Lecture 1: Introduction & DSP

1. Sound and information
2. Course structure
3. DSP review: Timescale modification

Dan Ellis <dpwe@ee.columbia.edu>
http://www.ee.columbia.edu/~dpwe/e6820/

Columbia University Dept. of Electrical Engineering
Spring 2003
1. **Sound and information**

- **Sound is air pressure variation**

![Diagram showing sound and information process]

- **Transducers convert air pressure ↔ voltage**
What use is sound?

- **Footsteps examples:**

 ![Diagram of footsteps](image)

- **Hearing confers an evolutionary advantage**
 - useful information, complements vision
 - ...at a distance, in the dark, around corners
 - listeners are highly adapted to ‘natural sounds’
 (including speech)
The scope of audio processing

<table>
<thead>
<tr>
<th>Audio</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>Simple</td>
</tr>
<tr>
<td>Man-made</td>
<td>Abstract</td>
</tr>
</tbody>
</table>
The acoustic communication chain

- Sound is an information bearer
- Received sound reflects source(s) plus effect of environment (channel)
Levels of abstraction

- Much processing concerns shifting between levels of abstraction

- Different representations serve different tasks
 - separating aspects, making things explicit ...
Course structure

- **Goals:**
 - survey topics in sound analysis & processing
 - develop an intuition for sound signals
 - learn some specific technologies (esp. ASR)

- **Course structure:**
 - weekly assignments (25%)
 - midterm exam (25%)
 - final project (50%)

- **Text:**

 Speech and Audio Signal Processing
 Ben Gold & Nelson Morgan,
 Wiley, 2000
Web-based

- **Course website:**

 http://www.ee.columbia.edu/~dpwe/e6820/

 for lecture notes, problem sets, examples, ...

 - + student web pages for homework etc.
Course outline

<table>
<thead>
<tr>
<th>Fundamentals</th>
<th>Audio processing</th>
<th>Speech recognition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1: DSP</td>
<td>L5: Signal models</td>
<td>L9: Speech features</td>
</tr>
<tr>
<td>L2: Acoustics</td>
<td>L6: Music analysis/synthesis</td>
<td>L10: Sequence recognition</td>
</tr>
<tr>
<td>L3: Pattern recognition</td>
<td>L7: Audio compression</td>
<td>L11: Recognizer training</td>
</tr>
<tr>
<td>L4: Auditory perception</td>
<td>L8: Spatial sound & rendering</td>
<td>L12: Systems & applications</td>
</tr>
</tbody>
</table>
Weekly Assignments

• **Research papers**
 - journal & conference publications
 - summarize & discuss in class
 - written summaries on web page

• **Practical experiments**
 - MATLAB-based (+ Signal Processing Toolbox)
 - direct experience of sound processing
 - skills for project

• **Book sections**
 + questions from book
Final Project

• Most significant part of course (50% of grade)
• Oral proposals mid-semester; Presentations in final class + website
• Scope
 - practical (Matlab recommended)
 - identify a problem; try some solutions
 - evaluation
• Topic
 - few restrictions within world of audio
 - investigate other resources
 - develop in discussion with me
Examples of past projects

- Detecting airplane noise
 - e.g. for environment monitoring

- Separating speakers in recorded meetings
 - based on dummy-head binaural cues
DSP review: Digital Signals

- sampling interval T,

 sampling frequency $\Omega_T = \frac{2\pi}{T}$

- quantizer $Q(y) = \varepsilon \cdot \lfloor y / \varepsilon \rfloor$
The speech signal: time domain

- Speech is a sequence of different sound types:

 Vowel: periodic
 "has"

 Fricative: aperiodic
 "watch"

 Glide: smooth transition
 "watch"

 Stop burst: transient
 "dime"
Timescale modification (TSM)

- Can we modify a sound to make it ‘slower’?
 i.e. speech pronounced more slowly
 - e.g. to help comprehension, analysis
 - or more quickly for ‘speed listening’?

- Why not just slow it down?

 \(x_s(t) = x_o\left(\frac{t}{r}\right) \), \(r \) = slowdown factor

- equiv. to playback at a different sampling rate
Time-domain TSM

- Problem: want to preserve *local* time structure but alter *global* time structure

- Repeat segments
 - but: artefacts from abrupt edges

- Cross-fade & overlap
 \[y^m[mL + n] = y^{m-1}[mL + n] + w[n] \cdot x \left[\frac{m}{r} \right] L + n \]
Synchronous Overlap-Add (SOLA)

- Idea: Allow some leeway in placing window to optimize alignment of waveforms

- Hence,

$$y^m[mL + n] = y^{m-1}[mL + n] + w[n] \cdot x \left(\left\lfloor \frac{m}{r} \right\rfloor L + n + K_m \right)$$

where K_m chosen by cross-correlation:

$$K_m = \arg\max_{0 \leq K \leq K_U} \frac{\sum_{n = 0}^{N_{ov}} y^{m-1}[mL + n] \cdot x \left(\left\lfloor \frac{m}{r} \right\rfloor L + n + K \right)}{\sqrt{\sum (y^{m-1}[mL + n])^2 \sum \left(x \left(\left\lfloor \frac{m}{r} \right\rfloor L + n + K \right) \right)^2}}$$
The Fourier domain

Fourier Series (periodic continuous x)

$$x(t) = \sum_k c_k \cdot e^{j k \Omega_0 t}$$

$$c_k = \frac{1}{2\pi T} \int_{-T/2}^{T/2} x(t) \cdot e^{-j k \Omega_0 t} dt$$

Fourier Transform (aperiodic continuous x)

$$x(t) = \frac{1}{2\pi} \int X(j \Omega) \cdot e^{j \Omega t} d\Omega$$

$$X(j \Omega) = \int x(t) \cdot e^{-j \Omega t} dt$$
Discrete-time Fourier

DT Fourier Transform (aperiodic sampled x)

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) \cdot e^{j\omega n} \, d\omega$$

$$X(e^{j\omega}) = \sum x[n] \cdot e^{-j\omega n}$$

Discrete Fourier Transform (N-point x)

$$x[n] = \sum_k X[k] \cdot e^{j\frac{2\pi kn}{N}}$$

$$X[k] = \sum_n x[n] \cdot e^{-j\frac{2\pi kn}{N}}$$
Sampling and aliasing

- Discrete-time signals equal the continuous time signal at discrete sampling instants:
 \[x_d[n] = x_c(nT) \]

- Sampling cannot represent rapid fluctuations

\[
\sin \left(\left(\omega_M + \frac{2\pi}{T} \right) Tn \right) = \sin (\omega_M Tn) \quad \forall n \in I
\]

- Nyquist limit \((\Omega_T/2)\) from periodic spectrum:

\[G_p(j\Omega) \quad G_d(j\Omega) \quad \text{“alias” of “baseband” signal} \]
Speech sounds in the Fourier domain

- $\text{dB} = 20 \cdot \log_{10}(\text{amplitude}) = 10 \cdot \log_{10}(\text{power})$

- Voiced spectrum has *pitch* + *formants*
Short-time Fourier Transform

- **Want to localize energy in both time *and* freq**
 - break sound into short-time pieces
 - calculate DFT of each one

Mathematically:

\[
X[k, m] = \sum_{n=0}^{N-1} x[n] \cdot w[n - mL] \cdot \exp\left(-j\frac{2\pi k(n - mL)}{N}\right)
\]
The Spectrogram

- Plot STFT $X[k, m]$ as a grayscale image:
Time-frequency tradeoff

- Longer of window $w[n]$ gains frequency resolution at cost of time resolution
Speech sounds on the Spectrogram

• Most popular speech visualization

- Vowel: periodic
 “has”

- Glide: transition
 “watch”

- Fric’v e: aperiodic
 “watch”

- Stop: transient
 “dime”

has a watch thin as a dime

• Wideband (short window) better than narrowband (long window) to see formants
TSM with the Spectrogram

- Just stretch out the spectrogram?

- how to resynthesize?
 spectrogram is only $|Y[k, m]|$
The Phase Vocoder

- Timescale modification in the STFT domain
- Magnitude from ‘stretched’ spectrogram:
 \[|Y[k, m]| = \left| X[k, \frac{m}{r}] \right| \]
 - e.g. by linear interpolation
- But preserve phase *increment* between slices:
 \[\dot{\theta}_Y[k, m] = \dot{\theta}_X[k, \frac{m}{r}] \]
 - e.g. by discrete differentiator
- Does right thing for single sinusoid
 - keeps overlapped parts of sinusoid aligned
General issues in TSM

• **Time window**
 - stretching a narrowband spectrogram

• **Malleability of different sounds**
 - vowels stretch well, stops lose nature

• **Not a well-formed problem?**
 - want to alter time without frequency
 ... but time and frequency are not separate!
 - ‘satisfying’ result is a subjective judgement

→ solution depends on *auditory perception*...
Summary

• Information in sound
 - lots of it, multiple levels of abstraction

• Course overview
 - survey of audio processing topics
 - practicals, readings, project

• DSP review
 - digital signals, time domain
 - Fourier domain, STFT

• Timescale modification
 - properties of the speech signal
 - time-domain
 - phase vocoder