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Applying the Harmonic Plus Noise Model in
Concatenative Speech Synthesis

Yannis StylianoyMember, IEEE

Abstract—This paper describes the application of the harmonic - synthesis [5]. In LPC-based methods, modifications of the LP
plus noise model (HNM) for concatenative text-to-speech (TTS) residual have to be coupled with appropriate modifications of

synthesis. In the context of HNM, speech signals are representedne \ocg tract filter. If the interaction of the excitation signal
as a time-varying harmonic component plus a modulated noise

component. The decomposition of a speech signal into these twoand the vgcal trgct filter is not tal_<en into acpount, the modified
components allows for more natural-sounding modifications of SPeech signal is degraded. This interaction seems to play a
the signal (e.g., by using different and better adapted schemes more dominant role in speakers with high pitch (e.g., female
to modify each component). The parametric representation of and child voice). However, these kinds of interactions are not

speech using HNM provides a straightforward way of smoothing ¢,y understood yet. This is a possible reason for the failure
discontinuities of acoustic units around concatenation pOIntS.

Formal listening tests have shown that HNM provides high-quality of LPC-based _methOdS In prodqcmg good quality speech fo_r
speech synthesis while outperforming other models for synthesis female and child speakers. An improvement of the synthesis
(e.g., TD-PSOLA) in intelligibility, naturalness, and pleasantness. quality in the context of LPC can be achieved with “careful”
Index Terms—Concatenative speech synthesis, fast amplitude, Modification of the residual signal. Such a method has been
harmonic plus noise models, phase estimation, pitch estimation. proposed in [6] at British Telecom (Laureate text-to-speech
(TTS) system). It is based upon pitch-synchronous resampling
of the residual signal during the glottal open phase (a phase of
the glottal cycle which is perceptually less important) while
N THE context of speech synthesis based on concatenattbe characteristics of the residual signal near the glottal closure
of acoustic units, speech signals may be encoded by spegxttants are retained.
models. These models are required to ensure that the concat®dost of the previously reported speech models and concate-
nation of selected acoustic units results in a smooth transitination methods have been proposed in the context of diphone-
from one acoustic unit to the next. Discontinuities in the prosodhased concatenative speech synthesis. In an effort to reduce er-
(e.g., pitch period, energy), in the formant frequencies andiriars in modeling of the speech signal and to reduce degrada-
their bandwidths, and in phase (interframe incoherence) wotidns from prosodic modifications using signal processing tech-
result in unnatural sounding speech. nigues, an approach of synthesizing speech by concatenating
There are various methods of representation and concatenuniform units selected from large speech databases has been
nation of acoustic units. TD-PSOLA [1] performs a pitchproposed [7]-[9]. CHATR [10] is based on this concept. It uses
synchronous “analysis” and synthesis of speech. Becauke natural variation of the acoustic units from a large speech
TD-PSOLA does not model the speech signal in any expliaatabase to reproduce the desired prosodic characteristics in the
way it is referred to as “null” model. Although it is very easy tesynthesized speech. A variety of methods for the optimum se-
modify the prosody of acoustic units with TD-PSOLA, its nonlection of units has been proposed. For instance, in [11], a target
parametric structure makes their concatenation a difficult taglast and a concatenation cost is attributed in each candidate unit.
MBROLA [2] tries to overcome concatenation problems in th€he target cost is calculated as the weighted sum of the differ-
time domain by resynthesizing voiced parts of the speech dataces between elements such as prosody and phonetic context
base with constant phase and constant pitch. During synthesighe target and candidate units. The concatenation cost is also
speech frames are linearly smoothed between pitch periodsletermined by the weighted sum of cepstral distance at the point
unit boundaries. Sinusoidal models have been proposed alsodbconcatenation and the absolute differences in log power and
synthesis [3], [4]. These approaches perform concatenationgitch. The total cost for a sequence of units is the sum of the
making use of an estimator of glottal closure instants, a procéasget and concatenation costs. Then, optimum unit selection is
which is not always successful [3]. In order to assure interframperformed with a Viterbi search. Even though a large speech
coherence, a minimum phase hypothesis has been used safatabase is used, it is still possible that a unit (or sequence of
times [4]. LPC-based methods such as impulse driven LPC amits) with a large target and/or concatenation cost has to be se-
residual excited LP (RELP) have also been proposed for spedéatted because a better unit (e.g., with prosody close to the target
values) is lacking. This results in a degradation of the output
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AT&T’s Next-Generation TTS Synthesis System [9] is base@meter. The lower band, or the harmonic part, is modeled as
on an extension of the unit selection algorithm of the CHATRum of harmonics
synthesis system, and it is implemented within the framework L(t)
of the Festival Spgech Synthesis System .[13]. One of the pos- snt) = Z Ap(t)e? kwo(t)t 1)
sible “back-ends” in AT&T’s Next-Generation TTS for speech
synthesis is the Harmonic plus Noise Model, HNM. HNM
has shown the capability of providing high-quality copy SynwhereL(t) denotes the number of harmonics included in the
thesis and prosodic modifications [14]. Combining the capR2rmonic partwo(t) denotes the fundamental frequency while
bility of HNM to efficiently represent and modify speech sig<«(t) can take on one of the following forms:
nals with a unit selection algorithm may alleviate previously An(®) ) @)

)

k=—L(t)

reported difficulties of the CHATR synthesis system. Indeed, b ar(ti)

if prosody modification and concatenation of selected units is Aw(t) = an(ts) + ¢ bi(ti) , ©)
assured by the synthesis method, one may be able to decrease Ap(t) = a(ti) +t er(ts) +1° di(ts) (4)
the importance of prosodic characteristics and of concatenatio

costs of the candidate units while increasing the importan\é’ﬂerea’“(tz)’ bi(ti), cx(t:), anddy(t;) are assumed to be com-

of other parameters, e.g., the context information from whe' fpx numbers withwe{ay(;)} = arefex(ti)} = areldi(t:)}
units come from assumption of constant phageylhere, arg, denotes the phase

Thi ts th licati fHNM i h angle of a complex number. These parameters are measured at
IS paper presents the a’pp ication of NV IN SPeECh SYfhnya 4 — t; referred to as analysis time instants. The number of
thesis in the context of AT&T’s Next-Generation TTS Synthes'ﬁarmonicsL(t) depends on the fundamental frequency?)

system. The first part of the chapter is devoted to the analy§is el as on the maximum voiced frequedCy(t). For|t—t,]
of speech using HNM. This is followed by the description ofa1 HNM assumes thaty(¢) = wo(t;) andL(t) = L(t;).
synthesis of speech based on HNM. Finally, results from formaIUSing the first expression foy,(¢), a simple stationary har-
listening tests using HNM are reported in the last section.  ,qnic model (referred to &NM, ) is obtained while the other
two expressions lead to more complicated models (referred to as
[l. ANALYSIS OF SPEECHUSING HNM HNM, andHNM3, respectively). These two last models try to

HNM assumes the speech signal to be composed of a H&edel dynamic characteristics of the speech signal. It has been
monic part and a noise part. The harmonic part accounts for ff2PWn thatiNM, and HNM; are more accurate models for
guasiperiodic component of the speech signal while the nofeeech withdNM; to t_)e more ro_bust_ In "?‘d_d't'\_’e noise [15],
part accounts for its nonperiodic components (e.g., fricative Qr6]d prever,Hl\rI]er,]_lnhs_plte of its 5|r|r|1pllc||ty, IS _ca(\jpaple O.f h
aspiration noise, period-to-period variations of the glottal exdproducing speech which is perceptually almost indistinguish-

tation etc.). The two components are separated in the frequeﬁg}ifrom the original speech signal. Also, prosodic modifica-

domain by a time-varying parameter, referred tavaximum are conS|dergd to be of high quality [14]. Qn the 'other
: hand, due to the simple formula &NM;, smoothing of its
voiced frequencyF,,,. The lower band of the spectrum (below

. ) arameters across concatenation points should not be a compli-
F,;,) is assumed to be represented solely by harmonics whilg P P

the er band (abov&,,) is represented by a modulated nc).Scated task. Taking into account all these points, it was decided
upp ) ) IS TEpres y u noise, useHNM; for speech synthesis. Thereafter, we will refer to
component. While these assumptions are clearly not-valid fr

. . : OﬁNMl, simply as HNM.
a spgech p_roduct!on point of vievihey are useful from a per- HNM assumes the upper band of a voiced speech spectrum
Ce"_’“O” p0|_nt of view: thgy lead to a S|mpl_e model fo_r_spe_e be dominated bynodulatednoise. In fact, high frequencies
which provides hlgh-quallty (copy) synthesis and modifications | siceq speech exhibit a specific time-domain structure in
of the speech signal. _ o _ terms of energy localization (noise bursts); the energy of this
ThIS section presents a brief description of the family of Haﬁigh-pass information does not spread over the whole speech
monic plus Noise Models for speech. One of these modelsjgriod [17], [18]. HNM follows this observation. The noise part
selected for speech synthesis and the estimation of its parggiyescribed in frequency by a time-varying autoregressive (AR)
eters is then discussed. This is followed by the description ﬁfodel,h(v, #), and its time domain structure is imposed by a

thepost-analysiprocess, where phases from voiced frames aggrametric envelope;(t), which modulates the noise compo-
corrected in order to remove phase mismatch problems betwegpt, Thus, the noise past, (t), is given by

frames during synthesis.
sn(t) = e(t)[(7, 1) x b(t)] (5)

wherex denotes convolution andt) is white Gaussian noise.
Based on the previous discussion, HNM assumes the speechinally, the synthetic signak(t), is given by

spectrum to be divided into two bands. The bands are separated
by the maximum voiced frequency, which is a time-varying pa- 5(t) = sn(t) 4 sa(t). (6)

A. Harmonic Plus Noise Models for Speech

It is important that the noise paw, (), be synchronized with

IFor example, voiced speech signal is quasiperiodic; the lower frequenci® harmonic parts;, (¢) [17], [18]. If this is not the case, then
also contain noise components, while the higher frequencies contain both noise
and quasiperiodic components. 2Note thath, (¢;) is free to have a different phase than(t; ).
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the noise part is ngierceptuallyintegrated (fused) with the har-the amplitudes of all of the samples from the previous valley to
monic part but is perceived as a separate sound distinct from the following valley of the peak [20]. The peaks in the frequency

harmonic part. rangefw. — wo/2, w. + wp /2] are also considered and the two
o types of the amplitudes are calculated for each peaku}.de-
B. Estimation of HNM Parameters note the frequencies of these peaks anddlgs;) and A.(w;)

The first step of HNM analysis is the estimation of the fundd€ the amplitude and cumulative amplitude, respectively; at
mental frequency (pitch) and the maximum voiced frequendyenote byA.(w;) the mean value of these cumulative ampli-
These two parameters are estimated every 10 ms. The lengtfiges, and by the number of the nearest harmonicutg the
the window depends on the minimum fundamental frequenégllowing “harmonic test” is applied to the peakat if
that is allowed. First, an initial pitch estimation is obtained by Ac(we)

searching the minimum value of an error function, as proposed v > 9 (10)
in [19], over a prespecified set of pitch periods. The error func- e(wi)
tion is given by or
3 - A(w,) — max{A(w;)} > 13dB 11
3 2wty - P S r(l-P) (we) — max{A(w;)} (11)
E(P)= — = oo (7 then, if
BB (1- P (%) |we — Lo
Z sTAbw Z w 7 < 10% (12)
t=—00 t=—o0 @o

wheres(t) is the speech signal(t) is the analysis window and frequencyw. is declared voiced; otherwise: is declared un-
(k) is defined as voiced. Having classified frequency. as voiced or as unvoiced,

then the intervalw. + (wo/2), w. + 3(wo/2)] is searched for

its largest peak and the same “harmonic test” is applied. The
process is continued throughout the speech band. In many cases
the voiced regions of the spectrum are not clearly separated from
In order to eliminate gross pitch errors (e.g., halving anghe unvoiced ones. To counter this, a vector of binary decisions is
doubling of pitch) a pitch tracking method based on dynamigrmed, adopting the convention that the frequencies declared as
programming proposed in [19] was used. This kind of errokgiced will be noted as 1 and the others as 0. Filtering this vector
are crucial for the efficient representation and modification ¢y a three-point median smoothing filter, the two regions are
speech signals based on HNM. The initial pitch estimation égparated. Then, the highest nonzero entry in the filtered vector
used for voicing decisions in both time and frequency domaipsovides the maximum voiced frequency.

as well as for further refining of the pitch estimation. The In an effort to reduce modeling errors by representing voiced
voiced/unvoiced estimation is based on a criterion which takegseech by HNM, an accurate pitch estimation is necessary.
into account how close the harmonic model is to the originalsing the initial pitch estimationy, and the frequencies;
speech signal. Thus, using the initial fundamental frequengyassified as voiced from the previous step, the refined pitch,
we generate a synthetic signalz], as the sum of harmonically &, is defined as the value which minimizes the error

related sinusoids with amplitudes and phases estimated by the .

DFT algorithm. DenotingS(w) to be the synthetic spectrum N o2

and S(w) to be the original spectrum, the voiced/unvoiced E(@o) = ; i = - ol (13)
decision is made by comparing the normalized error over the =

first four harmonics to a given threshole {5 dB is typical) ~ WhereL is the number of the detected voiced frequencies,
The importance of the pitch refining may be seen in Fig. 1;

/4'3“0 (IS(w)| — |g(w)|)2 Fig. 1(a) shows the original magnitude spectrum overlaid with

B J 0w ) the synthetic magnitude spectrum based on the initial pitch esti-

- 4.3wo mation, while Fig. 1(b) shows the same magnitude spectra, how-
/ |S(w)|? ever, this time using the refined pitch value.

070 A detailed presentation of the pitch and maximum voiced fre-

wherewy is the initial fundamental frequency estimate. If thguency estimation algorithm is available in [21].
error £ is below the threshold this frame is marked as voiced; Using the stream of the estimated pitch valuegt; ), the po-

oo

r(k)y= > s(uw(t)s(t+ kw’(t+k). (8)

t=—oc0

otherwise, it is marked as unvoiced. sition of the analysis instants, are set to a pitch-synchronous
For voiced frames, the estimation of the maximum voiced freate for voiced frames

quency,F;,, is based on the following peak picking algorithm. o

The largest sine-wave amplitude (peak) in the frequency range i1 =t + m (14)

[wo/2, 3wp/2] is found. Letu. denote the frequency location of
the peak and leti(w.. ) denote the amplitude (in decibels)at and to a constant rate (e.g., 10 ms) for unvoiced frames. It is
For a better separation between true and spurious peaks, we afgmrtant to note that while the distances between contiguous
use a second amplitude measure referred as cumulative amgotialysis time instants are equal to corresponding local pitch pe-
tude,A.. This amplitude is defined as a non-normalized sum oibds,the center of the analysis window is independent of the po-
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Fig. 1. (@) Original (continuous line) and synthetic (dashed line) magnitude spectra using the initial pitch estimation. (b) Original (coimii)@masdynthetic
(dashed line) magnitude spectra using the refined pitch value.

sition of glottal closure instant®©n one hand, this is an advan- Then, the solution to least-squares problem is given by the
tage of HNM because the estimation of glottal closure instamsrmal equations

is avoided. On the other hand, this introduces an interframe in- T o S
coherence between voiced frames when such frames are con- (B Wo W B) x=B" W% Ws (20)
catenated. The solution to this problem will be discussed latgf,ore W is a2l + 1)

in Section [1-C. _ , diagonal elements
In voiced frames, the harmonic amplitudes and phases are

-by-(2T5 + 1) diagonal matrix with

estimated around each analysis time instgnt)y minimizing wl = [w(=Tp) w(=Ty +1) --- w(Ty)] (21)
a weighted time-domain least-squares criterion with respectto ) ) o
an(t:) ands is a (21, + 1)-by-1 vector which contains the original
speech samples
t;+1o T
e= > w®)[s(t) — s (15) s' =[s(-To) s(-To+1) --- s(Tp)]- (22)
t=te=To Equation (20) can be written as
where
s(t) original speech signal; Rx=b (23)
$,(t)  bharmonic signal to estimate; whereR = (BY W7 W B) andb = BY W Wi,
w(t)  weighting window (which is typically a Hanning  Note thatR is a(2L + 1)-by-(2L + 1) matrix with elements
window); [rix] given by
To local fundamental perio®( /wo(t;)). .
A ; ti+To
The above criterion has a quadratic form for the parameters ofT‘ _ Z w21y~ L Den(t )ik L-Den(t)t  (24)
HNM and can be solved by inverting an over-determined system’
t=t; =Ty

of linear equations [22]. However, we will show that the matrix
to be inverted in solving these equations is Toeplitz which meawith: =1, ---, 2L+ 1andk =1, ---, 2L 4+ 1 and thab is a
that fast algorithms can be used to solve the respective linear(@di + 1)-by-1 vector withkth element given by

of equations. In fact, writing the harmonic pai{¢), in matrix AT

notation as b= Y wi(t)s(t)e Ikt (25)

S, = Bx (16) =t
Matrix R is a Toeplitz matrix because
whereB is a(27p + 1)-by-(2L 4+ 1) matrix defined by

Titp k+p
B=|b_pib_pi1i:i---'b 17 sy
oot b / S W el L= Vol + peo(t)t
t=t; =T
where L is the number of harmonicy, is a(27p + 1)-by-1 ik 0_ L — Dwolt:)t — jpwo(t:)t) (26a)
vector corresponding tbth harmonic and it is defined by AT ‘ ‘
_ 204\ 3 (i— L—1)wo (£ )t —j (b— L—1)wo (t: )t
bl — [ejkwg(ti—Tg) w0 (ti=To+1) . ejkwg(ti+T0):| (18) = tzg;TO w*(t)e’ 0 j 0 (26b)
. . =Tik (26¢)
whereZ” denotes transpose operation ani$ a (2L + 1)-by-1
vector which contains the unknown parameters for all 4, k, p. Hence, fast algorithms (e.g., the Levinson algo-
. rithm) may be used to solve the linear system of equations in
X" = [A_L A_L_|_1 e AL] . (19) (23)

3To simplify the notation, we will useboth for continuous and discrete time, The last step Of_the analySIS ConSISFS of estimating the pa-
assuming a normalized sampling frequency to unity rameters of the noise part. Bachanalysis frame, the spectral

4Note thatd _,, = A;, wherex denotes conjugate operation. density of the original speech signal is modeled by a tenth-order
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TABLE |
HNM PARAMETERS ESTIMATED IN EACH ANALYSIS FRAME

voiced | unvoiced
wo 1 0
F,, 1 0
i (1) 2Lt) | O M W
AR model 10 10
Variance 10 10

AR filter using a correlation-based approach [23]. The correla/\,\/\/\/\\m W

tion function is estimated over a 20-ms window. To model th

time-domain characteristics of sounds like stops, the analy:

window is divided into subwindows with a length of 2 ms eact

and then, the variance of the signal in each of these subwindoW W

is estimated (a total of ten values of variance are estimated |

frame). (@ (b)
Table | summarizes which and how many HNM parameteﬁb. 2. Phase correction based on the center of gravity method. Position of

are estimated in every frame depending on the voicing of thealysis window (a) before and (b) after phase correction.

frame. Note that for voiced frames, the number of estimated

HNM parameters is varied. With F(w) = A(w)e*“) being the Fourier transform of signal
In the context of speech synthesis based on unit selectigw@t), we can show that [29], [30]

large speech databases are recorded. The compression of these

databases is, in general, desirable. Currently, all of the HNM n = —¢1(0). (29)

parameters can efficiently be quantized except of the phase in-

formation. In fact, an algorithm for the quantization of the harThIS means that the center of gravity, of f(¢) is a function

monic amplitudes has recently been proposed [24]. While tRgly of the first derivative of the phase spectrum at the origin
quantization of the other parameters is trivial (e.g., pitch), th& — 0)- . . .
guantization of the phase is not a trivial problem. The solutioc Based on the fact that the speech signal 'S a _real §|gnal
of minimum phase with the use of all-pass filters [25], [26] re (0) . 0), and on the assumption that f[he excitation signal
sults in a speech quality that can not be used for high-quagg; voiced speech can be approximated with a train of impulses

speech synthesis. Therefore, a quantization scheme of the p ave further shown that the derivative of the phase of the
information is one of our future goals. speech signal at the origin is given by [29]

#lwo)

W) =
C. Post-Analysis Processing ¢+(0) = o (30)

As discussed earlier, the HNM analysis windows are placed\m.lerew0 = 21 /Tp.
a pitch synchronous way regardless, however, of where glottals #(w) denote the phase spectrum of a speech frame of two

closure instants are located. While this simplifies the analy%ﬁch periods long, measured at tihe: £, andf(w) denote the

process, it increases the complexity of synthesis. In synthegjsxnown phase at the center of gravify,of the speech frame
the interframe incoherence problem (phase mismatch betw%gn)(o) = 0), then

frames from different acoustic units) has to be taken into ac-

count. In previously reported versions of HNM for synthesis to = —p(0) (31)
[27], [28], cross-correlation functions have been used for es-
timating phase mismatches. However, this approach increaSti€
gi]een(gmplexity of the synthesizer while sometimes lacking effi- 8(w) = Bw) + who. 32)

A novel method for synchronization of signals has been prgnen, from (30)—(32) it follows that if the estimated phake;),
sented recently [29]. The method is based on the notioemter 5t the frequency samplés. is corrected by

of gravity applied to speech signals.

The center of gravityy, of signal f(¢) is given by O(kwo) = P(kwo) — kd(wo) (33)
my then all the voiced frames will be synchronized around their

= mo (27)  center of gravity. Using (33), the estimated phaggs.o) are

replaced with9(kwy).
wherem,, is thenth moment off (¢) Fig. 2 shows an example of phase correction. The left column
of the figure shows the different position of the analysis window
. — /°° £ £(t) dt (28) before phase correction while the right column shows it after
" e ’ phase correction. The frames after phase correction are aligned.
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[ll. SYNTHESIS OF SPEECHUSING HNM functions. Special care has to be taken at the concatenation point

During synthesis, it is assumed that appropriate units for t éé;éifgﬁgn%?t?;ur and modification factors have, in general,

utterance to be synthesized are already selected based ot th thesis time instant determined. th st
CHATR unit selection algorithm. It is also assumed that a fun- nce e synthesis ime instants are determined, the next step

damental frequency contour and segmental duration inforn —tgeh estlma_ltlonT%f ampll;tucties_ ?]T]fj pha(sjes of thehpltcu-n;]o_d-
tion for the utterance is supplied. This prosody informationisr 1ed harmonics. The most straightiorward approach, which IS

ferred to agarget prosodyThe first step in the synthesis procesls e one that itis currently used, consists of resampling the com-

involves retrieval of HNM parameters of the selected acous J:ex spegch spectrum. An alternative appréagl‘to resample
units in the inventory, the amplitude and phase spectra separately, given that phase was

The unit selection process is not always successful. Althou hewously unwrapped_ n frequency [14]. Both appro_aches give
the target prosody information is one of the criteria for the s omparable results W'th a slight preference to the_ first one for
lection, some of the final selected units may have prosody tst e V?W?LS Of:ﬁw'p'tCh sdpeakerfs. HO.\,:V gver, thetflrst a_ppros ch
differs considerably from that requested. Based on the origiﬁ%\ls'mp er than the second one since it does not require phase

pitch and duration characteristics of these units and on the coffVrapping. .
sponding target prosody, pitch and time-scale modification fac—NOte that the com'plex spectrum (or amphtqde and .phase
tors are derived for each HNM frame of the units. The next se pectra) of a frame; is sampled up t_o the maximum voiced
tion describes how the prosody of these units may be modifi SquencyF_m(t_i). Trlus, th? hﬂarmonlc part before and after
based on HNM. Note that if the prosody information of a uniti ltch modifications “occupies” the same frequency band (0
close to the target prosody, then the prosody of this unit shoul&_Fm(ti))'
not be modified. ) ) )

B. Concatenation of Acoustic Units
A. Prosodic Modifications of Acoustic Units During concatenation of acoustic units, HNM parameters
resent discontinuities across concatenation points. Perceptu-

Two main issues are addressed during prosodic modifica: di tinuities in th " fth : . .
tions. The firstissue is related to the estimation ofsynthesistiﬁ?]1  discontinuities In the parameters otthe noise par (variance
d coefficients of AR filter) are not important. Thus, the

instants. The second, is related to the re-estimation of harmo : . .
M parameters for the harmonic part (pitch, amplitudes, and

amplitudes and phases for the modified pitch-harmonics (n ) . .
harmonics). phases) are only considered fqr smoothing. Hgvmg removec_i
Given the analysis time instant,, the pitch modification phase mismatches between voiced frames during the analysis
' process (see Section II-C), the smoothing algorithm only con-

factors,a(t), and time-scale modification factoys(t), a recur- ists of removing pitch discontinuities and wral mismatch
sive algorithm determines the synthesis time instafitsAs- SISt ofremoving prich discontinuities and spectral mismatches.
Note that for units for which prosody was not modified, pitch

suming that the original pitch contouFyt), is continuous and di finuiti il tth tenati it
the synthesis time instatitis known, the synthesis time instants Iscontinuities may stifl occur at the concatenation points.
Both, pitch and spectrum mismatches are removed using a

titl is given by . . . . . .
s simple linear interpolation technique around a concatenation
point,¢;. First, the differences of the pitch values and of the am-
Frl =g 4 # / Y (34) plitudes of each harmonic are measured; afhen, these dif-
' ot =t o(t) ferences are weighted and propagated left and right ffoithe
number of frames used in the interpolation process depends on
wheret{ denote virtual time instants related to the synthesike variance of the number of harmonics and the size, in frames,
time-instants by of the basic units (e.g., phoneme or subphonemes) across the
‘ ‘ concatenation point.
t. = D(t,,) (35) Let«' andw” denote the left and right acoustic units across a
concatenation point. Letj and A%, denote the fundamental fre-
where the mapping functiob®(¢) is given by guency and the amplitude ath harmonic from the last frame
of u!, respectively, and lepit* and Ai™* denote the funda-
[ mental frequency and the amplitude /ah harmonic from the
bt) = /0 pe) dr (36) first frame of «”, respectively. Then, the pitch discontinuities

o o o _ are smoothed fof, frames inu! and for R frames inu”, by
The analysis time axis is mapped to the synthesis time axis via

the mapping fl_mc_tionD(t). The virtual time ingtants are defineq Awp = (Wit! — wi)/2 (37)
on the analysis time axis and they do not, in general, coincide : i
with the real analysis time-instants. Therefore, given a virtual ~ Wo =wp + Awo 7 for i=L,L-1,---,1 (38)
time instantt?, with ¢;, < ¢/ < ti*+1, there are two options: . n
either interpolate HNM parameters frafnand¢i*+1, or shiftt? Wo =wp—Awopy  for m=LR, R—1,---,1 (39

to the nearest analysis time instatjt 6r ¢:+1). In the current .
implementation, the second option is used. wherer =i+ 14+ R —n.

) The integrals in (34) and (36) can be ea.S”y aF’pro}(imated"This was used in a previously reported HNM version for speech synthesis
if P(t), a(t), and3(t), are assumed to be piecewise constafa7].
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The harmonic amplitudes are smoothed in a similar way aatlAT&T Labs-Research was also used as a second synthesizer.
using the same number of framésand R as in (39) (for every Both synthesizers used the same input of diphones and prosody.

harmonic,k) Listeners were 41 adults not familiar to TTS synthesis and
without any known hearing problem. Listeners were tested in
AA, = (Ajjl — A)/2 (40) four groups of from eight to 11 individuals. All test sentences
_ ‘ i were equated for level.
. =AL+ AAkz for i =L L—1,---,1 (41) Naturally spoken versions of the three test sentences were
n subjected to one of twmodulated noise reference uMINRU

p = A — AAkf for n=R R—-1,---,1 (42) reference conditions, Q10 and Q35. Q10 served as a low-end
reference point with MOS scores similar to those previously
where, againy =i+ 1+ R —n. found for a low-end commercial 16 kbps ADPCM encoded
This simple linear interpolation of the spectral envelop&gice mail system. Q35 served as a high-end reference whose
makes formant discontinuities less perceptible. However, NfOS scores are typically equivalent to very high quality
formant frequencies are very different left and right of thgslephone speech.
concatenation point, the problem is not completely solved.Speech samples were presented in both wideband and tele-
Using a unit selection algorithm, on the other hand, shoujthone bandwidth condition. Listeners were asked to rate each
select and concatenate units with no big mismatches in formggét sentence for intelligibility, naturalness, and pleasantness.
frequencies. While the criterion based on the variance of tp@r each test trial, listeners were presented a five-point (MOS-
number of harmonics may be characterized as acceptablgjkié) rating scale from which to select their judgments using a
does not directly reflect the stationarity (or nonstationaritybuch sensitive screen. For each of the three types of ratings a
property of the speech signal. A more appropriate criteriopamiliarization session preceded testing during which listeners
based on the transition rate of speech (TRS) [31] is undgere presented speech samples representing the full range of

investigation. variation along the dimension being rated, and they were given
practice in using the rating scale.
C. Waveform Generation For half of each test session, speech signals were presented

Synthesis is also performed in a pitch-synchronous way usii§e" Néadphones (wide bandwidth), and for the other half, they
an overlap and add process. For the synthesis of the harmdfff'® Presented through the telephone handsets (telephone band-
part of a frame, (1) is applied. The noise part is obtained by fividth). The order of the two bandW|dths_ was coun_terbalanced
tering a unit-variance white Gaussian noise through a norm@g"oss the four test sessions, so that wide bandwidth was pre-
ized all-pole filter. The output from the LP filter is multiplied S€Nted first for two groups, and telephone bandwidth was pre-
by the envelope of variances estimated during analysis. If tAgNted first for the other two. For each bandwidth, the three
frame is voiced, the noise part is filtered by a high-pass filtdyPes of ratings (intelligibility, naturalness, and pleasantness)
with cutoff frequency equal to the maximum voiced frequenc{f€re blocked; thatis, all the speech signals were presented for
associated with the frame. The noise part is finally modu|atéatelllglblllty ratings during one interval of time, naturalness rat-

by a time-domain envelope (a parametric triangular-like envi9s for all the signals were collected during another time in-
lope) synchronized with the pitch period. terval, and pleasantness ratings during a third interval. Blocking

It is important to note that having previously corrected th@f tyPe of rating was done to avoid subjects’ confusion over what
phase of the harmonic part [using (33)] the synthesis windowgs@lity they were rating in a given trial. The order of the rating
shifted to be centered on the center of gravity of the harmorhP€S and of the speech signals within a rating block were ran-
part [29]. Knowing this position, the noise part is appropriatel?om'zpjd' The counterbalancing and randomization of the order
shifted and modulated in order to be synchronized with the h&f. tést items among test blocks and across groups was intended

monic part. This is important for the perception of the quality §P cOntrol possible order effects in the test, such as learning or
tigue effects, by evenly distributing them among test items.

vowels and for further improvement of the overall speech syf@ ; X
thesis quality. AFotaI of 936 ratings were collected _from eac_h of 41 listeners,
totaling38 376 observations for the entire experiment. Repeated
measures analyses of variance (ANOVAs) were performed on
IV. RESULTS AND DISCUSSION the data. There were significant main effects of speaker, syn-

In this section, results obtained from two formal listeninghesis method, and inventory, plus interactions.
tests are presented. For an extended presentation and discussibi. 3 compares mean ratings per speaker among Q35 (plus-
of these listening tests see ([28]). For the purpose of the fifsark), Q10 (star-mark), HNM (circle-mark), and TD-PSOLA
test, six professional female voices were recorded at a 16kfzmark).
sampling rate. Two types dliphoneinventories were recorded: In more details, for Q35 (high-quality natural speech), natu-
1) a series of nonsense words and 2) a series of Eng”’ﬁlﬂess andlntelllglblllty ratings were equivalent, and theywere
sentences. Both types of inventories contained the diphorséghificantly higher than pleasantness ratings.
required to synthesize three sentences. These three sentende@wer-quality natural speech (Q10) had the following or-
were also recorded for each of the six speakers and the pros@@ying: naturalness- intelligibility > pleasantness. Synthetic
of the sentences was extracted to be used as input to the HNM
synthesizer. For comparison, an implementation of TD-PSOLASFor this task, listeners were presented with the text of the test sentences.
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5 ' Results' from the MIOS test . ' TABLE Il
RESULTS FROM THESECOND FORMAL LISTENING TEST USING AT&T'S
. NEXT-GENERATION TTS BASED ONUNIT SELECTION AND HNM
+ + +
il ’ ] T | 1
MOS 3.46 | 3.91
4r ] INTELL | 3.48 | 3.98
g
§3.5— X x R
g ° i} * 5 * of our database. Because default Festival prosody was seemed
o y ° . . | _to be more suitable for the announcements type sentences while
o it was not good enough for the other type of sentences, the re-
x x x ° sults from this formal listening test will be presented into two
25r g ] categories: the Harvard and business news sentences in the first
category (1), and the four announcements type sentences in the
2 : s s - s s d second category (). A total of 44 listeners participated. They
Index of speaker had no known hearing problems and were not familiar with TTS

o3 A ¢ all ratings (inteligtil wral | tness) synthesis. Ratings were made on a five-point scale indepen-

1g. o. verage or all ratings (intelligioility, naturalness, pleasantness) par H H HA

speaker for Q35¢), Q106), HNM(o), and TD-PSOLA). dently fpr oye'ralll. voice quality and acceptability (MOS score)
and for intelligibility (INTELL). Table Il shows the results from

this listening test.

TABLE I . )
RESULTS FROM THEFIRST FORMAL LISTENING TEST. AVERAGE OF ALL Itis worth noting that the test sentences from the second cate-
RATINGS FOR ALL SPEAKERS (6) gory, where the prosody model was closer to the prosody of the
speaker in the database, were consistently scored higher than the
Overall | Sentence | Nonsense test sentences from the first category (where the prosody model
HNM 3.00 3.05 2.95

was not good for our speaker).
Informal listening tests were also conducted using male
voices for American and British English, and for French. For

sentences were rated higher for intelligibility than for naturafl€S€ tests natural prosody was used. The segmental quality
ness or pleasantness, which were equivalent. of the synthetic speech was judged to be close to the quality

HNM was consistently rated aboQt25 points higher than of natural speech without smoothing problems and without

TD-PSOLA in intelligibility, naturalness, and pleasantness. distortions after prosodic modifications.
Table Il shows the average of all ratings (intelligibility, natu-
ralness and pleasantness) for all speakers for this test. V. CONCLUSION

An interesting po?r_lt to note from Table Il is the facft that |, this paper, the application of HNM for speech synthesis
HNM was less sensitive than TD-PSOLA to the type of inveRgas presented. HNM was tested in the context of AT&T's
tory (English sentences or nonsense words). The type of iNVRflsyt-Generation TTS as it is implemented within the frame-
tory from nonsense words versus from sentences has a Sma|gfk of the Festival Speech Synthesis System. From informal
difference for HNM (0.10) than for TD-PSOLA (0.19). Becausgng formal listening tests, HNM was found to be a very
the prosody modification factors for the inventory of NONsengRyod candidate for our next generation TTS. HNM compared
words were larger compared to these for the second inventqgyorably to other methods (e.g., TD-PSOLA) in intelligibility,
it can be concluded that the difference between the two Sy ralness and pleasantness. The segment quality of synthetic
thesizers (HNM and TD-PSOLA) increases proporuonallyanpeeCh was high, without smoothing problems and without

the extent of modification factors that are applied. It is wortfy,;;iness observed with other speech representation methods.
noting that the diphone inventories were prepared twice be-
cause TD-PSOLA had serious quality problems with the first
instance of the database. However, the quality of the HNM-
based synthetic speech signals practically were equivalent fofhe author would like to thank A. Syrdal and A. Conkie for
both databases. The speaker with the higher score (HNM: 3thg preparation and collection of the results from the two formal
and TD-PSOLA: 3.14) for all ratings was finally selected folistening tests, and M. Beutnagel, T. Dutoit, and J. Schroeter, for
recording a large database. many fruitful discussions during the development of HNM for

Once our new database was recorded, a second formal $igeech synthesis.
tening test was conducted using AT&T’s Next-Generation TTS
with HNM. There were 11 test sentences: four announcements REFERENCES
type sentences, six phonetically balanced Ha'jvard sentences arﬂﬂ E. Moulines and F. Charpentier, “Pitch-synchronous waveform pro-
one full paragraph from a summary of business news. Only  cessing techniques for text-to-speech synthesis using diph@agith
wide-band (40-6500 Hz) testing with headphones was used in_ Commun.vol. 9, pp. 453-467, Dec. 1990. ,

. . 42] T. Dutoit and H. Leich, “Text-to-speech synthesis based on a MBE

the test. Prosody_forall synthe5|s sentences was Festival [13] de- re-synthesis of the segments databasegech Commuvol. 13, pp.
fault prosody, trained on a different female speaker than the one  435-440, 1993.

TD-PSOLA | 2.75 2.84 2.66
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