

DSP Project:
Audio Click Removal

Using Linear Prediction

Malcolm Knapp and Raihan Bashir

12/8/04

 1

Introduction:

Cleaning audio signals is one of the most widely used applications of digital
signal processing. There are many different types of audio signal processing but the one
this paper will focus on is click removal. Removing a click is an interesting problem
because the energy of the click exists across all frequencies. Thus signals corrupted with
clicks cannot be cleaned up solely through the use of filters. To completely remove the
click the processing has to take place only in the time domain. Therefore, the only way to
remove the click is to replace it with another signal. In this project Linear Prediction was
used to generate the replacement waveform and to allow replacement with no
discontinuities.

Theory:

Click removal consists of two problems. The first is finding the click and

replacing it with something else. The second is making sure that there are no
discontinuities between original signal and the inserted signal. Simple click removal can
deal with the first problem but is unable to deal with the second. Linear prediction,
however, solve both of these problems.
 Linear Prediction Coefficient (LPC) starts with the assumption passing a random
signal though a specific filter would produce the signal of interest. Linear Prediction
Coefficient (LPC) filtering constructs an all pole filter using prior values. Thus LPC
filtering can predict what signal should look like where the click is. The key though is
that if a signal is run through the inverse of this filter it will make the signal look like a
random signal. This means the output of the inverse filter will look like white noise. One
of the characteristics of white noise is that each point is unrelated to the points around it.
The signal is reconstructed by running the whitened signal back through the original LPC
filter. Thus, if one part of the signal replaces another part and the signal is run back
through the filter the interface between the original signal and the inserted signal will be
interpreted as if it was noise as well and reconstructed with no discontinuity.

Problem Specification:

The sound track we chose to filter with linear prediction has a periodic click in the
background. The main purpose of the project is to device an algorithm to isolate the
clicks in an iterative fashion, use linear prediction model to remove the clicks and
retrieve click free signal so that the sound quality and musical continuity of the signal is
the least affected. In diagram 1.1 we can notice the lines that represent the presence of
rather periodic clicks by taking spectrogram of the original signal.

 2

Time

Fr
eq

ue
nc

y

Diagram 1.1 Specgram analysis of the origainal signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solution Method:

From Diagram 1.1 we can notice that in terms of energy spectrum, large share of the
energy associated with the clicks exist in frequency domain greater than 0.2. Based on
this finding, our first step was to use a high pass filter with the following properties:
 [b,a]=cheby1(8,3,5000/22050,'high');
The resulting plot in the diagram 1.2 validates that we are successful in separating major
energy components (high frequency) for each click.

Time

Fr
eq

ue
nc

y

Diagram 1.2: Isolating high frequency components of the clicks with high pass filter

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 3

These are the main components for each click and the remainder of the click submerged
in the music signal has comparatively very small energy to have any audible effect. Our
following strategy involves squaring the resulting signal from the cheby filter. This will
make all the input amplitude positive and we are ready to use a single threshold to isolate
all the clicks in an iterative algorithm. We also make use of Hamming widow to smooth
out the clicks to enhance our capability to efficiently isolate and replace them with linear
coefficients. The results are visible in diagram 1.3:

0 1 2 3 4 5 6 7 8 9 10

x 104

0

1

2

3

4

5

6

7

8

9
x 10-3

Diagram 1.3 Resulting signal after squaring and passing through a Hamming window

After retrieving smooth clicks we pass it through a loop to get x values above the single
threshold amplitude 0.0005. This will give us the regions of the click that we will replace
with equal length parts of the music signal following linear prediction. In Diagram 1.4 the
blanked out region of the clicks is where we would do signal patching.

0 0.5 1 1.5 2 2.5 3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3 Diagram 1.4: Isolated regions in the click at the threashold 0.0005

 4

After a click was located an LPC filter was made from the uncorrupted samples before
the click. Then an entire section including before and after the click was run through the
inverse of the LPC filter to whiten the signal (Diagram1.5a).

The click is replaced with a corresponding length of signal. After that the whitened signal
is run through the original filter to restore the signal (Diagram 1.5b).

0 500 1000 1500 2000 2500 3000 3500 4000 -0.03

-0.02

-0.01

0

0.01

0.02

0.03
 Diagram 1.5a Signal before replacing click with Linear Prediction

 Diagram 1.5b Signal after replacing click with Linear Prediction

0 500 1000 1500 2000 2500 3000 3500 4000
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

 5

Time

Fr
eq

ue
nc

y

Diagram 1.5c: Intermediate clicks introduced by incorrect window placement

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

This method is able to remove the click and replace it with a new section of song

(Diagram 1.5c). However, initially this method produced two new clicks at the ends of
the inserted signal. The click at the beginning of the inserted signal was caused by the
fact that the inverse LPC filter was a 256-point filter. Thus it needed 256 points to fill it
up before it would begin to produce an accurate prediction. The solution to the problem
was to take the beginning of the replacement signal 256 points after the beginning of the
inverse LPC output. The other click was an echo the part of the click included in the LPC
filter. Since the LPC filter is an IIR filter all past input affects it. Thus, it would begin to
reproduce the click at the end of the inserted sample. The solution to this was to extend
the replacement sample past the end of the click. The further from the end of the click the
end of the replacement sample was the more the second click was attenuated. With the
end of the replacement signal set at1000 samples past the end the click the second click
was almost completely removed.

Time

Fr
eq

ue
nc

y

Diagram 1.1 Specgram analysis of the origainal signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 6

Time

Fr
eq

ue
nc

y

Diagram 1.6 The signal after removing the clicks with Linear Prediction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Results:
The clicks are clear in Diagram 1.1. When the sample was played these clicks were
clearly audible. Diagram 1.6 shows the spectrogram of the signal after it was passed
though the click removal process. From this diagram it is clear that the majority of the
click energy is removed. There is still some remnant energy but it is inaudible when the
sample is played.

Conclusion:
 The method could successfully find the click and replace them without causing
any discontinuities. There is still room improvement though. As a result of the click
removal process, a “wobble” has been introduced into the sample. This “wobble” is
caused by the repetition of the song where the clicks are. The “wobble is noticeable
because the size or the replacement window is large. Thus, for the future work has to be
done to minimize the window length. Another area where this method could be improved
is the threshold that determines if there was a click or not. Currently the program uses a
single threshold which works well for this simple section of song. However, this static
threshold probably would not work on another sample which had more high frequency
components or was more complex. A dynamic threshold could solve this problem by
adjusting the threshold to the local characteristics of the sample. Despite the minor
problems, this project has successfully completed all of its objectives.

 7

Appendix A: Source code

% Matlab code for the program ClickFilterFinal.m

Clear;

% y stores the snap of 4:05 to 4:15 of the track

y = wavread('08 Warning Sign.wav',[10804500 11245500]);
plot(y);
specgram(y(:,1),1024,44100);
caxis([-40 40]);

%Step 1: Isolate the high frequency components of the
%clicks

[b,a]=cheby1(8,3,5000/22050,'high');
yf = filter(b,a,y(:,1)');
%soundsc (yf, 44100)
caxis ([-80 0])
plot(yf)
hlen=1024;

%Step 2: Square the signal and smooth up with the Hamming
%window

yfpos = conv(hamming(hlen),yf.^2);
yfpos = yfpos(hlen/2 + 128:end);
test1 = (yfpos(209500+[1:100000]));
test2 = y(209500+[1:100000]);
test3 = test2;

%Step 3: Set the threshold at 0.0005 to isolate regions of
%click to be replaced by non corrupted signal

x = find(test1>.0005);
x (length (x) + 1) = 0;
K = 1;
while K < length(x)
I = K;
J = 1;
while x(I) + 1 == x(I+1)
 x1(J) = x(I);
 I = I + 1;
 J = J + 1;
end

 8

x1(J) = x (I);

gwin = 2000;
lx1 = length(x1);
flen = 256;
ye = test2((x1(1)-gwin):(x1(lx1)+4*flen));

%Step 4: LPC filter was made from the uncorrupted samples
%before the click and an entire section including before
%and after the click was run through the inverse of the LPC
%filter to whiten the signal

a = lpc(ye(1:gwin),flen);
ee = filter(a,1,ye);

%Step 5: The click is replaced with a corresponding length
%of signal

em=ee;
ee (gwin+ [1:lx1]) = ee(flen + [1:lx1]);

%Step 6: After that the whitened signal is run through the
%original filter to restore the signal

ere = filter(1,a,ee);
ex=test3([(x1(1)-gwin):(x1(lx1)+ 4*flen)]);
test3([(x1(1)-gwin):(x1(lx1)+ 4*flen)]) = ere;
K = I + 1

subplot (311)
specgram (test2)
title('Region (x1(1)-length(x1)+ [1:length(x1)- 1]) in
test2:');
subplot (312)
specgram (test3)
title('Region (x1(1)-length(x1)+ [1:length(x1)- 1]) in
test3:');
subplot (313)
specgram (test1)

clear x1;
end

