Lecture 12:
Audio Databases

1. ASR wrap-up
2. Spoken document retrieval
3. General audio databases
4. Open issues

Dan Ellis <dpwe@ee.columbia.edu>
http://www.ee.columbia.edu/~dpwe/e6820/
Outline

2 ASR wrap-up
 - Decoding
 - Discriminant modeling
 - Adaptation
 - Confidence measures

2 Spoken document retrieval

3 General audio databases

4 Open issues
ASR wrap-up: Decoding

- How to find the MAP word sequence?
- States, prons, words define one big HMM
 - with 100,000+ individual states for LVCSR!

→ Exploit hierarchic structure
 - phone states independent of word
 - next word (semi) independent of word history
Decoder pruning

- **Searching ‘all possible word sequences’?**
 - need to restrict search to most promising ones: beam search
 - sort by estimates of total probability
 - $\Pr(\text{so far}) + \text{lower bound estimate of remains}$
 - trade search errors for speed

- **Start-synchronous algorithm:**
 - extract top hypothesis from queue:
 \[
 \left[P_n, \{w_1, \ldots, w_k\}, n \right]
 \]
 - find plausible words $\{w^i\}$ starting at time n
 - new hypotheses:
 \[
 P_n \cdot p(X_n^{n+N-1} \mid w^i) \cdot p(w^i \mid w_k \ldots), \{w_1, \ldots, w_k, w^i\}, n + N
 \]
 - discard if too unlikely, or queue is too long
 - else re-insert into queue and repeat
Discriminant models

- **EM training of HMMs is maximum likelihood**
 - i.e. local max \(p(X_{trn} | \Theta) \)
 - converges to Bayes optimum ... in the limit

- **Decision rule is** \(\max p(X | M) \cdot p(M) \)
 - training will increase \(p(X | M_{correct}) \)
 - may also increase \(p(X | M_{wrong}) \) ...more?

- **Discriminant training tries directly to increase discrimination between right & wrong models**
 - e.g. Maximum Mutual Information (MMI)

\[
I(M_j, X|\Theta) = \log \frac{p(M_j, X|\Theta)}{p(M_j|\Theta)p(X|\Theta)}
\]

\[
= \log \frac{p(X|M_j, \Theta)}{\sum p(X|M_k, \Theta)p(M_k|\Theta)}
\]
Neural Network Acoustic Models

- Single model generates posteriors directly for all classes at once = frame-discriminant
- Use regular HMM decoder for recognition
 - set $b_i(x_n) = p(x_n|q^i) \propto p(q^i|x_n)/p(q^i)$
- Nets are less sensitive to input representation
 - skewed feature distributions
 - correlated features
- Can use temporal context window to let net ‘see’ feature dynamics:
Neural nets: Practicalities

- **Typical net sizes:**
 - input layer: 9 frames x 9-40 features ~ 300 units
 - hidden layer: 100-8000 units, dep. train set size
 - output layer: 30-60 context-independent phones

- **Hard to make context dependent**
 - problems training many classes that are similar?

- **Representation is opaque:**
 - Hidden -> Output weights
 - Input -> Hidden

[Diagram showing input -> hidden and hidden -> output connections]
Recap: Recognizer Structure

- Now we have it all!
Model adaptation

- Practical systems often suffer from *mismatch*
 - test conditions are not like training data:
 accent, microphone, background noise ...

- Desirable to continue tuning during recognition
 = adaptation
 - but: no ‘ground truth’ labels or transcription

- Assume that recognizer output is correct;
 Estimate parameters from those labels
 - like Viterbi training
 - can iterate until convergence

- Normally have little adaptation data
 - want to adapt using data from one speaker/
 condition only (clustering)
 - hence, can estimate only a few parameters
 (not update whole acoustic model)
Maximum-Likelihood Linear Regression

- Approximate mismatch as an ‘affine transform’:

- Estimate matrix to transform means of GMM components
 \[\hat{\mu}_j = A \cdot \mu_j + b \]
 - find maximum likelihood solution via EM over adaptation data
 - ML only works for transforming model, not data

- Typically 10-20% relative WER reduction
 - given enough data from one condition
Recognizer outputs

- Basic output of decoder is most probable word sequence
 SET THE DATA SCREEN

- Other possible outputs:
 - n best word sequences (with likelihoods)
 - 9076 SET THE DATA SCREEN
 - 9092 SET THE DATA SCREENS
 - 9158 CLEAR THE DATA SCREEN
 - word graph/lattice (but: LM)

post process with different constraints
Confidence measures

- Can we tell which words *might* be wrong?

- **Use** $p(X, Q| M_j) = \prod_n p(x_n| q_n)p(q_n| q_{n-1})$
 - good for comparing M_js, not observations X

- **Discriminative measures are better**
 - e.g. entropy $H[p(q^i)] = -\sum_i p(q^i)\log p(q^i)$
State of the art recognition

• e.g. 1999 NIST ‘Broadcast News’ recognition
 - real TV and radio news broadcasts
 - 100,000 word vocabulary
 - 150 hours of transcribed training data

• Features of best systems (LIMSI, Cambridge)
 - context-dependent GMM acoustic models:
 3,500 states; 300,000 Gaussians
 - speaker adaptation in training and test
 - segmentation and clustering...
 - discriminative training?

• WER Performance:
 - overall: ~14% (300x real time)
 - studio speech: 8%
 - ‘fast’ system ~17% (10x real time)
Spoken Document Retrieval (SDR)

- 20% WER is horrible for transcription
 - is it good for anything else?

- Information Retrieval (IR)
 - TREC/MUC ‘spoken documents’
 - tolerant of word error rate, e.g.:

 F0: THE VERY EARLY RETURNS OF THE NICARAGUAN PRESIDENTIAL ELECTION SEEMED TO FADE BEFORE THE LOCAL MAYOR ON A LOT OF LAW
 F4: AT THIS STAGE OF THE ACCOUNTING FOR SEVENTY SCOTCH ONE LEADER DANIEL ORTEGA IS IN SECOND PLACE THERE WERE TWENTY THREE PRESIDENTIAL CANDIDATES OF THE ELECTION
 F5: THE LABOR MIGHT DO WELL TO REMEMBER THE LOST A MAJOR EPISODE OF TRANSATLANTIC CONNECT TO A CORPORATION IN BOTH CONSERVATIVE PARTY OFFICIALS FROM BRITAIN GOING TO WASHINGTON THEY WENT TO WOOD BUYS GEORGE BUSH ON HOW TO WIN A SECOND TO NONE IN LONDON THIS IS STEPHEN BEARD FOR MARKETPLACE

- Promising application area
 - document retrieval already hit-and-miss
 - plenty of untranscribed material
The THISL SDR system

- **Original task: BBC newsroom support**

- **How to build the database:**
 - automatically record news programs ‘off air’
 - several hours per day → > 3,000 hrs
 - run recognition the whole time
 - problems storing audio!
Building a new recognizer

• No recognizer available for BBC English
 - need to develop a new one based on US English
 Broadcast News, read British English...

• Training set:
 Manual transcription of 40 hours of news
 - word-level transcription takes > 10x real-time
 - Viterbi training, starting from read speech model

• Language model:
 200M words of US & UK newspaper archives

• Dictionary:
 Standard UK-English + extensions
 - many novel & foreign words
Vocabulary extension

- News always has extra words
- Starting point: Text-to-speech rules
 - speech synthesizers’ rules for unknown words
 - but novel words are often foreign names
- Sources to identify new words
 - BBC ‘house style’ information
- Choose model by single acoustic example

- grab from TV subtitles?
Audio segmentation

- Broadcast audio includes music, noise etc.
- Segmentation is important for recognition
 - speaker identity tagging, model adaptation
 - excluding nonspeech segments
- Can use generic models of similarity/difference
- Look at statistics of speech model output

\[\text{e.g. dynamism } \frac{1}{N} \sum_n \sum_i [p(q^i_n) - p(q^i_{n-1})]^2 \]
Information retrieval: Text document IR

• Given query terms T_q, document terms $T_{D(i)}$ how to find & rank documents?

• Standard IR uses ‘inverted index’ to find:
 - one entry per term T_D, listing all documents $D(i)$ containing that term

• Documents are ranked using “tf • idf”
 - tf (term frequency) = how often term is in doc
 - idf (inverse document frequency)
 = how many (how few) docs contain term

• Performance measures
 - $precision$: (correct found)/(all found)
 - $recall$: (correct found)/(all correct)
 - mean reciprocal rank - for specific targets
Queries in Thisl

- Original idea: speech in, speech out
- Try to ‘understand’ queries
 - hand-built grammar:
 - .. but keywords better
- Phonetic matching with speech input
 - search ‘phone lattice’ recognizer output?
Thisl User Interface

- Date filters
- Speech input
- Pauses & sentence breaks shown
- Program filter
- Click-to-play
ThisL SDR performance

- **NIST Text Retrieval Conference (TREC), Spoken Documents track**
 - 500 hours of data → need fast recognition
 - set of ‘evaluation queries’ + relevance judgments

- **Components tried in different combinations**
 - different speech transcripts (subtitles, ASR)
 - different IR engines & query processing

- **Performance of systems**
 - ASR less important than IR (query expansion...)

![TREC9 Thisl results](chart)

TREC9 Thisl results

<table>
<thead>
<tr>
<th>WER / %</th>
<th>Average Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>0.4</td>
</tr>
<tr>
<td>25</td>
<td>0.4</td>
</tr>
<tr>
<td>30</td>
<td>0.5</td>
</tr>
<tr>
<td>35</td>
<td>0.5</td>
</tr>
</tbody>
</table>

- **With story boundaries**
- **No story boundaries**
Outline

1. ASR wrap-up
2. Spoken Document Retrieval
3. General audio databases
 - Nonspeech audio retrieval
 - Audio mixtures & CASA
 - Model learning
4. Open issues
Real-world audio

- **Speech is only part of the audio world**
 - word transcripts are not the whole story

- **Large audio datasets**
 - movie & TV soundtracks
 - events such as sports, news ‘actualities’
 - situation-based audio ‘awareness’
 - personal audio recording

- **Information from sound**
 - speaker identity, mood, interactions
 - ‘events’: explosions, car tires, bounces...
 - ambience: party, subway, woods

- **Applications**
 - indexing, retrieval
 - description/summarization
 - intelligent reaction
Multimedia Description: MPEG-7

- MPEG has produced standards for audio / video data compression
- MPEG-7 is a standard for metadata: describing multimedia content
 - because search & retrieval is so important
- Defines descriptions of time-specific tags, ways to define categories, specific category instances
- Also defines preliminary features e.g. for audio:
 - spectrum: centroid, spread, flatness
 - harmonicity: degree, stability
 - pitch, attack time, melody structure ...

http://www.darmstadt.gmd.de/mobile/MPEG7/Documents.html
Muscle Fish “SoundFisher”

• Access to sound effects databases

- Features (time series contours):
 - loudness, brightness, pitch, cepstra

• Query-by-example
 - direct correlation of contours (normalized/not)
 - comparison of value histograms (time-collapsed)

• Always global features
 - a mixture of two sounds looks like neither
SoundFisher user interface

- Principle query mechanism is “sounds like”
Indexing for soundtracks

- Any real-world audio will have multiple simultaneous sound sources
- Queries typically relate to one source only
 - not a source in a particular context
- Need to index accordingly:
 - analyze sound into source-related elements
 - perform search & match in that domain
Nonspeech event detection:
Alarms sounds

- Finding alarms in sound mixtures
 - representation of energy in time-frequency
 - formation of atomic elements
 - grouping by common properties (onset &c.)
 - classification by attributes

→ Computational auditory scene analysis
 - organizing sound mixtures by source
Computational Auditory Scene Analysis

- Real-world sounds come from multiple sources
- Psychoacoustics gives ‘scene analysis’ cues:
 - common onset
 - common harmonicity
- Suitable for computational models:

- What about masking & ‘illusions’?
Top-down CASA

- Data-driven (bottom-up) fails for noisy, ambiguous sounds (most mixtures!)

- Need top-down constraints:
 - fit vocabulary of generic elements to sound ... bottom of a hierarchy?
 - account for entire scene
 - driven by prediction failures
 - pursue alternative hypotheses
Outline

1. ASR wrap-up
2. Spoken document retrieval
3. General audio databases
4. Open issues
 - Speech recognition
 - Sound source separation
 - Information extraction & visualization
 - Learning from audio
Open issues 1: Speech recognition

- Speech recognition is good & improving
 - but rate of improvement has slowed:
 BN WER: 1997=22% 1998=16% 1999=14%
 - limits to benefits of additional data?

Problem areas:
- noisy speech (meetings, cellphones)
- informal speech (casual conversations)
- speaker variations (style, accent)

Is the current approach correct?
- MFCC-GMM-HMM systems are optimized
- new approaches can’t compete
- but: independence, classifier, HMMs...
Sound mixtures

- Real-world sound always consists of mixtures
 - subjective experience terms of separate sources
 - ‘intelligent’ systems must do the same

- How to separate sound sources?
 - exact decomposition (‘blind source separation’)
 - extract cues
 - overlap, masking
 → top-down approaches, analysis-by-synthesis

- How to represent & recognize sources?
 - which features, attributes?
 - hierarchy of general-to-specific classes...
Information & visualization

- Spectrograms are OK for speech, often unsatisfactory for more complex sounds
 - frequency axis, intensity axis – time axis?
 - separate spatial, pitch, source dimensions

- Visualization may not be possible
 .. but helps us think about sound features

- Different representations for different aspects
 - best for speech, music, environmental, ...
Learning from audio

- HMMs (EM, Baum-Welch etc.) have had a huge impact on speech, handwriting ...
 - very good for optimizing models
 - little help for determining model structure

- Applicable to other audio tasks?
 - e.g. textures, ambience, vehicles, instruments

- Problems:
 - finding the right model structures
 - constraining what the models learn:
 initial clustering, target labelling

- How to leverage large databases, bulk audio
 - unsupervised acquisition of classes, features
 - the analog of infant development
Outline

1. ASR details
2. ASR in practice
3. Real-world audio
4. Open issues
Course retrospective

Tools: DSP + Acoustics + Perception + Pattern recognition

Signals: Music, Speech, Other...

Applications: Models, Coding, Recognition

Indexing
Summary

- **Automatic Speech Recognizers**
 - generate wordstring hypotheses
 - can squeeze out some other information

- **Large Vocabulary recognition**
 - dictation is a limited domain
 - noisy recognition useful for indexing
 + speech understanding?

- **Recognizing nonspeech audio**
 - lots of other kinds of acoustic events
 - speech-style recognition can be applied

- **Open questions**
 - lots of things that we *know* that we *don’t know*