EE E6820: Speech & Audio Processing & Recognition

Lecture 9:
Speech Recognition: Front End

1. Recognizing Speech
2. Feature Calculation
3. Acoustic Modeling

Dan Ellis <dpwe@ee.columbia.edu>
http://www.ee.columbia.edu/~dpwe/e6820/
Recognizing Speech

“So, I thought about that and I think it’s still possible”

- What kind of information might we want from the speech signal?
 - words
 - phrasing, ‘speech acts’ (prosody)
 - mood / emotion
 - speaker identity

- What kind of processing do we need to get at that information?
 - time scale of feature extraction
 - signal aspects to capture in features
 - signal aspects to exclude from features
Speech recognition as Transcription

- **Transcription** = “speech to text”
 - find a word string to match the utterance

- **Best suited to small vocabulary tasks**
 - voice dialing, command & control etc.

- **Gives neat objective measure:**
 word error rate (WER) %
 - can be a sensitive measure of performance

- **Three kinds of errors:**

 \[
 \text{Reference: \ THE\ CAT\ SAT\ ON\ THE\ MAT} \\
 \text{Recognized: \ –\ CAT\ SAT\ AN\ THE\ A\ MAT} \\
 \text{\ \ Deletion\ \ Substitution\ \ Insertion} \\
 \text{\ \ -\ WER = (S + D + I) / N}
 \]
Limitations of the Transcription paradigm

- Starts to fall down with ‘natural’ speech
 - some “words” may not even exist

- Word transcripts do not capture everything
 - speaker changes, intonation, phrasing

- Word error rate treats all errors as equal
 - small words (“of”) counted as big words
 - small differences (“company’s” → “companies”) vs. larger (“held police” → “health plans”)

- Move towards other measures
 - e.g. task-defined: was the meaning recognized?
Why is Speech Recognition hard?

- Why not just match against a set of waveforms?
 - waveforms are never (nearly!) the same twice
 - people can *minimize* effort/information in speech

- **Speech variability comes from various sources:**
 - speaker-dependent (SD) recognizers must handle within-speaker variability
 - speaker-independent (SI) recognizers must also deal with variation between speakers
 - all recognizers are afflicted by background noise, variable channels

→ **Need recognition models that:**
 - *generalize* i.e. accept variations in a range, and
 - *adapt* i.e. ‘tune in’ to a particular variant
Within-speaker variability

- **Timing variation:**
 - word duration varies enormously
 - fast speech ‘reduces’ vowels

- **Speaking style variation:**
 - careful/casual articulation
 - soft/loud speech

- **Contextual effects:**
 - speech sounds vary with context, role:
 - “How do you do?”
Between-speaker variability

- **Accent variation**
 - regional / mother tongue

- **Voice quality variation**
 - gender, age, huskiness, nasality

- **Individual characteristics**
 - mannerisms, speed, prosody
Environment variability

- Background noise
 - fans, cars, doors, papers

- Reverberation
 - ‘boxiness’ in recordings

- Microphone channel
 - huge effect on relative spectral gain
How to recognize speech?

- Cross correlate templates?
 - waveform?
 - spectrogram?
 - *time-warp* problems

- Match short-segments & handle time-warp later
 - model with slices of ~ 10 ms
 - pseudo-stationary model of words:

 sil g w eh n sil

- other sources of variation...
Which segments to use?

• Assume words can be broken down into pseudo-stationary segments
 - not a perfect fit, but worth a try

• **Linguists offer phonemes or phones**
 - phonemes are the minimal set needed to disambiguate words
 - phones are realizations of phonemes

• **Other possibilities:**
 - data-clustering techniques to define segments ‘intrinsically’
 - lesson from synthesis: transitions as important or more important than steady portions?
 ...but how to model?
Probabilistic formulation

- **Probability** that segment label is correct
 - gives standard form of speech recognizers:

- **Feature calculation**
 transforms signal into easily-classified domain

- **Acoustic classifier**
 calculates probabilities of each mutually-exclusive state q^i

- ‘**Finite state acceptor**’ (i.e. HMM)

 $\hat{Q} = \arg\max_{\{q_0, q_1, \ldots q_L\}} p(q_0, q_1, \ldots q_L|X_0, X_1 \ldots X_L)$

 MAP match of allowable sequence to probabilities:

 $q_0 = “ay”$

\[s[n] \rightarrow X_m \quad (m = \frac{n}{H}) \]
Standard speech recognizer structure

- **Questions:**
 - what are the best features?
 - how do we do the acoustic classification?
 - how do we find/match the state sequence?
Outline

1 Recognizing Speech

2 Feature Calculation
 - Spectrogram, MFCCs & PLP
 - Improving robustness

3 Acoustic Classification
Feature Calculation

- **Goal**: Find a representational space within which to apply classification
 - waveform: voluminous, redundant, variable
 - spectrogram: better, still quite variable
 - ...?

- **Pattern Recognition**: Representation is upper bound on performance
 - maybe we *should* use the waveform...
 - or, maybe the representation can do *all* the work

- **Feature calculation is intimately bound to classifier**
 - pragmatic strengths and weaknesses

- **Features develop by slow evolution**
 - current choices more historical than principled
Desired characteristics for features

- **Provide the ‘right’ information**
 - extract signal information for classification task
 - suppress irrelevant information

- **Be compatible with acoustic classifier**
 - relatively low dimensionality
 - uncorrelated dimensions?

- **Be practical**
 - applicable in ‘all’ circumstances
 - relatively inexpensive to compute

- **Be robust**
 - so far as possible, exclude nonspeech information

→ **How to evaluate features?**
 - normally: just put them in a recognizer
Features (1): Spectrogram

- Plain STFT as features e.g.

\[X_m[k] = S[mH, k] = \sum_n s[n + mH] \cdot w[n] \cdot e^{-(j2\pi kn)/N} \]

- Consider examples:

- Similarities between corresponding segments
 - but still large differences
Features (2): Cepstrum

- **Idea:** Decorrelate, summarize spectral slices:

 \[X_m[l] = IDFT\{\log|S[mH, k]|\} \]

 - good for Gaussian models
 - greatly reduce feature dimension
Features (3): Frequency axis warp

- Linear frequency axis gives equal ‘space’ to 0-1 kHz and 3-4 kHz
 - but relative perceptual importance is tiny

- Warp frequency axis closer to perceptual axis:
 - mel, Bark, constant-Q ...

\[
X[c] = \sum_{k=l_c}^{u_c} |S[k]|^2
\]

<table>
<thead>
<tr>
<th>Male spectrum</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>audspec</td>
<td></td>
</tr>
<tr>
<td>Female spectrum</td>
<td>15</td>
</tr>
<tr>
<td>audspec</td>
<td></td>
</tr>
</tbody>
</table>
Features (4): Spectral smoothing

- Generalizing across different speakers is helped by *smoothing* (blurring) spectrum

- Truncated cepstrum is one way:
 - MSE approx to $\log |S[k]|$

- LPC modeling is a little different:
 - MSE approx to $|S[k]| \rightarrow$ prefers detail at peaks
Features (5): Normalization along time

- Idea: feature variations, not absolute level
- Hence: calculate average level & subtract it:
 \[X[k] = S[k] - \text{mean}\{S[k]\} \]
- Factors out fixed channel frequency response:
 \[s[n] = h[n] * e[n] \]
 \[\log|S[k]| = \log|H[k]| + \log|E[k]| \]
Features (6): RASTA filtering

• Mean subtraction ≈ *high-pass filtering*
 along time in log-spectral domain
 \[X[k] = S[k] - \text{lpf}\{S[k]\} \]

• + *smooth* along time for
 more blurring

→ **Bandpass filter in time**
 - relates to ‘modulation
 sensitivity’ in hearing?

\begin{align*}
\text{Male} & \\
\text{plp} & \begin{array}{c}
15 \\
10 \\
5
\end{array} \\
\text{rasta} & \begin{array}{c}
15 \\
10 \\
5
\end{array}
\end{align*}
Delta features

- Want each segment to have ‘static’ feature vals
 - but some segments intrinsically dynamic!
 → calculate their derivatives - maybe steadier?

- Append $dX/dt \ (+\ d^2X/dt^2)$ to feature vectors

- Relates to onset sensitivity in humans?
Overall feature calculation

- MFCCs and/or RASTA-PLP

Key attributes:
- spectral, auditory scale
- decorrelation
- smoothed (spectral) detail
- normalization of levels
Features summary

- Normalize same phones
- Contrast different phones
Outline

1 Recognizing Speech

2 Feature Calculation

3 Acoustic Classification
 - General principles
 - GMMs
 - Neural Networks
Acoustic Classification

- Goal: Convert features into probabilities of particular labels:
 - i.e find $p(q^i_n|X_n)$ over some state set $\{q^i\}$
 - conventional statistical classification problem

- Classifier construction is data-driven
 - assume we can get examples of known good Xs for each of the q^is
 - calculate model parameters by standard training scheme

- Various classifiers can be used
 - GMMs model distribution under each state
 - Neural Nets directly estimate posteriors

- Different classifiers have different properties
 - features, labels limit ultimate performance
Defining classifier targets

- Choice of \(\{q^i\} \) can make a big difference
 - must support recognition task
 - must be a practical classification task

- Hand-labeling is one source...
 - ‘experts’ mark spectrogram boundaries

- ...Forced alignment is another
 - ‘best guess’ with existing classifiers, given words

- Result is targets for each training frame:

 ![Feature vectors](image)
 ![Training targets](image)
Forced alignment

- Best labeling given existing classifier constrained by known word sequence

- Feature vectors
- Existing classifier
- Known word sequence
- Phone posterior probabilities
- Dictionary
- Constrained alignment
- Training targets
- Classifier training
Gaussian Mixture Models: Principles

- **Fit the distribution of features under states:**
 - separate model for each state q^i
 \[
p(x|q^i) = \frac{1}{\sqrt{2\pi}^d |\Sigma_i|^{1/2}} \cdot \exp \left[-\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right]
\]
- **GMMs can match any distribution given enough data**
 - even if we assume diagonal covariance
 - but: curse of dimensionality
- **GMMs produce ‘likelihoods’; can convert to posteriors via Bayes’ rule:**
 \[
p(q^i | x) = \frac{p(x|q^i) \cdot Pr(q^i)}{\sum_j p(x|q^j) \cdot Pr(q^j)}
\]
GMMs: Practicalities

- **Practical GMMs:**
 - 9 to 39 dimensions
 - 2 to 64 Gaussians per mixture depending on number of training examples

- **Lots of data → can model more classes**
 - e.g context-independent (CI): $q^i = ae \; aa \; ax \; ...$
 - context-dependent (CD): $q^i = b-ae-b \; b-ae-k \; ...$

- **Explicit parameters**
 → **opportunities for adaptation?**

![Male data](image1.png)
![Female data](image2.png)
Neural Nets: Principles

- Single model generates posteriors directly for all classes at once
- Nets are less sensitive to input representation
 - skewed feature distributions
 - correlated features
- Can use temporal context window to let net ‘see’ feature dynamics:
 - but deltas still help too

Feature calculation

\[p(q^i \mid X) \]
Neural nets: Practicalities

• **Typical net sizes:**
 - input layer: 9 frames x 9-40 features ~ 300 units
 - hidden layer: 100-8000 units, dep. training data
 - output layer: 30-60 context-independent phones

• **Hard to make context dependent**
 - problems training many classes that are similar?

• **Representation is opaque:**

![Diagram showing weights between hidden and output layers, as well as input and hidden layers.](#187)
Recap: Recognizer Structure

- Know about feature calculation
- Know how to build a classifier *given* labels
- HMMs next week...
Summary

• **Speech recognition as *word transcription***
 - neat definition, but limited
 - hard because of variability

• **Feature calculation extracts information**
 - smoothed, decorrelated spectral parameters
 - long evolution to match classifiers

• **Acoustic classifier estimates phone class**
 - Training data + labels train classifier
 - GMMs model each class’s distribution
 - Neural nets discriminatively estimate posteriors