Lecture 6:
Speech modeling and synthesis

1. Modeling speech signals
2. Spectral and cepstral models
3. Linear Predictive models (LPC)
4. Other signal models
5. Speech synthesis

Dan Ellis <dpwe@ee.columbia.edu>
http://www.ee.columbia.edu/~dpwe/courses/e6820-2001-01/
The speech signal

- **Elements of the speech signal:**
 - spectral resonances (formants, moving)
 - periodic excitation (voicing, pitched)
 - pitch contour
 - noise excitation (fricatives, unvoiced, no pitch)
 - transients (stop-release bursts)
 - amplitude modulation (nasals, approximants)
 - timing!
The source-filter model

- Notional separation of:

 source: excitation, fine t-f structure

 & **filter:** resonance, broad spectral structure

- More a modeling approach than a model
Signal modeling

- **Signal models are a kind of representation**
 - to make some aspect explicit
 - for efficiency
 - for flexibility

- **Nature of model depends on goal**
 - classification: remove irrelevant details
 - coding/transmission: remove perceptual irrelevance
 - modification: isolate control parameters

- **But commonalities emerge**
 - perceptually irrelevant detail (coding) will also be irrelevant for classification
 - modification domain will usually reflect ‘independent’ perceptual attributes
 - getting at the *abstract information* in the signal
Different influences for signal models

- **Receiver:**
 - see how signal is treated by listeners
 → cochlea-style filterbank models

- **Transmitter (source)**
 - physical apparatus can generate only a limited range of signals...
 → LPC models of vocal tract resonances

- **Making explicit particular aspects**
 - compact, separable resonance correlates
 → cepstrum
 - modeling prominent features of NB spectrogram
 → sinusoid models
 - addressing unnaturalness in synthesis
 → H+N model
Applications of (speech) signal models

- **Classification / matching**
 - **Goal**: highlight important information
 - speech recognition (lexical content)
 - speaker recognition (identity or class)
 - other signal classification
 - content-based retrieval

- **Coding / transmission / storage**
 - **Goal**: represent just enough information
 - real-time transmission e.g. mobile phones
 - archive storage e.g. voicemail

- **Modification/synthesis**
 - **Goal**: change certain parts independently
 - speech synthesis / text-to-speech
 (change the words)
 - speech transformation / disguise
 (change the speaker)
Outline

1. Modeling speech signals
2. Spectral and cepstral models
 - Auditorily-inspired spectra
 - The cepstrum
 - Feature correlation
3. Linear predictive models (LPC)
4. Other models
5. Speech synthesis
Spectral and cepstral models

• Spectrogram seems like a good representation
 - long history
 - satisfying in use
 - experts can ‘read’ the speech

• What is the information?
 - intensity in time-frequency cells;
 typically 5ms x 200 Hz x 50 dB

→ Discarded information:
 - phase
 - fine-scale timing

• The starting point for other representations
The filterbank interpretation of the short-time Fourier transform (STFT)

- Can regard spectrogram rows as coming from separate bandpass filters:

- Mathematically:

\[
X[k, n_0] = \sum_n x[n] \cdot w[n - n_0] \cdot \exp \left(-j \frac{2\pi k(n - n_0)}{N}\right)
\]

\[
= \sum_n x[n] \cdot h_k[n_0 - n]
\]

where \(h_k[n] = w[-n] \cdot \exp \left(j \frac{2\pi kn}{N}\right) \)
Spectral models: Which bandpass filters?

- Constant bandwidth? (analog / FFT)
- But: cochlea physiology & critical bandwidths
 → use actual bandpass filters in ear models & choose bandwidths by e.g. CB estimates

- Auditory frequency scales
 - constant ‘Q’ (center freq/bandwidth), mel, Bark...
Gammatone filterbank

- **Given bandwidths, which filter shapes?**
 - match inferred temporal integration window
 - match inferred spectral shape (sharp hi-F slope)
 - keep it simple (since it’s only approximate)

→ **Gammatone filters**

\[h[n] = n^{N-1} \cdot \exp(-bn) \cdot \cos(\omega_i n) \]

- 2N poles, 2 zeros, low complexity
- reasonable linear match to cochlea
Constant-BW vs. cochlea model

- Frequency responses:

- Spectrograms:

- Magnitude smoothed over 5-20 ms time window
Limitations of spectral models

- **Not much data thrown away**
 - just fine phase/time structure (smoothing)
 - little actual ‘modeling’
 - still a large representation!

- **Little separation of features**
 - e.g. formants and pitch

- **Highly correlated features**
 - modifications affect multiple parameters

- **But, quite easy to reconstruct**
 - iterative reconstruction of lost phase
The cepstrum

- **Original motivation:** Assume a source-filter model:

\[
\begin{align*}
\text{Excitation source} & \quad \rightarrow \quad \text{Resonance filter} \\
\text{t} & \quad \rightarrow \quad f
\end{align*}
\]

- **Define ‘Homomorphi c deconvolution’:**
 - source-filter convolution: \(g[n] * h[n]\)
 - \(\text{FT} \rightarrow \text{product} \quad G(e^{i\omega}) \cdot H(e^{i\omega})\)
 - \(\log \rightarrow \text{sum} \quad \log G(e^{i\omega}) + \log H(e^{i\omega})\)
 - \(\text{IFT} \quad \rightarrow \text{separate fine structure} \quad c_g[n] + c_h[n]\)
 - \(= \text{deconvolution}\)

- **Definition:**

Real cepstrum \(c_n = \text{idft}(|\text{dft}(x[n])|)\)
Stages in cepstral deconvolution

- Original waveform has excitation fine structure convolved with resonances
- DFT shows harmonics modulated by resonances
- Log DFT is sum of harmonic ‘comb’ and resonant bumps
- IDFT separates out resonant bumps (low quefrency) and regular, fine structure (‘pitch pulse’)
- Selecting low-n cepstrum separates resonance information (deconvolution / ‘liftering’)

![Graphs showing various stages of cepstral deconvolution](image)
Properties of the cepstrum

- **Separate source (fine) & filter (broad structure)**
 - smooth the log mag spectrum to get resonances

- **Smoothing spectrum is filtering along freq.**
 - i.e. convolution applied in Fourier domain
 → *multiplication* in IFT (‘liftering’)

- **Periodicity in time → harmonics in spectrum**
 → ‘pitch pulse’ in high-n cepstrum

- **Low-n cepstral coefficients are DCT of broad filter / resonance shape:**

\[
c_n = \int \log |X(e^{j\omega})| \cdot (\cos n\omega + j \sin n\omega) d\omega
\]
Aside: Correlation of elements

- **Cepstrum is a popular in speech recognition**
 - feature vector elements are *decorrelated*:
 - c_0 ‘normalizes out’ average log energy

- **Decorrelated pdfs fit diagonal Gaussians**
 - simple correlation is a waste of parameters

- **DCT is close to PCA for spectra?**
Outline

1. Modeling speech signals
2. Spectral and cepstral modes
3. Linear Predictive models (LPC)
 - The LPC model
 - Interpretation & application
 - Formant tracking
4. Other models
5. Speech synthesis
3 \hspace{1cm} \textbf{Linear predictive modeling (LPC)}

- LPC is a very successful speech model
 - it is mathematically efficient (IIR filters)
 - it is remarkably successful for voice
 (fits source-filter distinction)
 - it has a satisfying physical interpretation
 (resonances)

- \textbf{Basic math}
 - model output as lin. function of previous outputs:
 \[s[n] = \left(\sum_{k=1}^{p} a_k \cdot s[n-k] \right) + e[n] \]
 ... hence “linear prediction” \((p^{th}\) order)
 - \(e[n]\) is excitation (input), a/k/a \textit{prediction error}
 - \(\frac{S(z)}{E(z)} = \frac{1}{\left(1 - \sum_{k=1}^{p} a_k \cdot z^{-k}\right)} = \frac{1}{A(z)}\)
 ... \textit{all-pole} modeling,
 ‘autoregression’ (AR) model
Vocal tract motivation for LPC

- **Direct expression of source-filter model:**

 \[s[n] = (\sum_{k=1}^{p} a_k \cdot s[n-k]) + e[n] \]

- **Acoustic tube models suggest all-pole model for vocal tract**

- **Relatively slowly-changing**
 - update \(A(z) \) every 10-20 ms

- **Not perfect: Nasals introduce zeros**
Estimating LPC parameters

- Minimize short-time squared prediction error:

\[E = \sum_{n=1}^{m} e^2[n] = \sum_{n} \left\{ s[n] - \sum_{k=1}^{p} a_k s[n-k] \right\}^2 \]

Differentiate w.r.t. \(a_k \) to get:

\[\sum_{n} 2(s[n] - \sum_{j = 1}^{p} a_j s[n-j]) \cdot (-s[n-k]) = 0 \]
\[\sum_{n} s[n] s[n-k] = \sum_{j} a_j \cdot \sum_{n} s[n-j] s[n-k] \]
\[\phi(0, k) = \sum_{j} a_j \cdot \phi(j, k) \]

where \(\phi(j, k) = \sum_{n=1}^{m} s[n-j] s[n-k] \)

are correlation coefficients

- \(p \) linear equations to solve for all \(a_j s \)...
Evaluating parameters

• Linear equations \(\phi(0, k) = \sum_{j=1}^{p} a_j \cdot \phi(j, k) \)

• If \(s[n] \) is assumed zero outside some window
 \(\phi(j, k) = \sum_{n} s[n - j] s[n - k] = r(|j - k|) \)

Hence equations become:

\[
\begin{bmatrix}
 r(1) \\
r(2) \\
\vdots \\
r(p)
\end{bmatrix}
= \begin{bmatrix}
 r(0) & r(1) & \ldots & r(p-1) \\
r(1) & r(2) & \ldots & r(p-2) \\
\vdots & \vdots & \ddots & \vdots \\
r(p-1) & r(p-2) & \ldots & r(0)
\end{bmatrix}
\begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_p
\end{bmatrix}
\]

• *Toeplitz* matrix (equal antidiagonals)
 \(\rightarrow \) can use Durbin recursion to solve

• (Solve full \(\phi(j, k) \) via Cholesky)
LPC illustration

- Actual poles:
Interpreting LPC

- **Picking out resonances**
 - if signal really was source + all-pole resonances, LPC should find the resonances

- **Least-squares fit to spectrum**
 - minimizing \(e^2[n] \) in time domain is the same as minimizing \(E^2(e^{j\omega}) \) (by Parseval)
 - closest fit to spectral *peaks*; valleys don’t matter

- **Removing smooth variation in spectrum**
 - \(1/A(z) \) is low-order approximation to \(S(z) \)
 - \(\frac{S(z)}{E(z)} = \frac{1}{A(z)} \)
 - hence, residual \(E(z) = A(z)S(z) \) is ‘flat’ version of \(S \)

- **Signal whitening:**
 - white noise (independent \(x[n] \)s) has flat spectrum
 - whitening removes temporal correlation
Alternative LPC representations

- Many alternate \(p \)-dimensional representations:
 - coefficients \(\{a_i\} \)
 - roots \(\{\lambda_i\} : \prod (1 - \lambda_i z^{-1}) = 1 - \sum a_i z^{-1} \)
 - line spectrum frequencies...
 - reflection coefficients \(\{k_i\} \) from lattice form
 - tube model log area ratios \(g_i = \log \left(\frac{1 - k_i}{1 + k_i} \right) \)

- Choice depends on:
 - mathematical convenience/complexity
 - quantization sensitivity
 - ease of guaranteeing stability
 - what is made explicit
 - distributions as statistics
LPC Applications

- **Analysis-synthesis (coding, transmission):**
 \[S(z) = \frac{E(z)}{A(z)} \]
 hence can reconstruct by filtering \(e[n] \) with \(\{a_i\} \)
 - whitened, decorrelated, minimized \(e[n] \)s are easy to quantize
 - or can model \(e[n] \) e.g. as simple pulse train

- **Recognition/classification**
 - LPC fit responds to spectral peaks (formants)
 - can use for recognition (convert to cepstra?)

- **Modification**
 - separating source and filter supports cross-synthesis
 - pole / resonance model supports ‘warping’ (e.g. male → female)
Aside: Formant tracking

- Formants carry (most?) linguistic information
- Why not classify → speech recognition?
 - e.g. local maxima in cepstral-liftered spectrum
 pole frequencies in LPC fit
- But: recognition needs to work in all circumstances
 - formants can be obscure or undefined

→ Need more graceful, robust parameters
Outline

1. Modeling speech signals
2. Spectral and cepstral modes
3. Linear predictive models (LPC)
4. Other models
 - Sinewave modeling
 - Harmonic+Noise model (HNM)
5. Speech synthesis
4 Other models: Sinusoid modeling

- Early signal models required low complexity
 - e.g. LPC
- Advances in hardware open new possibilities...
- NB spectrogram suggests harmonics model:
 - ‘important’ info in 2-D surface is set of tracks?
 - harmonic tracks have ~ smooth properties
 - straightforward resynthesis
Sine wave models

- Model sound as sum of AM/FM sinusoids:

\[s[n] = \sum_{k=1}^{N[n]} A_k[n] \cos(n \cdot \omega_k[n] + \phi_k[n]) \]

- \(A_k, \omega_k, \phi_k\) piecewise linear or constant
- can enforce harmonicity: \(\omega_k = k \cdot \omega_0\)

- Extract parameters directly from STFT frames:
 - find local maxima of \(|S[k,n]|\) along frequency
 - track birth/death & correspondence
Finding sinusoid peaks

- **Look for local maxima along DFT frame**
 - i.e. $|S[k-1,n]| < |S[k,n]| > |S[k+1,n]|$

- **Want exact frequency of implied sinusoid**
 - DFT is normally quantized quite coarsely
 e.g. 4000 Hz / 256 bins = 15.6 Hz
 - interpolate at peaks via quadratic fit?
 - may also need interpolated unwrapped phase

- **Or, use differential of phase along time** (pvoc):
 - $\omega = \frac{a \dot{b} - b \dot{a}}{a^2 + b^2}$ where $S[k,n] = a + jb$
Sinewave modeling applications

- **Modification (interpolation) & synthesis**
 - connecting arbitrary ω & ϕ requires cubic phase interpolation (because $\omega = \phi$)

- **Types of modification**
 - time & frequency scale modification
 - with or without changing formant envelope
 - concatenation/smoothing boundaries
 - phase realignment (for crest reduction)

- **Non-harmonic signals? OK-ish**
Harmonics + noise model

- **Motivation to modify sinusoid model because:**
 - problems with analysis of real (noisy) signals
 - problems with synthesis quality (esp. noise)
 - perceptual suspicions

- **Model:**

 \[
 s[n] = \sum_{k=1}^{N[n]} A_k[n] \cos(n \cdot k \cdot \omega_0[n]) + e[n] \cdot (h_n[n] \otimes b[n])
 \]

- **Harmonics**
 - sinusoids are forced to be harmonic
 - remainder is filtered & time-shaped noise

- **‘Break frequency’** \(F_m[n] \) between H and N:
HNM analysis and synthesis

- Dynamically adjust $F_m[n]$ based on ‘harmonic test’:

- Noise has envelopes in time $e[n]$ and freq Hn

 - reconstruct bursts / synchronize to pitch pulses
Outline

1 Modeling speech signals
2 Spectral and cepstral modes
3 Linear predictive models (LPC)
4 Other models
5 Speech synthesis
 - Phone concatenation
 - Diphone synthesis
Speech synthesis

- One thing you can do with models
- Easier than recognition?
 - listeners do the work
 - ... but listeners are very critical

Overview of synthesis

- normalization disambiguates text (abbreviations)
- phonetic realization from pronouncing dictionary
- prosodic synthesis by rule (timing, pitch contour)
- .. all controls waveform generation
Source-filter synthesis

- Flexibility of source-filter model is ideal for speech synthesis

- Excitation source issues:
 - voiced / unvoiced / mixture ([th] etc.)
 - pitch cycle of voiced segments
 - glottal pulse shape → voice quality?
Vocal tract modeling

- Simplest idea:
 Store a single VT model for each phoneme

 - but: discontinuities are very unnatural

- Improve by *smoothing* between templates

 - trick is finding the right domain
Cepstrum-based synthesis

- Low-n cepstrum is compact model of target spectrum

- Can invert to get actual VT IR waveform:
 \[c_n = \text{idft} (\log|\text{dft}(x[n])|) \]
 \[\rightarrow h[n] = \text{idft} (\exp(\text{dft}(c_n))) \]

- All-zero (FIR) VT response
 \rightarrow can pre-convolve with glottal pulses

- cross-fading between templates is OK
LPC-based synthesis

- Very compact representation of target spectra
 - 3 or 4 pole pairs per template
- Low-order IIR filter → very efficient synthesis
- How to interpolate?
 - cannot just interpolate a_i in a running filter
 - but: lattice filter has better-behaved interpolation

\[
e[n] \rightarrow a_1 z^{-1} \rightarrow a_2 z^{-1} \rightarrow a_3 z^{-1} \rightarrow e[n] \rightarrow s[n]
\]

- What to use for excitation
 - residual from original analysis
 - reconstructed periodic pulse train
 - parameterized residual resynthesis
Diphone synthesis

- **Problems in phone-concatenation synthesis**
 - phonemes are context-dependent
 - coarticulation is complex
 - transitions are critical to perception

→ **store transitions instead of just phonemes**

- ~40 phones → 800 diphones
- or even more context if have a larger database

- **How to splice diphones together?**
 - TD-PSOLA: align pitch pulses and cross-fade
 - MBROLA: normalized, multiband
HNM synthesis

- High quality resynthesis of real diphone units
 - parametric representation for modifications
 - pitch, timing modifications
 - removal of discontinuities at boundaries

- Synthesis procedure:
 - linguistic processing gives phones, pitch, timing
 - database search gives best-matching units
 - use HNM to fine-tune pitch & timing
 - cross-fade A_k and ω_0 parameters at boundaries

- Careful preparation of database is key
 - sine models allow phase alignment of all units
 - larger database improves unit match
Generating prosody

• The real factor limiting speech synthesis?

• Waveform synthesizers have inputs for
 - intensity (stress)
 - duration (phrasing)
 - fundamental frequency (pitch)

• Curves produced by superposition of (many) inferred linguistic rules
 - phrase final lengthening, unstressed shortening..

• Or learn rules from transcribed examples
Summary

- **Range of models:**
 - spectral
 - cepstral
 - LPC
 - Sinusoid
 - HNM

- **Range of applications:**
 - general spectral shape (filterbank) → ASR
 - precise description (LPC+residual) → coding
 - pitch, time modification (HNM) → synthesis

- **Issues:**
 - performance vs. computational complexity
 - generality vs. accuracy
 - representation size vs. quality