gravity. Using (33), the estimated phases are
replaced with .

Fig. 2 shows an example of phase correction. The left column
of the figure shows the different position of the analysis window
before phase correction while the right column shows it after
phase correction. The frames after phase correction are aligned.
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III. SYNTHESIS OFSPEECHUSING HNM

During synthesis, it is assumed that appropriate units for the
utterance to be synthesized are already selected based on the
CHATR unit selection algorithm. It is also assumed that a fun-
damental frequency contour and segmental duration informa-
tion for the utterance is supplied. This prosody information is re-
ferred to astarget prosody. The first step in the synthesis process
involves retrieval of HNM parameters of the selected acoustic
units in the inventory.

The unit selection process is not always successful. Although
the target prosody information is one of the criteria for the se-
lection, some of the final selected units may have prosody that
differs considerably from that requested. Based on the original
pitch and duration characteristics of these units and on the corre-
sponding target prosody, pitch and time-scale modification fac-
tors are derived for each HNM frame of the units. The next sec-
tion describes how the prosody of these units may be modified
based on HNM. Note that if the prosody information of a unit is
close to the target prosody, then the prosody of this unit should
not be modified.

A. Prosodic Modifications of Acoustic Units

Two main issues are addressed during prosodic modifica-
tions. The first issue is related to the estimation of synthesis time
instants. The second, is related to the re-estimation of harmonic
amplitudes and phases for the modified pitch-harmonics (new
harmonics).

Given the analysis time instants,, the pitch modification
factors, , and time-scale modification factors, , a recur-
sive algorithm determines the synthesis time instants,. As-
suming that the original pitch contour, , is continuous and
the synthesis time instantis known, the synthesis time instants

is given by

(34)

where denote virtual time instants related to the synthesis
time-instants by

(35)

where the mapping function is given by

(36)

The analysis time axis is mapped to the synthesis time axis via
the mapping function . The virtual time instants are defined
on the analysis time axis and they do not, in general, coincide
with the real analysis time-instants. Therefore, given a virtual
time instant, , with , there are two options:
either interpolate HNM parameters fromand , or shift
to the nearest analysis time instant (or ). In the current
implementation, the second option is used.

The integrals in (34) and (36) can be easily approximated
if , , and , are assumed to be piecewise constant

functions. Special care has to be taken at the concatenation point
where pitch contour and modification factors have, in general,
big discontinuities.

Once the synthesis time instants are determined, the next step
is the estimation of amplitudes and phases of the pitch-mod-
ified harmonics. The most straightforward approach, which is
the one that it is currently used, consists of resampling the com-
plex speech spectrum. An alternative approach5 is to resample
the amplitude and phase spectra separately, given that phase was
previously unwrapped in frequency [14]. Both approaches give
comparable results with a slight preference to the first one for
some vowels of low-pitch speakers. However, the first approach
is simpler than the second one since it does not require phase
unwrapping.

Note that the complex spectrum (or amplitude and phase
spectra) of a frame is sampled up to the maximum voiced
frequency . Thus, the harmonic part before and after
pitch modifications “occupies” the same frequency band (0
Hz– ).

B. Concatenation of Acoustic Units

During concatenation of acoustic units, HNM parameters
present discontinuities across concatenation points. Perceptu-
ally, discontinuities in the parameters of the noise part (variance
and coefficients of AR filter) are not important. Thus, the
HNM parameters for the harmonic part (pitch, amplitudes, and
phases) are only considered for smoothing. Having removed
phase mismatches between voiced frames during the analysis
process (see Section II-C), the smoothing algorithm only con-
sists of removing pitch discontinuities and spectral mismatches.
Note that for units for which prosody was not modified, pitch
discontinuities may still occur at the concatenation points.

Both, pitch and spectrum mismatches are removed using a
simple linear interpolation technique around a concatenation
point, . First, the differences of the pitch values and of the am-
plitudes of each harmonic are measured at. Then, these dif-
ferences are weighted and propagated left and right from. The
number of frames used in the interpolation process depends on
the variance of the number of harmonics and the size, in frames,
of the basic units (e.g., phoneme or subphonemes) across the
concatenation point.

Let and denote the left and right acoustic units across a
concatenation point. Let and denote the fundamental fre-
quency and the amplitude ofth harmonic from the last frame
of , respectively, and let and denote the funda-
mental frequency and the amplitude ofth harmonic from the
first frame of , respectively. Then, the pitch discontinuities
are smoothed for frames in and for frames in , by

(37)

for (38)

for (39)

where .

5This was used in a previously reported HNM version for speech synthesis
[27].
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The harmonic amplitudes are smoothed in a similar way and
using the same number of framesand as in (39) (for every
harmonic, )

(40)

for (41)

for (42)

where, again, .
This simple linear interpolation of the spectral envelopes

makes formant discontinuities less perceptible. However, if
formant frequencies are very different left and right of the
concatenation point, the problem is not completely solved.
Using a unit selection algorithm, on the other hand, should
select and concatenate units with no big mismatches in formant
frequencies. While the criterion based on the variance of the
number of harmonics may be characterized as acceptable, it
does not directly reflect the stationarity (or nonstationarity)
property of the speech signal. A more appropriate criterion,
based on the transition rate of speech (TRS) [31] is under
investigation.

C. Waveform Generation

Synthesis is also performed in a pitch-synchronous way using
an overlap and add process. For the synthesis of the harmonic
part of a frame, (1) is applied. The noise part is obtained by fil-
tering a unit-variance white Gaussian noise through a normal-
ized all-pole filter. The output from the LP filter is multiplied
by the envelope of variances estimated during analysis. If the
frame is voiced, the noise part is filtered by a high-pass filter
with cutoff frequency equal to the maximum voiced frequency
associated with the frame. The noise part is finally modulated
by a time-domain envelope (a parametric triangular-like enve-
lope) synchronized with the pitch period.

It is important to note that having previously corrected the
phase of the harmonic part [using (33)] the synthesis window is
shifted to be centered on the center of gravity of the harmonic
part [29]. Knowing this position, the noise part is appropriately
shifted and modulated in order to be synchronized with the har-
monic part. This is important for the perception of the quality of
vowels and for further improvement of the overall speech syn-
thesis quality.

IV. RESULTS AND DISCUSSION

In this section, results obtained from two formal listening
tests are presented. For an extended presentation and discussion
of these listening tests see ([28]). For the purpose of the first
test, six professional female voices were recorded at a 16kHz
sampling rate. Two types ofdiphoneinventories were recorded:
1) a series of nonsense words and 2) a series of English
sentences. Both types of inventories contained the diphones
required to synthesize three sentences. These three sentences
were also recorded for each of the six speakers and the prosody
of the sentences was extracted to be used as input to the HNM
synthesizer. For comparison, an implementation of TD-PSOLA

at AT&T Labs-Research was also used as a second synthesizer.
Both synthesizers used the same input of diphones and prosody.
Listeners were 41 adults not familiar to TTS synthesis and
without any known hearing problem. Listeners were tested in
four groups of from eight to 11 individuals. All test sentences
were equated for level.

Naturally spoken versions of the three test sentences were
subjected to one of twomodulated noise reference unitMNRU
reference conditions, Q10 and Q35. Q10 served as a low-end
reference point with MOS scores similar to those previously
found for a low-end commercial 16 kbps ADPCM encoded
voice mail system. Q35 served as a high-end reference whose
MOS scores are typically equivalent to very high quality
telephone speech.

Speech samples were presented in both wideband and tele-
phone bandwidth condition. Listeners were asked to rate each
test sentence for intelligibility,6 naturalness, and pleasantness.
For each test trial, listeners were presented a five-point (MOS-
like) rating scale from which to select their judgments using a
touch sensitive screen. For each of the three types of ratings a
familiarization session preceded testing during which listeners
were presented speech samples representing the full range of
variation along the dimension being rated, and they were given
practice in using the rating scale.

For half of each test session, speech signals were presented
over headphones (wide bandwidth), and for the other half, they
were presented through the telephone handsets (telephone band-
width). The order of the two bandwidths was counterbalanced
across the four test sessions, so that wide bandwidth was pre-
sented first for two groups, and telephone bandwidth was pre-
sented first for the other two. For each bandwidth, the three
types of ratings (intelligibility, naturalness, and pleasantness)
were blocked; that is, all the speech signals were presented for
intelligibility ratings during one interval of time, naturalness rat-
ings for all the signals were collected during another time in-
terval, and pleasantness ratings during a third interval. Blocking
of type of rating was done to avoid subjects’ confusion over what
quality they were rating in a given trial. The order of the rating
types and of the speech signals within a rating block were ran-
domized. The counterbalancing and randomization of the order
of test items among test blocks and across groups was intended
to control possible order effects in the test, such as learning or
fatigue effects, by evenly distributing them among test items.

A total of 936 ratings were collected from each of 41 listeners,
totaling observations for the entire experiment. Repeated
measures analyses of variance (ANOVAs) were performed on
the data. There were significant main effects of speaker, syn-
thesis method, and inventory, plus interactions.

Fig. 3 compares mean ratings per speaker among Q35 (plus-
mark), Q10 (star-mark), HNM (circle-mark), and TD-PSOLA
(x-mark).

In more details, for Q35 (high-quality natural speech), natu-
ralness and intelligibility ratings were equivalent, and they were
significantly higher than pleasantness ratings.

Lower-quality natural speech (Q10) had the following or-
dering: naturalness intelligibility pleasantness. Synthetic

6For this task, listeners were presented with the text of the test sentences.
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Fig. 3. Average of all ratings (intelligibility, naturalness, pleasantness) per
speaker for Q35(+), Q10(�), HNM(o), and TD-PSOLA(x).

TABLE II
RESULTS FROM THEFIRST FORMAL LISTENING TEST: AVERAGE OF ALL

RATINGS FOR ALL SPEAKERS(6)

sentences were rated higher for intelligibility than for natural-
ness or pleasantness, which were equivalent.

HNM was consistently rated about points higher than
TD-PSOLA in intelligibility, naturalness, and pleasantness.

Table II shows the average of all ratings (intelligibility, natu-
ralness and pleasantness) for all speakers for this test.

An interesting point to note from Table II is the fact that
HNM was less sensitive than TD-PSOLA to the type of inven-
tory (English sentences or nonsense words). The type of inven-
tory from nonsense words versus from sentences has a smaller
difference for HNM (0.10) than for TD-PSOLA (0.19). Because
the prosody modification factors for the inventory of nonsense
words were larger compared to these for the second inventory,
it can be concluded that the difference between the two syn-
thesizers (HNM and TD-PSOLA) increases proportionally with
the extent of modification factors that are applied. It is worth
noting that the diphone inventories were prepared twice be-
cause TD-PSOLA had serious quality problems with the first
instance of the database. However, the quality of the HNM-
based synthetic speech signals practically were equivalent for
both databases. The speaker with the higher score (HNM: 3.45
and TD-PSOLA: 3.14) for all ratings was finally selected for
recording a large database.

Once our new database was recorded, a second formal lis-
tening test was conducted using AT&T’s Next-Generation TTS
with HNM. There were 11 test sentences: four announcements
type sentences, six phonetically balanced Harvard sentences and
one full paragraph from a summary of business news. Only
wide-band (40–6500 Hz) testing with headphones was used in
the test. Prosody for all synthesis sentences was Festival [13] de-
fault prosody, trained on a different female speaker than the one

TABLE III
RESULTS FROM THESECOND FORMAL LISTENING TEST USING AT&T’S

NEXT-GENERATION TTS BASED ON UNIT SELECTION AND HNM

of our database. Because default Festival prosody was seemed
to be more suitable for the announcements type sentences while
it was not good enough for the other type of sentences, the re-
sults from this formal listening test will be presented into two
categories: the Harvard and business news sentences in the first
category (I), and the four announcements type sentences in the
second category (II). A total of 44 listeners participated. They
had no known hearing problems and were not familiar with TTS
synthesis. Ratings were made on a five-point scale indepen-
dently for overall voice quality and acceptability (MOS score)
and for intelligibility (INTELL). Table III shows the results from
this listening test.

It is worth noting that the test sentences from the second cate-
gory, where the prosody model was closer to the prosody of the
speaker in the database, were consistently scored higher than the
test sentences from the first category (where the prosody model
was not good for our speaker).

Informal listening tests were also conducted using male
voices for American and British English, and for French. For
these tests natural prosody was used. The segmental quality
of the synthetic speech was judged to be close to the quality
of natural speech without smoothing problems and without
distortions after prosodic modifications.

V. CONCLUSION

In this paper, the application of HNM for speech synthesis
was presented. HNM was tested in the context of AT&T’s
Next-Generation TTS as it is implemented within the frame-
work of the Festival Speech Synthesis System. From informal
and formal listening tests, HNM was found to be a very
good candidate for our next generation TTS. HNM compared
favorably to other methods (e.g., TD-PSOLA) in intelligibility,
naturalness and pleasantness. The segment quality of synthetic
speech was high, without smoothing problems and without
buzziness observed with other speech representation methods.
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