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Abstract
Classification-Based Music Transcription

Graham E. Poliner

Music transcription is the process of resolving the musical score from an
audio recording. The ability to generate an accurate transcript of a musi-
cal performance has numerous practical applications ranging in nature from
content-based organization to musicological analysis. Although trained mu-
sicians can generally perform transcription within a constrained setting, the
process has proven to be quite challenging to automate since the recognition
of multiple simultaneous notes is generally obfuscated by the harmonic series
interaction that renders music aurally pleasing.

In contrast to model-based approaches that incorporate prior assumptions
of harmonic or periodic structure in the acoustic waveform, we present a
classification-based framework for automatic music transcription. The pro-
posed system of support vector machine note classifiers temporally constrained
via hidden Markov models may be cast as a general transcription framework,
trained specifically for a particular instrument, or used to recognize higher-
level musical concepts such as melodic sequences. Although the classification
structure provides a simple and competitive alternative to model-based sys-
tems, perhaps the most important result of this thesis is that no formal acous-
tical prior knowledge is required in order to perform music transcription.

We report a series of experiments, with corresponding comparisons to alter-
native approaches, in which the proposed framework is used to transcribe
real-world polyphonic music ranging in diversity from ensemble orchestral
recordings to popular music tracks. In addition, we describe several meth-
ods for extending a limited set of labeled training data, thereby improving
the generalization capabilities of the classification system. Finally we relate
a demonstrative experiment in which the classification posteriors (i.e. the
outputs of the proposed framework) are used as an acoustic feature represen-
tation.
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1

Chapter 1

Introduction

Music elicits a plethora of responses from listeners, and as such, has received
research consideration in fields ranging from philosophy to signal processing.
Recently, the pervasiveness of music data led to the establishment of an en-
tirely new research arena, music information retrieval, specifically concerned
with developing methods for the organization and analysis of the rapidly
growing musical universe. This thesis is concerned with one such method,
automatic music transcription, and its application to content-based audio re-
trieval.

Music transcription is the process of resolving the musical score (i.e. a sym-
bolic representation) from an audio recording. Thus, transcription entails
recovering the list of note times and pitches generated by the performer or
ensemble. In this thesis, transcription is specifically defined as estimating the
fundamental frequency for the set of notes present within a frame of audio.

The ability to generate an accurate transcript of a performance has numerous
practical applications in content-based organization and musicological analy-
sis. For example, estimated transcripts may be used to identify multiple per-
formances of the same piece of music within an audio database. Alternatively,
an analysis of deviations from a reference score may be used as an instructive
device or to examine stylistic variations between a set of performances. In
addition, an automated transcription system could be used as the front-end
to a source transformation system (e.g. synthesizing an audio recording with
different instrumentation).

Trained musicians can typically transcribe polyphonic recordings within a
constrained setting (though the undertaking is often arduous); however, the
process has proven to be quite challenging to automate since the recognition
of multiple simultaneous notes is generally obfuscated by the harmonic se-
ries interaction that renders music aurally pleasing. While a single musical
note may be represented by a set of harmonics at integer multiples of the
fundamental frequency under Fourier analysis as displayed in the left pane
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Figure 1.1: Left: Short-time Fourier transform spectral representation
of a monophonic clarinet recording. Right: Spectral representation of a
polyphonic quintet recording.

of Figure 1.1, ensemble music may consist of multiple notes (with fundamen-
tal frequencies at simple ratios) that overlap in time. The coincidence of the
harmonics results in complex patterns of constructive and destructive inter-
ference in a narrowband spectral analysis as displayed in the right pane of
Figure 1.1. That is, the underlying phenomena in musical harmony signifi-
cantly complicate the corresponding analysis.

This thesis also considers the subject of melody transcription, a special case of
music transcription in which the fundamental frequency of the most salient
pitch is estimated. The melody of a piece of music is the principal part of a
composition – informally, the sequence of tones that a listener might whis-
tle or hum. As such, melody provides a concise and natural description
of music that serves as an intuitive basis for communication and retrieval
(e.g. query-by-humming). Although the fundamental mechanism required
to deploy organizational systems based on melodic content faces similar chal-
lenges to general transcription systems, melody transcription systems face the
additional challenge of discriminating the predominant note from within the
polyphony.

1.1 Contributions

In this dissertation, we propose a machine learning approach to automatic
music transcription. The proposed framework consists of a system of support
vector machine classifiers temporally constrained via hidden Markov models.
The classification-based system may be generalized to perform polyphonic
pitch estimation or trained specifically to recognize the predominant melody.
This learning-based approach to pitch transcription stands in stark contrast
to previous approaches that incorporate prior assumptions of harmonic or
periodic structure in the acoustic waveform. While the assumption that pitch
arises from harmonic components is strongly grounded in musical acoustics,
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it is not strictly necessary for transcription. As such, the main contribution of
this thesis is a demonstration of the feasibility and simplicity of a purely data
driven approach to music transcription.

In addition to the presentation of the classification-based framework and func-
tional factors that influence the performance of the approach, we propose the
use of classification posteriors as features for related music information re-
trieval tasks. An illustrative experiment is reported in which the classification
posteriors (i.e. estimated transcripts) are used as acoustic features to synchro-
nize musical scores to audio recordings. The resulting audio-transcript pairs
may be used to bootstrap the original classification system.

In order to demonstrate the plausibility of the proposed framework, we cre-
ated a corpora of labeled data for training and testing transcription systems.
The labeled testing data and evaluation metrics described in this thesis were
used to organize an international evaluation of melody transcription systems
and constituted a portion of the test data used for an similar evaluation of
polyphonic pitch estimation algorithms.

The work directly related to this thesis was reported in three journal arti-
cles [26, 54, 56] and two conference proceedings [53, 55].

1.2 Overview and Organization

The remainder of the thesis is structured as follows:

In Chapter 2, we provide a background discussion on polyphonic pitch es-
timation, melody transcription, and score to audio alignment, as well as a
summary of previous work.

In Chapter 3, we introduce the concept of classification-based music tran-
scription in the context of melody transcription. A description of the general
framework consisting of a system of support vector machines and hidden
Markov models is presented along with a corresponding analysis of the data
collection, feature selection, and classification experiments conducted.

In Chapter 4, we extend the single-estimate classification framework described
in Chapter 3 in order to perform polyphonic pitch transcription. The pro-
posed framework is presented first as a system for polyphonic piano tran-
scription then generalized for instrument-independent pitch estimation.

In Chapter 5, we examine several methods based on semi-supervised learning
and multiconditioning for enhancing a limited training set thereby increasing
the generalization capabilities of the proposed framework.

In Chapter 6, we explore the use of classification posteriors as acoustic fea-
tures for score to audio alignment and present a keystone experiment in
which the synchronized score/audio pairs are used to bootstrap the super-
vised classification system.
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Finally in Chapter 7, we make concluding remarks regarding the merits and
limitations of the classification-based framework and propose directions for
future work.
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Chapter 2

Background

In this chapter we provide background information and a discussion of prior
research in the areas of polyphonic pitch estimation, melody transcription,
and score to audio alignment. Although providing an exhaustive catalog of
previous work is impractical, we have, to the best of our knowledge, surveyed
a number of representative approaches for each of the research problems con-
sidered.

2.1 Music Transcription

Music transcription is the process of resolving a musical score from an audio
recording. As such, transcription involves recovering the list of note times
and pitches generated by a performer or ensemble. In order to automate the
transcription process, a system must estimate the set of fundamental frequen-
cies that correspond to the notes played within a given period of time (i.e.
detecting the pitch, onset, and duration of each note).

Automated music transcription has a rich signal processing history dating
back into the 1970s. In [47], Moorer proposed a limited system for duet tran-
scription. Since then, a long thread of research has gradually improved tran-
scription accuracy and reduced the scope of constraints (e.g. limitations on
the number of concurrent notes or confinement to a specific instrument) re-
quired for successful transcription1; however, we are still far from a system
that can automatically convert a recording into an accurate transcript in an un-
constrained setting. Nonetheless, automatic music transcription has garnered
a significant amount of research attention since such a system would have
numerous practical implications in musicological analysis and content-based
retrieval.

1A recent summary of the field is available in [40].
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System Front end Multi-pitch Note events Post-processing
Ryynänen [62] |STFT| Harmonic

sieve
HMM

Smaragdis [68] |STFT| NMF – –
Marolt [43] Harmonic os-

cillators
Neural Nets Onset detection ad hoc algorithms

Kameoka [37] Power spectrum clustering via EM – –
Martin [45] Auditory cor-

relogram
Blackboard hypotheses heuristics

Davy [46] AR/harmonic
model

Bayesian network –

Cemgil [8] Stochastic
processes

Bayesian network –

Bello [2] Time domain Mixing ma-
trix, phase-
alignment to a
database

– –

Table 2.1: Representative polyphonic transcription algorithms. For
brevity, systems are referred to by their first author alone.

The algorithm structure and characteristic design parameters for a represen-
tative set of (western tonal music) polyphonic pitch transcription systems is
displayed in Table 2.1. For example, all transcription systems must select a
domain in which to examine the audio signal (e.g. spectrum or time domain),
adopt an approach for handling temporal overlap of simultaneous notes with
different periods, and may include further processing to organize frame-level
pitch estimates into structured note events. The first column of the table,
“Front end”, describes the various signal processing approaches applied to
the input audio in oder to reveal the pitch content. The most common tech-
nique is to apply the magnitude of the short-time Fourier transform (denoted
|STFT| in the table). In the |STFT| representation, pitched notes appear as
a ‘ladder’ of more-or-less stable harmonics in the spectrogram as displayed
in Figure 1.1. Unlike the time waveform itself, |STFT| is invariant to relative
or absolute time or phase shifts in the harmonics because the STFT phase is
discarded. This result is convenient since perceived pitch has essentially no
dependence on the relative phase of (resolved) harmonics, and it makes the
transcription invariant to the alignment of the analysis time frames. Since
the frequency resolution of the STFT improves with temporal window length,
these systems tend to employ long windows (e.g. 50 to 100 ms or more).

As an alternative to the STFT, Martin applies the log-lag correlogram [25],
which is based on the short-time autocorrelation correlogram described in [67].
Like the |STFT|, the autocorrelation (which may be calculated by taking the
inverse Fourier transform of the |STFT|) is phase invariant. Rather than ex-
plicitly calculating a Fourier transform, Davy proposed an autoregressive-
based polyphonic harmonic model in order to represent the acoustical en-
ergy. Although the system proposed by Cemgil does not strictly calculate a
Fourier transform or implement a sinusoidal model, the signal is modeled by
a stochastic process that typically results in periodic oscillations.
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In stark contrast to the systems discussed above, Bello does not attempt to
model the frequency domain characteristics of the signal at all. Instead, seg-
ments under consideration are phase-aligned in the time domain and tran-
scription is performed via a database comparison to previously seen notes.
As such the proposed time-domain implementation is necessarily restricted
to cases in which the phase relationship between partials in a given note may
be assumed to be reproducible (e.g. piano notes) and essentially limited to
the monophonic case for practical purposes due to the computational expense
of calculating and storing representative phase combinations.

Kameoka proposed harmonic temporal structured clustering (HTC), a method
with similarities to earlier work by Goto [33], which attempts to perform the
front-end feature extraction and multi-pitch estimation cooperatively. The
HTC model decomposes the energy patterns of the power spectrum (as cal-
culated using a Gabor-based wavelet transform) into clusters such that each
group corresponds to a single source. The sources are then modeled by a
mixture of two dimensional Gaussians that are constrained harmonically in
frequency and continuously in time. Transcription is performed by fitting
mixtures of the source models to the observed power spectrum by updating
model parameters and clustering the energy patterns via expectation maxi-
mization (EM).

The “Multi-pitch” column of Table 2.1 addresses how the representative sys-
tems deal with estimating the multiple periodicities present in the polyphonic
audio. Systems that apply the |STFT| typically perform transcription by iden-
tifying the set of fundamental frequencies corresponding to the observed har-
monic series. This operation is generally performed by implementing a ‘har-
monic sieve’ [31, 23], which, in principle, considers each possible fundamental
by integrating evidence from every predicted harmonic location. One weak-
ness of this approach is its susceptibility to reporting a spectrum one octave
too high, since if all the harmonics of a fundamental frequency f0 are present,
then the harmonics of a putative fundamental 2 f0 will also be present. The
multi-pitch identification stage of Ryynänen’s implementation [39] is essen-
tially an iterative harmonic sieve; however, lower fundamentals are identified
first and the spectrum is modified at each iteration in order to remove the
energy associated with the identified pitch, thereby removing evidence for
octave transpositions.

Martin performed multi-pitch detection and note event modeling simultane-
ously by implementing a blackboard system [25]. The proposed framework
incorporated knowledge ranging from the low-level correlogram features de-
scribed above to hypotheses of note structure and musical rules in order to
perform transcription.

The remaining representative systems perform multi-pitch estimation using
conventional machine learning techniques. In addition to many others, Smaragdis
performs polyphonic pitch estimation via non-negative matrix factorization
(NMF) [41], an unsupervised learning technique popular in audio scene anal-
ysis that learns harmonic structure from the magnitude spectra. In the sys-
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tem proposed by Marolt, transcription is achieved by using neural networks
to classify the outputs of adaptive harmonic oscillators. Likewise, Davy em-
ploys a Bayesian framework based on Markov Chain Monte Carlo sampling
of harmonic oscillator posterior distributions. Finally, the graphical model
proposed by Cemgil emulates sound generation by incorporating prior infor-
mation on music structure with low-level acoustical analysis in a switching
Kalman filter framework.

The “Note events” and “Post-processing” columns of Table 2.1 relate how, if
at all, the representative multiple fundamental frequency transcription sys-
tems convert pitch estimates to the note-level of abstraction. Whereas Martin,
Davy, and Cemgil consider notes (or at least onsets) in tandem with pitch
estimation2, a number of transcription systems integrate musicological con-
siderations in a separate stage. Systems such as those proposed by Marolt
and Martin employ heuristics in order to incorporate a representation of mu-
sical knowledge or common errors (e.g. removing octave transpositions). In
contrast, Ryynänen resolves note events with a hidden Markov model (HMM)
that incorporates musicological considerations (e.g. key estimates and bigram
models) and imposes temporal consistency on the multi-pitch estimations.

2.2 Melody Transcription

Melody transcription is a special case of music transcription that entails esti-
mating the fundamental frequency of the ‘predominant pitch’ within a polyphony,
loosely defined as the dominant perceived melody note. In the context of
identifying the main melody within multi-instrument music, the music tran-
scription problem is further complicated because although multiple pitches
may be present at the same time, at most just one of them will be the melody.
Thus, all approaches to melody transcription face two problems: identifying
a set of candidate pitches that appear to be present at a given time, then
discriminating which (if any) of those pitches correspond to the melody.

For the scope of this thesis, we define melody as the single (monophonic)
pitch sequence that a listener might reproduce if asked to whistle or hum a
piece of polyphonic music (i.e. the sequence a listener would recognize as
being the ‘essence’ of a piece of music). In particular, much of popular mu-
sic contains a ‘lead vocal’ line, a sung contour which is typically the most
prominent source in the mixture, that listeners have no trouble distinguishing
from the background accompaniment. However, classical orchestral music
and richly polyphonic piano compositions commonly possess a single, promi-
nent melody line that can be agreed upon by most listeners. Thus, while we
are in the dangerous position of setting out to quantify the performance of
automatic systems seeking to transcribe something that is not strictly defined,
there is some hope we can conduct a meaningful evaluation.

2The temporal clustering proposed by Kameoka may also be akin to note-level segmentation.
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System Front end Multi-pitch No.
pitch

Onset
events

Post-
processing

Voicing

Dressler [21] |STFT|+sines Harmonic
model fit

5 Fragments Streaming
rules

Melody+
local
thresh.

Marolt [44] |STFT|+sines EM fit of
tone models

> 2 Fragments Proximity
rules

Melody
grouping

Goto [33] Hierarchic
|STFT|+sines

EM fit of
tone models

> 2 – Tracking
agents

continuous

Ryynänen [63] |STFT| Harmonic
sieve

2 Note on-
sets

HMM Background
model

Paiva [50] Auditory
correlogram

Summary
autocorrela-
tion

> 2 Pitches Pruning
rules

Melody
grouping

Vincent [76] YIN / Time
windows

Gen. model
inference

5 / 1 – HMM continuous

Table 2.2: Representative melody transcription algorithms. For brevity,
systems are referred to by their first author alone.

In [35, 33], Goto proposed identifying a single, dominant periodicity over the
main musical spectral range (plus a single low-frequency bass line estimate)
which he referred to as “Predominant-F0 Estimation” or PreFEst. In Goto’s
system, the predominant fundamental is generally recognizable as the melody
of the polyphonic music, and as such, the system provides a representative
“sketch” of popular music. Such a representation may be used to implement
a number of practical systems such as query-by-humming [30] or as a tool
to analyze musicological primitives, and as a result, a great deal of research
has recently taken place with respect to automatic melody transcription as
summarized by the representative systems in Table 2.2.

The “Front end” column of Table 2.2 describes the various signal processing
approaches applied to input audio in oder to reveal the pitch content. As was
the case for general music transcription, the most common technique is to
apply the magnitude of the short-time Fourier transform. In a slightly more
complex implementation, Goto uses a hierarchy of STFTs in order to improve
frequency resolution, down-sampling the original 16 kHz audio through 4

factor-of-2 stages resulting in a 512 ms window at the lowest (i.e. 1 kHz)
sampling rate. Since musical semitones are logarithmically spaced with a
ratio between adjacent fundamental frequencies of 21/12 ≈ 1.06, to preserve
semitone resolution down to the lower extent of the pitch range (i.e. below
100 Hz) requires these longer windows. Dressler, Marolt, and Goto further
reduce their magnitude spectra by recording only the sinusoidal frequencies
estimated as relating to prominent peaks in the spectrum, using a variety of
techniques (such as instantaneous frequency [29]) to exceed the resolution of
the STFT bins.

A number of systems apply autocorrelation as an alternative to the STFT. In
the representative systems listed, Paiva uses the Lyon-Slaney auditory model
up to the summary autocorrelation [67], and Vincent uses a modified version
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of the YIN pitch tracker [18] to generate candidates for time-domain model
inference. The Lyon-Slaney model calculates autocorrelation on an approxi-
mation of the auditory nerve excitation, which separates the original signal
into multiple frequency bands, then sums the normalized results. In order to
perform multi-pitch detection, Paiva simply identifies the largest peaks in the
summary autocorrelation. Although YIN incorporates autocorrelation across
the full frequency band, Vincent performs the calculation based on the STFT
representation, and reports gains from some degree of across-spectrum en-
ergy normalization. Interestingly, because the resolution of autocorrelation is
a function of the sampling rate rather than the window length, Paiva uses a
significantly shorter window of 20 ms, and considers periods only out to 9 ms
lag (110 Hz).

The “Multi-pitch” column of Table 2.2 addresses how the representative sys-
tems deal with distinguishing the multiple periodicities present in the poly-
phonic audio, and the following column, “No. pitch”, quantifies the number
of simultaneous pitches reported at any time. Systems that apply the |STFT|
transcribe the melody note by identifying the fundamental frequency of the
harmonic series (even though there need not be any energy at that fundamen-
tal for humans to perceive the pitch), generally performed by implementing
a harmonic sieve. Ryynänen’s melody transcription implementation employs
the same iterative harmonic sieve multi-pitch stage as the polyphonic system
described above.

Goto proposed an expectation maximization technique for estimating weights
over all the possible fundamentals in order to jointly explain the observed
spectrum. As such, the different fundamentals effectively compete for har-
monics, a process that is largely successful in resolving octave ambiguities.
Marolt modified the EM procedure slightly to incorporate perceptual prin-
ciples and to consider, exclusively, fundamentals that are equal to (or one
octave below) observed frequencies. As a result, EM assigns weights to ev-
ery possible pitch (most of which are very small), and the largest weighted
frequencies are taken as the potential pitches at each frame (with two to five
pitches typically considered).

Although Vincent uses autocorrelation in order to estimate up to five candi-
date pitches, the core of his system is a generative model for the time-domain
waveform within each window that includes parameters for fundamental fre-
quency, overall gain, amplitude envelope of the harmonics, the phase of each
harmonic, and a background noise term that scales according to local energy
in a psychoacoustically-derived manner. The optimal parameters are inferred
for each candidate fundamental, and the one with the largest posterior prob-
ability under the model is chosen as the melody pitch at that frame.

The “Onset events” column of Table 2.2 reflects that only some of the repre-
sentative systems attempt to incorporate note (or note-series) level analysis.
The systems proposed by Goto and Vincent simply estimate a single melody
pitch at every frame and do not attempt to form them into higher-level note-
type structures. Dressler and Marolt, however, track the amplitude variation
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in the harmonic sets (since there may still be multiple candidate notes) in or-
der to form distinct fragments of more-or-less continuous pitch and energy.
Paiva attempts to resolve the continuous pitch tracks into piecewise-constant
frequency contours, thereby removing effects such as vibrato and slides be-
tween notes in order to provide a representation closer to the underlying,
discrete melody sequence.

Ryynänen uses a hidden Markov model that provides distributions over fea-
tures including an ‘onset strength’ related to the local temporal derivative of
total energy associated with a pitch. The first, “attack”, state models the sharp
jump in onset characteristics expected for new notes, although a bimodal dis-
tribution also allows for notes that begin more smoothly; the following “sus-
tain” state is able to capture the greater salience (energy), narrower frequency
spread, and lesser onset strength associated with continuing notes. Thus,
new note events can be detected simply by noting transitions through the on-
set state for a particular note model in the best-path (Viterbi) decoding of the
HMM.

The “Post-processing” column of Table 2.2 examines how the raw (multi)
pitch tracks are further refined in order to produce the final melody estimates.
In the systems proposed by Dressler, Marolt, and Paiva, post-processing in-
volves selecting a subset of the notes or note fragment elements to form a
single melody line, including gaps where no melody note is selected. In each
case, the post-processing is achieved by applying sets of rules that attempt to
capture the continuity of realistic melodies in terms of energy and pitch (e.g.
avoiding or deleting large, brief, frequency jumps). Rules may also include
some musical insights, such as preference for a particular pitch range, and
for the highest or lowest (outer) voices in a set of simultaneous pitches (a
polyphony). Although the system proposed by Goto does not employ an in-
termediate stage of note elements, it does distinguish between multiple pitch
candidates via a set of interacting “tracking agents” – alternate hypotheses of
the current and past pitch – that compete to acquire the new pitch estimates
from the current frame, and that live or die based on a continuously-updated
penalty that reflects the total strength of the past pitches they represent; the
strongest agent determines the final pitch reported.

Ryynänen and Vincent both use HMMs in order to limit the dynamics of
their pitch estimates (i.e. to provide a degree of smoothing that favors slowly-
changing pitches). Ryynänen simply connects the per-note HMMs described
above through a third, noise/background, state, and incorporates musicologically-
informed transition probabilities that vary depending on an estimate of the
current chord or key [74]. Vincent uses an HMM simply to smooth pitch
sequences, training the transition probabilities as a function of interval size
from the ground-truth melodies in the 2004 evaluation set.

The “Voicing” column of Table 2.2 considers how, specifically, the systems dis-
tinguish between the intervals where the melody is present and those where
it is silent (gaps between melodies). Goto and Vincent simply report their
best pitch estimate at every frame and do not admit gaps. As discussed
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System Features Similarity Synchronization
Raphael [60] “Activity” and |STFT| HMM
Orio & Schwarz [49] Peak Structure Distance DP
Hu et al. [36] Chroma Euclidian Distance DP
Turetsky & Ellis [72] |STFT| Cosine Distance DP

Table 2.3: Representative score to audio alignment algorithms.

above, the selection of notes or fragments in the systems proposed by Dressler,
Marolt, and Paiva naturally leads to gaps where no suitable element is se-
lected; Dressler augments this with a local threshold to discount low-energy
notes.

2.3 Score to Audio Alignment

Score to audio alignment is the process of synchronizing a symbolic repre-
sentation with a recording. For many recordings, a corresponding score is
available in the form of sheet music or a MIDI transcript. Since a recorded
performance is not an exact recreation of the score, expressive and stylistic
variations exist between different interpretations of the same piece of music.
As such, developing a time mapping between the note labels and audio events
in a given recording enables an analysis of variations between performances
and has a number of practical applications ranging from content-based in-
dexing to automatic music accompaniment. We note that the basic theory of
score to audio alignment is very similar in nature to string matching in speech
recognition [58] and biological sequence analysis [24].

In the majority of cases, score to audio alignment algorithms may be bro-
ken down into three stages: acoustic feature analysis, feature similarity (or
distance) calculation, and time synchronization. Typically, a set of acoustic
features is calculated for both the recorded audio and a synthesis of the refer-
ence transcript. Then, a similarity calculation is performed by comparing the
pairs of acoustic feature vectors at discrete time steps, a process that results
in a distance matrix. Finally, time alignment is accomplished by identifying
the least cost path through the distance matrix. Table 2.3 displays the charac-
teristic attributes for several score to audio alignment systems.

Like [17, 73], Raphael [60] sought to provide a framework for automatic mu-
sical accompaniment. Monophonic recordings were aligned to a reference
score by identifying the optimal sequence of local note estimates via a hidden
Markov model. The note sequence was observed by estimating the fundamen-
tal frequency of the performance in the magnitude-STFT domain, gated by a
normalized energy, “activity”, measure. In contrast to the other representative
approaches, Raphael uses a HMM to perform the time-alignment. Although
the HMM framework has the potential to learn sequence structure, it is di-
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rectly interchangeable with dynamic time warping (DTW) [58] for pairwise
sequence alignment.

Whereas the remaining approaches perform feature analysis on a feature-
domain realization generated from the score by some kind of synthesis, Orio
and Schwarz [49] attempted to avoid employing an explicit score synthesis to
achieve alignment. As such, they proposed a specialized similarity measure,
the peak structure distance (PSD). For a given set of notes from the score, PSD
hypothesizes the locations of associated harmonics in the spectrum (taking for
example the first 8 multiples of the expected fundamentals), then calculates
the similarity of the observed spectral frames to the set of notes as the pro-
portion of the total spectral energy that occurs within some narrow window
around the predicted harmonics. As the actual spectrum tends towards pure
sets of harmonics at the correct frequencies, the similarity tends to 1. This is
then converted to a distance by subtracting the similarity estimate from 1. As
a result, the measure neatly avoids having to model the relative energies at
each harmonic.

Hu et al. [36] and Turetsky and Ellis [72] calculate acoustic features based
on the magnitude-STFT; however, Hu et al. map each bin of the fast Fourier
transform (FFT) into the corresponding chroma classes (i.e. the 12 semitones
within an octave) they overlap, and Turetsky and Ellis explore a number of
magnitude-STFT feature normalizations in order to reduce the timbral depen-
dency on the consistency of the synthesis. In addition, the approaches differ
in that Turetsky and Ellis calculate the similarity matrices based on the inner
product (i.e. cosine distance) whereas Hu et al. apply a Euclidian distance
metric.

Identifying the least cost path through a large distance matrix can become
quite computationally expensive. As such, a number of methods have been
proposed in order to optimize the dynamic programming (DP) search such
as [20, 38].

2.4 Summary

In this chapter, we presented a background discussion and analysis of rep-
resentative research pertaining to polyphonic pitch estimation, melody tran-
scription, and score to audio alignment. A wide variety of approaches were
reported; however a number of common themes were identified as well (e.g.
the popularity of the |STFT| feature representation). In the following chap-
ters, we too employ the |STFT| front-end; however, we adopt an agnostic
approach to transcription in which classifiers are left to infer whatever regu-
larities may exist in the representation of training examples taken from real
music audio recordings.
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Chapter 3

Melody Transcription

In this chapter, we introduce the concept of classification-based music tran-
scription in the context of melody note discrimination. Supervised classifiers
trained directly from acoustic features are used to identify the predominant
melody note in a frame of audio, and the overall note sequence is smoothed
via a hidden Markov model in order to reflect the temporal consistency of
actual melodies. The training data has the single greatest influence on any
classification system, and as such, we begin our investigation by describing
the collection and generation of the audio data. We present several acoustic
features and normalizations for classification and make feature comparisons
based on a baseline all-versus-all support vector machine framework. In or-
der to examine the effect of classification structure on transcription accuracy,
we explore different frame-level pitch classifiers and consider the problem of
distinguishing voiced (melody) and unvoiced (accompaniment) frames. Fi-
nally, we describe the addition of temporal constraints from hidden Markov
models and provide an empirical analysis of the classification-based system
with comparisons to alternative approaches.

3.1 Audio Data

Supervised training of a classifier requires a corpus of labeled feature vectors.
In general, larger quantities of eclectic training data will give rise to more
accurate classifiers. In the classification-based approach to transcription, then,
a significant challenge becomes collecting suitable training data. Although the
availability of digital scores aligned to real recordings is very limited, there are
a number of alternative sources for obtaining relevant data. We investigated
using multitrack recordings and MIDI files as training data, and we evaluated
the proposed approach on recently developed standard test sets.
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3.1.1 Multitrack Recordings

Popular music recordings are typically created by layering a number of in-
dependently recorded audio tracks. In some cases, artists (or their record
companies) make available separate vocal and instrumental tracks as part of
a CD or 12” vinyl single release. The a capella vocal recordings can be used
to create ground truth for the melody in the full ensemble music, since a solo
voice can usually be tracked at high accuracy with standard pitch tracking
systems [70, 18]. Therefore, we can construct a set of ground truth labels as
long as we can identify the temporal alignment between the solo track and the
full recording (melody plus accompaniment). Note that the a capella record-
ings are only used to generate ground truth; the classifier is not trained on
isolated voices since we do not expect to use it to transcribe such data.

A collection of multitrack recordings was obtained from genres such as jazz,
pop, R&B, and rock. The digital recordings were read from CD, then down-
sampled into monaural files at a sampling rate of 8 kHz. The 12” vinyl record-
ings were converted from analog to digital mono files at a sampling rate of
8 kHz. For each song, the fundamental frequency of the melody track was esti-
mated using the fundamental frequency estimator in WaveSurfer, which is de-
rived from ESPS’s get f0 [66]. Estimations of the fundamental frequency were
calculated at frame intervals of 10 ms and limited to the range 70–1500 Hz.

Dynamic Time Warping was used to align the a capella recordings and the
full ensemble recordings following the procedure described in [72]. This
time alignment was smoothed and linearly interpolated in order to achieve a
frame-by-frame correspondence. The alignments were manually verified and
corrected using WaveSurfer’s graphical user interface in order to ensure the
integrity of the training data. Target labels were assigned by calculating the
closest MIDI note number to the monophonic estimation. An illustration of
the training data generation process is displayed in Figure 3.1.

The collection of multitrack recordings resulted in 12 training excerpts rang-
ing in duration from 20 s to 48 s. Only the voiced portions of each excerpt
were used for training (we did not attempt to include an ‘unvoiced’ class at
this stage), resulting in 226 s (i.e. 3:46) of training audio, or 22,600 frames at
a 10 ms frame rate.

3.1.2 MIDI Audio

MIDI was created by the manufacturers of electronic musical instruments as
a digital representation of the notes, times, and other control information re-
quired to synthesize a piece of music. As such, a MIDI file amounts to a
digital music score that can easily be converted into an audio rendition. Ex-
tensive collections of MIDI files exist consisting of numerous transcriptions
from diverse genres. The MIDI training data used in the following exper-
iments was composed of several frequently downloaded pop songs from
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Figure 3.1: Examples from training data generation. The fundamental
frequency of the isolated melody track (top pane) was estimated and
time-aligned to the complete audio mix (center). The fundamental fre-
quency estimates (overlaid on the spectrogram), rounded to the nearest
semitone were used as target class labels. The bottom panel shows the
power of the melody voice relative to the total power of the mix (in dB);
if the mix consisted only of the voice, this would be 0 dB.

http://www.findmidis.com. The training files were converted from the stan-
dard MIDI file format to monaural audio files with a sampling rate of 8 kHz
using the MIDI synthesizer in Apple’s iTunes. Although completely synthe-
sized (with the lead vocal line often assigned to a wind or brass voice), the
resulting audio is quite rich, with a broad range of instrument timbres and
production effects such as reverberation.

In order to identify the corresponding ground truth, the MIDI files were
parsed into data structures containing the relevant audio information (i.e.
tracks, channels numbers, note events, etc), and the melody was isolated and
extracted by exploiting MIDI conventions. Commonly, the lead voice in pop
MIDI files is stored in a monophonic track on an isolated channel. In the case
of multiple simultaneous notes in the lead track, the melody was assumed to
be the highest note present. Target labels were determined by sampling the
MIDI transcript at the precise times corresponding to the analysis frames of
the synthesized audio.

We selected five MIDI excerpts for training, each around 30 s in length. 125 s
(12,500 frames) of training audio remained after we removed the unvoiced
frames from the training pool.

http://www.findmidis.com
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Category Style Melody Instrument
Daisy Pop Synthesized voice
Jazz Jazz Saxophone
MIDI Folk (2), Pop (2) MIDI instruments
Opera Classical opera Male voice (2), Female voice (2)
Pop Pop Male Voice

Table 3.1: Summary of the ADC 2004 melody contest test data. Each
category consists of 4 excerpts, each roughly 20 s in duration. The 8 seg-
ments in the Daisy and MIDI categories were generated using a synthe-
sized lead melody voice, and the remaining categories were generated
using multitrack recordings.

3.1.3 Resampled Audio

When the availability of a representative training set is limited, the quantity
and diversity of musical training data may be extended by resampling the
recordings to effect a global pitch shift. The multitrack and MIDI record-
ings were resampled at rates corresponding to symmetric semitone frequency
shifts over the chromatic scale (i.e. ±1, 2, . . . 6 semitones); the expanded train-
ing set consisted of all transpositions pooled together. The ground truth labels
were shifted accordingly and linearly interpolated to maintain time alignment
(because higher pitched transpositions also acquire a faster tempo). Using
this approach, we created a smoother distribution of the training labels and
reduced bias toward the specific pitches present in the training set. The clas-
sification approach relies on learning separate decision boundaries for each
individual melody note with no direct mechanism to ensure consistency be-
tween similar note classes (e.g. C4 and C#4), or to improve the generalization
of one note-class by analogy with its neighbors in pitch. Using a transposition-
expanded training restores some of the advantages we might expect from a
more complex scheme for tying the parameters of pitchwise-adjacent notes:
although the parameters for each classifier are separate, classifiers for notes
that are similar in pitch have been trained on transpositions of many of the
same original data frames. Resampling expanded the total training pool by a
factor of 13 to around 456,000 frames.

3.1.4 Validation and Test Sets

Research progress benefits when a community agrees on a consistent defini-
tion of their problem of interest, then goes on to define and assemble stan-
dard tests and data sets. Recently, the music information retrieval community
developed formal evaluations for the melody transcription problem, starting
with the Audio Description Contest at the 2004 International Conference on
Music Information Retrieval (ISMIR/ADC 2004) [32] and continuing with the
Music Information Retrieval Evaluation eXchange (MIREX) [56]. The ADC
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Melody Instrument Style
Human voice (8 f, 8 m) R&B (6), Rock (5), Dance/Pop (4), Jazz (1)
Saxophone (3) Jazz
Guitar (3) Rock guitar solo
Synthesized Piano (3) Classical

Table 3.2: Summary of the MIREX 2005 melody evaluation test data.

2004 test set for melody estimation is composed of 20 excerpts, four from
each of five styles, each lasting 10-25 s, for a total of 366 s of test audio. A
description of the data used in the 2004 evaluation is displayed in Table 3.1.
The corresponding reference data was created by using SMSTools [6] to esti-
mate the fundamental frequency of the isolated, monophonic melody track
at 5.8 ms steps. As a convention, the frames in which the main melody is
unvoiced were labeled 0 Hz. The transcriptions were manually verified and
corrected using the graphical user interface in order to ensure the quality of
the reference transcriptions. Unless otherwise noted, the ADC 2004 test set
was used as the development set in the experiments described in this chapter.

Since the ADC 2004 data was distributed after the competition, an entirely
new test set of 25 excerpts was collected for the MIREX 2005 evaluation con-
sisting of 25 excerpts ranging in length from 10-40 s, providing 536 s of total
test audio. The same audio format was used as in the 2004 evaluation; how-
ever, the ground-truth melody transcriptions were generated at 10 ms steps
(in order to accommodate non-frame-based approaches) using the ESPS get f0
method implemented in WaveSurfer [66]. As displayed in Table 3.2, the 2005

test data was more heavily biased toward a pop-based corpora rather than
uniformly weighting the segments across a number of styles or genres as in
the 2004 evaluation. The shift in the distribution was motivated both by the
relevance of commercial applications for music organization and by the avail-
ability of multitrack recordings in the specified genres. Since the 2005 test set
is more representative of real-world recordings, it is inherently more complex
than the preceding test set. In Section 3.6, we evaluate the classification-based
system on the MIREX 2005 test set and provide comparisons to a number of
alternative approaches to melody transcription.

3.2 Acoustic Features

The acoustic feature representation described in this chapter is based on the
ubiquitous and well-known spectrogram, which converts a sound waveform
into a distribution of energy over time and frequency. The spectrogram is
commonly displayed as a pseudo-color or grayscale image as shown in the
middle pane of Figure 3.1, and the basic acoustic features for each time-frame
may be considered vertical slices through such an image. Specifically, the
original music recordings (melody plus accompaniment) were combined into
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a single (mono) channel and down-sampled to 8 kHz. The short-time Fourier
transform was applied using N = 1024 point transforms (i.e. 128 ms), an N-
point Hanning window, and an 80 point advance between adjacent windows
(for a 10 ms hop between successive frames). Only the coefficients correspond-
ing to frequencies below 2 kHz (i.e. the first 256 spectral bins) were used in
the representative feature vector.

An analysis of preprocessing schemes was made by measuring the influence
of feature normalization on a baseline classifier. A C-way, all-versus-all (AVA)
algorithm for multi-class discrimination based on support vector machines
trained by sequential minimal optimization [52] as implemented in the Weka
toolkit [78] was used as the baseline pitch classifier in the acoustic feature
comparison. In this scheme, a majority vote was taken from the output of
(C2 − C)/2 discriminant functions, comparing every possible pair of classes.
For computational reasons, the AVA classification experiments were restricted
to a linear kernel.

Each audio frame was represented by a 256-element input vector, with C = 60
classes corresponding to five-octaves of semitones from G2 to F#7. In order
to classify the dominant melodic pitch for each frame, we assume the melody
note at a given instant to be solely dependent on the normalized frequency
data below 2 kHz. For the acoustic feature analysis experiments, we further
assume each frame to be independent of all other frames. Additional experi-
ments and details regarding the classification framework will be presented in
Section 3.3.

Separate AVA classification systems were trained using six different feature
normalizations. Of these, three feature sets were based on the STFT, and three
were based on the (pseudo)autocorrelation. In the first feature representation,
the audio data was simply represented by the magnitude of the STFT normal-
ized such that the the energy in each frame was bounded by zero and one.
For the second case, the magnitudes of the spectral bins were normalized by
subtracting the mean and dividing by the standard deviation calculated in
a 71-point sliding frequency window along the columns of the spectrogram.
The goal of the 71-point normalization feature is to remove some of the vari-
ational influence due to differences in instrumentation and context between
the training and testing data. For the third STFT-based normalization scheme,
cube-root compression, which is commonly used as an approximation to the
loudness sensitivity of the ear, was applied to the magnitude STFT in order
to make larger spectral magnitudes appear more similar.

In order to create the fourth set of features, the autocorrelation was calculated
by taking the inverse Fourier transform (IFT) of the magnitude of the STFT
for the original windowed waveform. Similarly, the fifth feature set, the cep-
strum, was generated by calculating the IFT of the log-STFT-magnitude. Note
that the cepstrum also performs a sort of timbral normalization because the
overall gain and broad spectral shape are separated into the first few cepstral
bins whereas periodicity appears at the higher indexes. In addition, we at-



3. Melody Transcription 21

Training data
Normalization Multitrack MIDI Both
STFT 56.4% 50.5% 62.5%
71-pt norm 54.2% 46.1% 62.7%
Cube root 53.3% 51.2% 62.4%
Autocorr 55.8% 45.2% 62.4%
Cepstrum 49.3% 45.2% 54.6%
LiftCeps 55.8% 45.3% 62.3%

Table 3.3: Effect of normalization: raw pitch accuracy results on a with-
held portion of the training set for each of the normalization schemes
considered, trained on either multitrack audio alone, MIDI syntheses
alone, and both data sets combined. (The size of the training sets was
held constant, so the results are not directly comparable to the other
results reported in this chapter.)

tempted to normalize the autocorrelation-based features by liftering (scaling
the higher-order cepstral by an exponential weight).

A comparison of the raw pitch accuracy for the classifiers trained on each
of the different normalization schemes is displayed in Table 3.3. We show
separate results for the classifiers trained on multitrack audio alone, MIDI
syntheses alone, and both data sources combined. The raw pitch accuracy
results correspond to melodic pitch transcription to the nearest semitone.

The most obvious result displayed in Table 3.3 is that all the features, with
the exception of the cepstrum, result in a very similar transcription accuracy
(although the across-frequency local normalization provides a slight perfor-
mance advantage). This result is not altogether surprising since all the fea-
tures contain largely equivalent information, but it also raises the question
as to how effective the normalization (and hence the system generalization)
has been. It may be that a better normalization scheme remains to be discov-
ered. Looking across the columns in the table, we see that the more realistic
multitrack data forms a better training set than the MIDI syntheses, which
have much lower acoustic similarity to most of the evaluation excerpts. Us-
ing both, and hence a more diverse training set, always gives a significant
accuracy boost – up to 9% absolute improvement, as observed for the best-
performing 71-point normalized features.

The impact of including the training data transposed by resampling over ±6
semitones is displayed in Table 3.4. The inclusion of the resampled data re-
sults in a substantial 7.5% absolute improvement in raw pitch accuracy, an
effect that underscores the value of broadening the range of data seen for
each individual note.
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Training Set # Training Frames Raw Pitch Acc
No resampling 8,500 60.2%
With resampling 110,500 67.7%

Table 3.4: Impact of resampling the training data: raw pitch accuracy re-
sults on the ADC 2004 test set for systems trained on the entire training
set, either without any resampling transposition, or including transpo-
sitions out to ±6 semitones (i.e 500 frames per transposed excerpt, 17

excerpts, 1 or 13 transpositions).

3.3 Melody Classification

In the previous section, we showed that classification accuracy seems to de-
pend more strongly on training data diversity than on feature normalization.
It may be that the SVM classifier applied in the acoustic feature analysis was
better able to generalize than the explicit feature normalizations. In this sec-
tion, we examine the effects of different classifier types on transcription accu-
racy and the influence of the total amount of training data used.

The support vector machine (SVM) [15] was selected as the learning method
to be used in the following classification experiments. The SVM is a super-
vised classification system that employs a hypothesis space of linear func-
tions in a high-dimensional feature space in order to learn separating hyper-
planes that are maximally distant from all training patterns. As such SVM
classification attempts to generalize an optimal decision boundary between
classes of data. Labeled training data in a given space are thus separated by
a maximum-margin hyperplane through SVM classification. Complete tutori-
als and the underlying mathematical formulation for the SVM may be found
in [5, 16].

3.3.1 C-way All-Versus-All SVM Classification

Our baseline classifier is the AVA SVM as described in Section 3.2. Given the
large amount of training data used in the evaluation (over 105 frames), we
selected a linear kernel, which requires training time on the order of the num-
ber of feature dimensions cubed for each of the O(C2) discriminant functions.
More complex kernels (such as radial basis functions, which require training
time on the order of the number of instances cubed) were computationally
infeasible due to the size of the training set.

We sought to determine the number of training instances to include from each
audio excerpt in the first classification experiment. The number of training
instances selected from each song was varied using both incremental sam-
pling (taking a limited number of frames from the beginning of each excerpt)
and random sampling (selecting the frames from anywhere in the excerpt),
as displayed in Figure 3.2. Randomly sampling feature vectors to train on
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Figure 3.2: Variation of classification accuracy with number of training
frames per excerpt. Incremental sampling takes frames from the begin-
ning of the excerpt; random sampling takes them from anywhere. The
training set does not include resampled (transposed) data.

approaches an asymptote much more rapidly than adding the data in chrono-
logical order. In addition, random sampling appears to exhibit symptoms of
over-training.

The observation that random sampling achieves peak accuracy within approx-
imately 400 samples per excerpt (out of a total of around 3000 samples for a
30 s excerpt with 10 ms hops) may be explained by both signal processing
and musicological considerations. Firstly, adjacent analysis frames are highly
overlapped, sharing 118 ms out of a 128 ms window, and thus their feature
values will be very highly correlated (10 ms is an unnecessarily fine time
resolution to generate training frames, but it is the standard used in the eval-
uation). From a musicological point of view, musical notes typically maintain
approximately constant spectral structure over hundreds of milliseconds; a
note should maintain a steady pitch for some significant fraction of a beat to
be perceived as well-tuned. If we assume there are on average 2 notes per
second (i.e. around 120 bpm) in the pop-based training data, then we expect
to see approximately 60 melodic note events per 30 s excerpt. Each note may
contribute a few usefully different frames to tuning variation such as vibrato
and variations in accompaniment. Thus we expect many clusters of largely
redundant frames in the training data, and random sampling down to 10%
(or closer to one frame every 100 ms) seems reasonable.

The observation that analysis frames are highly overlapped also gives us a per-
spective on how to judge the significance of differences in these results. For
example, the ADC 2004 test set consists of 366 s, or 36,600 frames using the
standard 10 ms hop. A simple binomial significance test may be used to com-
pare classifiers by estimating the likelihood that random sets of independent
trials could produce the observed differences in empirical error rates from
an equal underlying probability of error. Since the standard error of such
an observation falls as 1/

√
T for T trials, the significance interval depends
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resampled versions of each excerpt, with 500 frames randomly sampled
from each transposition.

directly on the number of trials. However, the arguments and observations
above show that the 10 ms frames are anything but independent; to obtain
something closer to independent trials, we should test on frames no less than
100 ms apart, and 200 ms sampling (5 frames per second) would be a safer
choice. This corresponds to only 1,830 independent trials in the test set; a one-
sided binomial significance test suggests that differences in frame accuracies
on this test of less than 2.5% are not statistically significant at the accuracies
reported in this paper.

In the second classification experiment, we examined the incremental gain
from adding novel training excerpts. The effect of increasing the number of
excerpts (from one to 16) used to train the classification system on raw pitch
accuracy is displayed in Figure 3.3. In this case, each additional excerpt con-
sisted of adding 500 randomly-selected frames from each of the 13 resampled
transpositions described in Section 3.1, or 6,500 frames per excerpt. Thus,
the largest classifier was trained on 104k frames as compared to the approxi-
mately 15k frames used to train the largest classifier in Figure 3.2. The solid
curve in Figure 3.3 displays the result of training on the same number of
frames randomly drawn from the pool of the entire training set. Again, we
notice that the system trained from pool of total frames appears to reach an
asymptote by 20k total frames, or fewer than 100 frames per transposed ex-
cerpt. We suspect, however, that the level of this asymptote was determined
by the total number of excerpts. That is, we believe that the “per excerpt”
trace will continue to climb upwards if additional novel training data was
available.
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Classifier Kernel Raw Pitch Chroma
AVA SVM Linear 67.7% 72.7%
OVA SVM Linear 69.5% 74.0%
OVA SVM RBF 70.7% 74.9%

Table 3.5: Raw pitch accuracy for multi-way classification systems based
on all-versus-all (AVA) and one-versus-all (OVA) structures. Accuracy
results are provided for both raw pitch transcription and chroma tran-
scription (which ignores octave errors).

3.3.2 Multiple One-Versus-All SVM Classification

In addition to the C-way melody classification, 60 binary one-versus-all (OVA)
SVM classifiers were trained representing each of the notes present in the
resampled training set. The distance-to-classifier-boundary hyperplane mar-
gins were treated as a proxy for a log-posterior probability for each of the
classes. Pseudo-posteriors (up to an arbitrary scaling power) were obtained
from the distance-to-classifier boundary by fitting a logistic model to the data.
In the OVA framework, transcription was achieved by selecting the most prob-
able class at each time frame. While OVA approaches are generally viewed as
less sophisticated, [61] presents evidence that they can match the performance
of more complex multi-way classification schemes. An example ‘posterior-
gram’ (note-class-versus-time image showing the posteriors of each class at a
given time step) for a pop excerpt is displayed with the ground truth labels
overlaid in the bottom pane of Figure 3.4.

Since the number of classifiers required in the OVA framework is O(C) (rather
than the O(C2) classifiers required for the AVA approach) it becomes compu-
tationally feasible to experiment with alternative classifier kernels. The best
result classification rates for each of the SVM systems examined are displayed
in Table 3.5. Both OVA classifiers provide a marginal performance advantage
over the pairwise classifier (with a slight edge favoring the OVA SVM system
that uses an RBF kernel).
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Figure 3.4: Spectrogram and posteriorgram (pitch probabilities as a
function of time) for the first 8 s of pop music excerpt “pop3” from
the ADC 2004 test set. The ground-truth labels, plotted on top of the
posteriorgram, closely track the mode of the posteriors for the most part.
However, this memoryless classifier also regularly makes hare-brained
errors that can be corrected through HMM smoothing.
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Voicing Voicing Voicing Voicing
Classifier Detection FA d′ Frame Acc
All Voiced 100% 100% 0 85.6%
Energy Threshold 88.0% 32.3% 1.63 78.4%
Linear SVM 76.1% 46.4% 0.80 73.0%
RBF SVM 82.6% 48.1% 0.99 78.3%

Table 3.6: Voicing detection performance. “Voicing Detection” is the
proportion of voiced frames correctly labeled; “Voicing FA” is the pro-
portion of unvoiced frames incorrectly labeled, so labeling all frames as
voiced scores 100% on both counts, as displayed in the first row. d′ is a
measure of a detector’s sensitivity that attempts to factor out the overall
bias toward labeling any frame as voiced. “Voicing Frame Acc” is the
proportion of all frames given the correct voicing label.

3.4 Voiced Frame Detection

Complete melody transcription involves not only deciding the note of frames
where the main melody is active, but also discriminating between melody
and non-melody (accompaniment) frames. In this section, we briefly describe
two approaches for classifying instants as voiced (dominant melody present)
or unvoiced (no melody present).

In the first approach we considered, voicing detection was performed by im-
plementing a simple energy threshold. Spectral energy in the range 200 <
f < 1800 Hz was summed for every 10 ms frame. Each energy sum value
was normalized by the median energy in that band for the given excerpt, and
instants were classified as voiced or unvoiced by a global threshold as tuned
on a small development set. Since the melody instrument is usually given
a prominent level in the final musical mix, this approach is generally quite
successful (particularly after we have filtered out the low-frequency energy of
bass and drums).

In keeping with the classification-based approach, we also attempted to train
binary SVM classifiers (using both linear and RBF kernels) based on the nor-
malized magnitude of the STFT. The voiced melody classification statistics
are displayed in Table 3.6. Although we had hoped that the classifiers would
learn particular spectral cues as to the presence of the melody, the correspond-
ing data shows that the simple energy threshold provides better voicing detec-
tion results. However none of the voicing detectors investigated resulted in a
higher frame-level accuracy than simply labeling all the frames as voiced. Due
to the fact that the ADC 2004 test data is more than 85% voiced, any classifier
that attempts to identify unvoiced frames risks making more mislabeling mis-
takes than unvoiced frames correctly detected. As such, we also report the
performance in terms of d′, a measure of a detector’s sensitivity that attempts
to factor out the overall bias toward labeling any frame as voiced (complete
definitions of the evaluation metrics are provided in Section 3.6).
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While the proposed voicing detection scheme is simple and not particularly
accurate, it is not the main focus of the current work. The energy thresh-
old enables the identification of nearly 90% of the melody-containing frames,
without resorting to the crude choice of simply treating every frame as voiced.
However, more sophisticated approaches to learning classifiers for tasks with
highly-skewed priors offer a promising future direction [10].

3.5 Hidden Markov Model Post Processing

The posteriorgram in Figure 3.4 clearly illustrates both the strengths and
weaknesses of the classification approach to melody transcription. The suc-
cess of the approach in estimating the correct melody pitch from audio data is
clear in the majority of frames. However, the result also displays the obvious
fault of classifying each frame independently of its neighbors: the inherent
temporal structure of music is not exploited. In this section, we attempt to
incorporate the sequential structure that may be inferred from musical signals
by using hidden Markov models (HMMs) to impose temporal constraints1.

3.5.1 HMM State Dynamics

Similarly to our data driven approach to classification, we attempt to learn the
temporal structure of music directly from the training data. In the proposed
framework, the HMM states correspond directly to a given melody pitch. As
such, the state dynamics (transition matrix and class priors) can be estimated
from the ‘directly observed’ state sequences (i.e. the ground-truth transcrip-
tions of the training set). The note class prior probabilities, generated by
counting all frame-based instances from the resampled training data, and the
note class transition matrix, generated by observing all frame-to-frame note
transitions, are displayed in Figure 3.5 (a) and (b) respectively.

Note that although some bias has been removed in the note priors by symmet-
rically resampling the training data, the sparse nature of a transition matrix
learned from a limited training set is likely to generalize poorly to novel data.
In an attempt to mitigate this lack of generalization, each element of the tran-
sition matrix was replaced by the mean of the corresponding matrix diagonal.
This generalization is equivalent to assuming that the probability of making
a transition between two pitches depends only on the interval between them
(in semitones) and not on their absolute frequency. The resulting normalized
state transition matrix is displayed in Figure 3.5 (c).

1A complete tutorial on the formulation and use of hidden Markov models is available in [57].
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3.5.2 Smoothing Discrete Classifier Outputs

We can use an HMM to apply temporal smoothing even if we only consider
the labels assigned by the frame-level classifier at each stage and entirely ig-
nore any information on the relatively likelihood of other labels that might
have been available prior to the final hard decision being made by the classi-
fier. If the model state at time t is given by qt, and the classifier output label is
ct, then the HMM will achieve temporal smoothing by finding the most likely
(Viterbi) state sequence i.e. maximizing

∏
t

p(ct|qt)p(qt|qt−1) (3.1)

where p(qt|qt−1) is the transition matrix estimated from the ground-truth
melody labels as described in the previous subsection. However, we still
need p(ct|qt), the probability of seeing a particular classifier label ct given a
true pitch state qt. Since we cannot directly observe p(ct|qt), we may estimate
it from the confusion matrix of classified frames (i.e. counts normalized to
give p(ct, qt)) on a development corpus. For practical purposes, we reused
the training set to generate the normalized counts. Reusing the training data
might lead to an overoptimistic belief about how well ct will reflect qt, but it
was the only reasonable option due to the limited nature of labeled data. The
raw confusion matrix normalized by columns (qt) to give the required condi-
tionals is displayed in Figure 3.5 (d), and the normalized confusion matrix reg-
ularized such that all elements along a given diagonal are equal is displayed
in Figure 3.5 (e). Other than a small moving average, a normalization was not
applied to the zero (unvoiced) state. From the confusion (observation) ma-
trix, we can see that the most frequently confused classifications are between
members of the same chroma (i.e. separated by one or more octaves in pitch)
and between notes with adjacent pitches (separated by one semitone).

For the total transcription problem (dominant melody transcription plus voic-
ing detection), the baseline (memoryless) transcription was estimated by sim-
ply gating the pitch classifier output with the binary energy threshold. If at
each instant we use the corresponding column of the observation (confusion)
matrix in the Viterbi decoder dynamic-programming local-cost matrix, we can
derive a smoothed state sequence that removes short, spurious excursions of
the raw pitch labels. Despite the paucity of information obtained from the
classifier, a small, yet robust, absolute improvement of 0.9% in overall accu-
racy is obtained from using this approach as displayed in Table 3.7.

3.5.3 Exploiting Classifier Posteriors

The OVA classification system was constructed in order to approximate log-
posteriors for each pitch class, and we can use this detailed information to
improve the HMM decoding. Rather than guessing the local likelihood of
a particular note given a single output from the classification system, the
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Classifier Voicing Acc Raw Pitch Acc Overall Acc
Memoryless 85.1% 71.2% 70.7%
MemlessAllVx 86.1% 76.8% 66.1%
Discrete 83.6% 71.9% 71.6%
Posteriors 86.2% 74.5% 73.2%
PostAllVx 86.1% 79.4% 68.3%

Table 3.7: Melody transcription frame accuracy percentages for differ-
ent systems with and without HMM smoothing. “Voicing Acc” is the
proportion of frames whose voicing state is correctly labeled. “Raw
Pitch Acc” is the proportion of pitched frames assigned the correct pitch
label. “Overall Acc” is the proportion of all frames assigned both the
correct voicing label, and, for voiced frames, the correct pitch label. All
results are based on the one-versus-all SVM classifier using an RBF ker-
nel. The “Memoryless” classifier simply takes the most likely label from
the frame classifier after gating by the voicing detector; “MemlessAllVx”
ignores the voicing detection and reports a pitch for all frames (to max-
imize pitch accuracy). “Discrete” applies HMM smoothing to this label
sequence without additional information, “Posteriors” uses the pseudo-
posteriors from the OVA SVM to generate observation likelihoods in
the HMM, and “PostAllVx” is the same except the unvoiced state is
excluded (by setting its frame posterior to zero).

likelihood of each note may be directly observed from each binary classifier.
Thus, if the acoustic data at each time is xt, we may regard our OVA classifiers
as giving us estimates of

p(qt|xt) ∝ p(xt|qt)p(qt) (3.2)

i.e. the posterior probabilities of each HMM state given the local acoustic fea-
tures. Thus, by dividing each (pseudo)posterior by the prior of that note, we
obtain scaled likelihoods that can be employed directly in the Viterbi search
for the solution of Equation 3.1. The unvoiced state needs special treatment,
since it is not considered by the main classifier. We attempted several ap-
proaches for incorporating an estimate of the unvoiced state including decod-
ing the pitch HMM with the unvoiced state excluded (setting its observation
likelihood to zero), then applying voicing decisions from a separate voicing
HMM, and setting the observation posterior of the unvoiced state to 1/2± α,
where α was tuned on the development (training set), which provided signif-
icantly better results.

As shown in Table 3.7, using the posteriors as HMM features results in an ad-
ditional absolute improvement of 1.6% total frame accuracy over using only
the 1-best classification information. More impressively, the absolute accu-
racy on the pitched frames jumps 3.3% as compared to the memoryless case,
since knowing the per-note posteriors helps the HMM to avoid very unlikely
notes when it decides to stray from the one-best label assigned by the classi-
fier. If we focus only on raw pitch accuracy (i.e. exclude the frames whose
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ground truth is unvoiced from scoring), we can maximize pitch accuracy with
a posterior-based HMM decode that excludes the unvoiced state, achieving
a pitch accuracy of 79.4%, or 2.6% better than the comparable unsmoothed
case.
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Figure 3.5: Hidden Markov parameters learned from the ground truth
and confusion matrix data. Top (pane (a)): class priors. Middle:
state transition matrix, raw (pane (b)), and regularized across all notes
(pane (c)). Bottom: Observation likelihood matrix for the discrete-label
smoothing HMM, raw (pane (d)) and regularized across notes (pane (e)).
For panes (b) to (e), the state densities are displayed in the first column
and last row of each figure.



3. Melody Transcription 33

3.6 Experimental Analysis

In this section, we present the results of a full-scale melody transcription eval-
uation, the MIREX melody transcription contest, that sought to provide an
objective comparison of approaches to melody transcription by developing a
standardized test set and a consensus regarding evaluation metrics. The eval-
uation was conducted in 2005 in association with the International Conference
on Music Information Retrieval and repeated in 2006.

3.6.1 Evaluation Metrics

Algorithms submitted to the MIREX melody transcription contest were re-
quired to estimate the fundamental frequency of the predominant melody on
a regular time grid. In order to enable more detailed insight into the structure
of each submitted system, participants were allowed to perform pitch estima-
tion and voicing detection independently, i.e., each algorithm could give its
best guess for a melody pitch even for frames that it reported as unvoiced.
An attempt was made to evaluate the lead voice transcription at the lowest
level of abstraction, and as such, the concept of segmenting the fundamental
frequency predictions into notes was omitted from consideration. The metrics
used in the evaluation were agreed upon by the participants in a discussion
period prior to the algorithm submission deadline. A brief description of the
evaluation metrics is provided below:

• The algorithms were ranked according to the overall transcription ac-
curacy, a measure that combines the pitch transcription and voicing de-
tection tasks. It is defined as the proportion of frames correctly labeled
with both raw pitch accuracy and voicing detection.

• The raw pitch accuracy is defined as the proportion of voiced frames
in which the estimated fundamental frequency is within ±1/4 tone of
the reference pitch (including the pitch estimation for frames estimated
unvoiced).

• The raw chroma accuracy is defined in the same manner as the raw
pitch accuracy; however, both the estimated and reference frequencies
are mapped into a single chroma in order to forgive octave transposi-
tions.

• The voicing detection rate is the proportion of frames labeled voiced in
the reference transcription that are estimated voiced by the algorithm.

• The voicing false alarm rate is the proportion of frames that are not
truly voiced that are estimated as voiced.

• The discriminability d′ is a measure of the sensitivity of a detector that
attempts to factor out the overall bias toward labeling any frame as
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Overall Raw Raw Voicing Voicing Voicing
Participant Accuracy Pitch Chroma Detection FA d′

Dressler 06 [21] 73.2% 77.7% 82.0% 89.3% 28.8% 1.80

Dressler 71.4% 68.1% 71.4% 81.8% 17.3% 1.85
Ryynänen 06 [63] 67.9% 71.5% 75.0% 78.2% 16.5% 1.75

Ryynänen 64.3% 68.6% 74.1% 90.3% 39.5% 1.56

Poliner 06 [26] 63.0% 66.2% 70.4% 93.5% 45.1% 1.64

Poliner 61.1% 67.3% 73.4% 91.6% 42.7% 1.56

Paiva [50] 61.1% 58.5% 62.0% 68.8% 23.2% 1.22

Marolt [44] 59.5% 60.1% 67.1% 72.7% 32.4% 1.06

Sutton [69] 53.7% 56.4% 60.1% 64.5% 13.8% 1.46

Goto * [33] 49.9% 65.8% 71.8% 99.9% 99.9% 0.59

Vincent * [76] 47.9% 59.8% 67.6% 96.1% 93.7% 0.23

Brossier * [4] 31.9% 41.0% 56.1% 99.5% 98.2% 0.46

Table 3.8: Results of the MIREX Audio Melody Transcription evalua-
tion. Results marked with a * are not directly comparable to the others
because those systems did not perform voiced/unvoiced detection. For
brevity, systems are referred to by their first author alone.

voiced (which can move both hit rate and false alarm rate up and down
in tandem). It converts the hit rate and false alarm into standard devi-
ations away from the mean of an equivalent Gaussian distribution, and
reports the difference between them. A larger value indicates a detec-
tion scheme with better discrimination between the two classes [22].

Each algorithm was evaluated on the 25 test songs described in Table 3.2, and
the results of the evaluation are presented in the following subsection.

3.6.2 Empirical Results

The combined results of the 2005 and 2006 MIREX melody transcription eval-
uations are displayed in Table 3.8. Since each research group was allowed to
make multiple submissions, only the top performing algorithm for each group
in a given year is presented. The memoryless, C-Way AVA SVM system was
submitted to the 2005 evaluation, and a linear kernel (for computational ef-
ficiency), OVA classification system with a posterior-based HMM smoothing
stage was submitted in 2006.

In both the 2005 and 2006 competitions, the classification-based approach
was the third best performing melody transcription submission for each of
the evaluation metrics considered. Comparing the proposed approach to the
other submissions, we note that, although the Dressler system outperformed
all other submissions, the classification-based system performed near the top
based on overall and raw pitch accuracy. As such, the classification-based
systems appear to be one of the better approaches for generating candidate
note estimates.
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Figure 3.7: Examples of melody transcription estimations from several
of the submitted systems as compared to the ground truth (light dots)
for a 3.7 s excerpt from “Frozen” by Madonna.

We may gain additional insights into the nature of the classification approach
by more closely examining the output of the proposed transcription system.
Figure 3.6 displays a note error histogram for the classification-based system
as compared with a few of the top performing MIREX submissions. In stark
contrast to the other systems, the classification approach exhibits a significant
number of adjacent note errors due to discretizing estimates to the nearest
semitone. We suspect that this result is due to the fact that the note-level
classifiers may have more difficulty resolving acoustic effects such as vibrato
and ‘mistuned’ notes. These effects are illustrated in Figure 3.7 in which a
number of example transcriptions are provided for an excerpt of “Frozen” by
Madonna. Whereas algorithms that track the fundamental frequency of the
lead melody voice (e.g. Dressler) follow the reference transcript quite closely
and provide a clear representation of the acoustic effects, the classification-
based system, which discretizes estimates to the nearest semitone, provides a
representation more closely associated with the note level of abstraction.

Contrasting the classification submissions year over year, we observe that, in
discordance with the classification results reported in Section 3.3.1, the AVA
system provided a slight advantage in raw pitch accuracy as compared with
the OVA system. However, we suspect that this result is an artifact of the
statistical significance limitations of the ADC and MIREX data sets. Turning
our attention to the raw chroma metric, we note that this measure indirectly
evaluates the candidate note identification stage and hints at the potential for
improvement in post processing. The HMM post-processing stage minimizes
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the difference between the raw pitch and chroma accuracy by including a
model of the melody note transitions thereby reducing erroneous octave trans-
positions. In addition, the HMM improves the voicing detection estimates by
imposing temporal context on the voiced/unvoiced transitions. Thus, the
HMM provided a modest improvement in overall accuracy by limiting the
local melody steps and improving the voicing detection estimates.

3.7 Summary

In this chapter, we presented a classification approach to melody transcription.
We have shown that a pure machine learning approach to melody transcrip-
tion is viable and that such an approach can be successful even when based
on a modest amount of training data. Although the quality of diverse train-
ing data was demonstrated to have the greatest impact on transcription accu-
racy, modest improvements in performance may be obtained by implement-
ing more complex classification structures and by temporally constraining the
classification estimates via hidden Markov models. The concepts formulated
herein will serve as the underpinnings for a general classification-based music
transcription framework to be investigated in the following chapters.
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Chapter 4

Polyphonic Music
Transcription

In this chapter, we present a classification approach to polyphonic music tran-
scription. Whereas melody transcription, as described in Chapter 3, consists
of estimating the single pitch corresponding to the most salient note, the poly-
phonic transcription problem entails resolving multiple simultaneous notes in
a given period of time. As such, we extend the C-way, one-versus-all classifica-
tion system developed in Chapter 3 to transcribe the set of notes for which the
pseudo-posterior probability exceeds a threshold in a given frame. We first ex-
amine the complete transcription problem in the context of polyphonic piano
transcription, then we generalize the approach to an instrument agnostic mul-
tiple fundamental frequency estimation framework. Similarly to Chapter 3,
we begin our investigation with the description of our data collection and fea-
ture analysis. Support vector machines trained on spectral features are used to
classify frame-level note instances, and the classifier estimates are temporally
constrained via hidden Markov models. The polyphonic pitch classification
system is used to transcribe piano and ensemble recordings, and empirical
analyses, as well as comparisons to alternative approaches, are presented.

4.1 Audio Data and Features

4.1.1 Audio Data

The audio data used to train and test the instrument specific piano transcrip-
tion system was derived directly and indirectly from MIDI transcripts col-
lected from the Classical Piano Midi Page, http://www.piano-midi.de/. The
130 piece data set was randomly split into 92 training, 25 testing, and 13 val-

http://www.piano-midi.de/
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Figure 4.1: Note distributions for the piano transcription training and
testing sets.

idation pieces. Table 4.5 gives a complete list of the composers and pieces
used in the experiments.

Following the procedure described in Chapter 3, The MIDI files were con-
verted from the standard MIDI file format to monaural audio files with a
sampling rate of 8 kHz using the synthesizer in Apple’s iTunes. In order to
identify the corresponding ground truth transcriptions, the MIDI files were
parsed into data structures containing the relevant audio information (i.e.
tracks, channels numbers, note events, etc). Target labels were determined
by sampling the MIDI transcript at the precise times corresponding to the
analysis frames of the synthesized audio.

In addition to the synthesized audio, piano recordings were made from a
subset of the MIDI files using a Yamaha Disklavier playback grand piano. 20

training files and 10 testing files were randomly selected for recording. The
MIDI performances were recorded as monaural audio files at a sampling rate
of 44.1 kHz and time-aligned to the MIDI score by identifying the maximum
cross-correlation between the recorded audio and the synthesized MIDI file.

The first minute from each song in the data set was selected for experimen-
tation which provided us with a total of 112 minutes of training audio, 35

minutes of testing audio, and 13 minutes of audio for parameter tuning on
the validation set. This amounted to 56497, 16807, and 7058 note instances in
the training, testing, and validation sets respectively. The note distributions
for the training and test sets are displayed in Figure 4.1

4.1.2 Acoustic Features

In Section 3.2, it was observed that classification accuracy appears to exhibit
a very weak dependence on variations in feature representations. A num-
ber of spectral feature normalizations were attempted for melody classifica-
tion; however, none of the representations provided a significant advantage
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in classification accuracy. As such, we did not repeat the acoustic feature ex-
periments described in Section 3.2 for polyphonic transcription. Instead, we
have selected the best performing normalization from the melody transcrip-
tion feature analysis; however, as we will show in the following section, the
greatest gain in classification accuracy is obtained from a larger and more
diverse training set.

In order to generate the acoustic features, the short-time Fourier transform
was applied to the audio files using N = 1024 point Discrete Fourier Trans-
forms (i.e. 128 ms), an N-point Hanning window, and an 80 point advance
between adjacent windows (for a 10 ms hop between successive frames). In an
attempt to remove some of the influence due to timbral and contextual varia-
tion, the magnitudes of the spectral bins were normalized by subtracting the
mean and dividing by the standard deviation calculated in a 71-point sliding
frequency window. The live piano recordings were down-sampled to 8 kHz
using an anti-aliasing filter prior to feature calculation in order to reduce the
spectral dimensionality. Separate one-versus-all SVM classifiers were trained
on the spectral features for each of the 88 piano keys with the exception of
the highest note, MIDI note number 108. For MIDI note numbers 21 to 83 (i.e.
the first 63 piano keys), the input feature vector was composed of the 256 co-
efficients corresponding to frequencies below 2 kHz. For MIDI note numbers
84 to 95, the coefficients in the frequency range 1 kHz to 3 kHz were selected,
and for MIDI note numbers 95 to 107, the frequency coefficients from the
range 2 kHz to 4 kHz were used as the feature vector.

4.2 Piano Note Classification

The piano transcription system is composed of 87 OVA binary note classifiers
that detect the presence of a given note in a frame of audio, where each frame
is represented by a 256-element feature vector as described in Section 4.1. The
distance-to-classifier-boundary hyperplane margins were treated as a proxy
for a log-posterior probability for each of the classes. In order to classify the
presence of a note within a frame, we assume the state to be solely dependent
on the normalized frequency data. At this stage, we further assume each
frame to be independent of all other frames.

The SVMs were trained using Sequential Minimal Optimization [52], as im-
plemented in the Weka toolkit [78]. A Radial Basis Function (RBF) kernel was
selected for the experiments, and the γ and C parameters were optimized over
a global grid search on the validation set using a subset of the training set. In
the experiments described in this section, all of the classifiers were trained
using the 92 MIDI training files and classification accuracy is reported on the
validation set.

In the first classification experiment, we sought to determine the number of
training instances to include from each audio excerpt. The number of train-
ing excerpts was held constant, and the number of training instances selected
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Figure 4.2: Variation of classification accuracy with number of randomly
selected training frames per note, per excerpt.

from each piece was varied by randomly sampling an equal number of pos-
itive and negative instances for each note. As displayed in Figure 4.2, the
classification accuracy1 begins to approach an asymptote within a small frac-
tion of the potential training data. The observation that random sampling
approaches an asymptote within a couple of hundred samples per excerpt
(out of a total of 6000 for a 60 s excerpt with 10 ms hops) is consistent with
and reinforces the results reported in Section 3.3.1 in which we noticed many
clusters of largely redundant training frames due to musicological and signal
processing considerations. Since the RBF kernel requires training time on the
order of the number of training instances cubed, 100 samples per note class,
per excerpt was selected as a compromise between training time and perfor-
mance for the remainder of the experiments. As noted in Section 4.1, there
are an average of 8 note events per second in the training data; thus, random
sampling down to 2% (roughly equal to the median prior probability of a
specific note occurrence) is a reasonable approximation.

In the second classification experiment, we examined the incremental gain in
classification accuracy from adding novel training excerpts. In this case, the
number of training excerpts was varied while holding the number of training
instances per excerpt constant. Figure 4.3 shows the variation in classification
accuracy with the addition of novel training excerpts. Each additional excerpt
corresponded to 100 randomly-selected frames per note class (50 each positive
and negative instances). Thus, the largest note classifiers were trained on
9200 frames. The solid curve displays the result of training on the same
number of frames randomly drawn from the pool of the entire training set.
In contrast to the effects of adding additional training excerpts described in
Section 3.3 and illustrated in Figure 3.2, the two curves in Figure 4.3 are very
closely related. This result appears to be a combined artifact of the limited
timbral variance in MIDI piano synthesis and the fact that the piano notes are

1A detailed description of the classification metrics is provided in Section 4.4
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Figure 4.3: Variation of classification accuracy with the total number
of excerpts included, compared to sampling the same total number of
frames from all excerpts pooled.

discretized to specific fundamental frequencies (whereas instruments such as
the human voice may vary over a bounded range). In Section 4.4.2, we begin
to investigate the effect of training data generalization, a concept that becomes
the focus of Chapter 5.
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Figure 4.4: Top: Posteriorgram (pitch probabilities as a function of time)
for an excerpt of Beethoven’s Für Elise. Bottom: The HMM smoothed
estimation (black) plotted on top of the ground truth labels (gray).

4.3 Hidden Markov Model Post Processing

Similarly to the procedure described in Section 3.5.3, we attempted to induce
temporal constraints on the independent note classifications by implementing
a hidden Markov model post processing stage. Each note class was indepen-
dently modeled with a two state, ‘on’/‘off’, HMM where the state dynamics
(i.e. transition matrix and class priors) were estimated from the directly ob-
served state sequences, the ground-truth transcriptions of the training set.
Whereas the posterior-based melody transcription HMM consisted of identi-
fying the single maximum likelihood sequence through the C allowed states
where the observation p(ct|qt) was represented by columns of the posteri-
orgram, the posterior-based polyphonic HMM consists of identifying the C
maximum likelihood binary sequences for each of the C states where the
observation p(ct|qt) is represented by the cell of the posteriorgram (and its
complement) corresponding to the particular class under consideration.

HMM post-processing results in a 2.8% absolute improvement thus yielding a
frame-level classification accuracy of 70% on the validation set. Although the
improvement in frame-level classification accuracy is relatively modest, the
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HMM post-processing stage reduces the total onset transcription error by over
7%, primarily by alleviating spurious onsets. A representative posteriorgram
and the result of the HMM post processing for an excerpt of “Für Elise” are
displayed in Figure 4.4.

4.4 Experimental Results

In this section, we present a number of metrics to evaluate polyphonic mu-
sic transcription algorithms and provide empirical comparisons to a number
of alternative systems for piano transcription and multiple fundamental fre-
quency estimation.

4.4.1 Evaluation Metrics

For each of the evaluated algorithms, a 10 ms frame-level comparison was
made between the algorithm output and the ground-truth MIDI transcript.
As such, the reference scores are represented by a binary “piano-roll” matrix
that consists of one row for each note considered and one column for each
10 ms time step. A brief description of the evaluation metrics is provided
below:

• The overall accuracy is a frame-level interpretation of the metric pro-
posed in [19] and is defined as

Acc =
TP

(FP + FN + TP)
(4.1)

where TP (“true positives”) is the number of correctly transcribed voiced
frames, FP (“false positives”) is the number of unvoiced note-frames
transcribed as voiced, and FN (“false negatives”) is the number of voiced
note-frames transcribed as unvoiced. Overall accuracy is bounded by 0

and 1, with 1 corresponding to perfect transcription. This measure does
not, however, facilitate an insight into the trade-off between notes that
are missed and notes that are inserted.

• The frame-level transcription error score is a metric based on the “speaker
diarization error score” defined by NIST for evaluations of ‘who spoke
when’ in recorded meetings [48]. A meeting may involve many people,
who, like notes on a piano, are often silent but sometimes simultane-
ously active (i.e. speaking). NIST developed a metric that consists of
a single error score which further breaks down into substitution errors
(mislabeling an active voice), “miss” errors (when a voice is truly active
but results in no transcript), and “false alarm” errors (when an active
voice is reported without any underlying source). This three-way de-
composition avoids the problem of ‘double-counting’ errors where a
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note is transcribed at the right time but with the wrong pitch; a simple
error metric as used in earlier work, and implicit in Acc, biases systems
towards not reporting notes, since not detecting a note counts as a single
error (a “miss”), but reporting an incorrect pitch counts as two errors
(a “miss” plus a “false alarm”). Instead, at every time frame, the inter-
section of Nsys reported pitches and Nre f ground-truth pitches counts
as the number of correct pitches Ncorr; the total error score, integrated
across all time frames t is then:

Etot =
∑T

t=1 max
(

Nre f (t), Nsys(t)
)
− Ncorr(t)

∑T
t=1 Nre f (t)

(4.2)

which is normalized by the total number of active note-frames in the
ground-truth, so that reporting no output will entail an error score of
1.0. Frame-level transcription error is the sum of three components:
substitution, “miss”, and “false alarm” errors.

• Substitution errors are defined as:

Esubs =
∑T

t=1 min
(

Nre f (t), Nsys(t)
)
− Ncorr(t)

∑T
t=1 Nre f (t)

(4.3)

which counts, at each time frame, the number of ground-truth notes for
which the correct transcription was not reported, yet some note was re-
ported – which can thus be considered a substitution. It is not necessary
to designate which incorrect notes are substitutions, merely to count how
many there are.

• Miss errors are defined as:

Emiss =
∑T

t=1 max
(
0, Nre f (t)− Nsys(t)

)
∑T

t=1 Nre f (t)
(4.4)

• False alarm errors are defined as:

E f a =
∑T

t=1 max
(
0, Nsys(t)− Nre f (t)

)
∑T

t=1 Nre f (t)
(4.5)

The error equations sum, at the frame level, the number of ground-truth ref-
erence notes that could not be matched with any system outputs (i.e. misses
after substitutions are accounted for) or system outputs that cannot be paired
with any ground truth (false alarms beyond substitutions) respectively.

The error measure is a score rather than a probability or proportion i.e. it
can exceed 100% if the number of insertions (false alarms) is very high. In
line with the universal practice in the speech recognition community, we feel
this is the most useful measure since it gives a direct feel for the quantity of
errors that will occur as a proportion of the total quantity of notes present.
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It aids intuition to have the errors break down into separate, commensurate
components that add up to the total error, expressing the proportion of errors
falling into the distinct categories of substitutions, misses, and false alarms.

In addition to the frame-level error metrics described above, the MIREX 2007

evaluation described in Section 4.4.3 reported note-level results using a num-
ber of common signal detection metrics as well as a measure of the total
similarity to the reference score.

• The precision or positive predictive value is defined as:

P =
TP

TP + FP
(4.6)

which measures the proportion of assigned labels that were correct.

• The recall is defined as:
R =

TP
TP + FN

(4.7)

which measures the proportion correct labels that were assigned.

• The F1 measure combines precision and recall with equal weighting:

F1 =
2PR

P + R
(4.8)

in order to balance the bias towards omitting note label estimates in
order to maximize precision and including spurious note label estimates
in order to maximize recall.

• The overlap ratio as proposed in [62] is defined as:

overlap ratio =
min{offsets} −max{onsets}
max{offsets} −min{onsets} (4.9)

where “onsets” refers to the onset times of both the reference and es-
timated note, and “offsets” refers to the onsets of the reference and
estimated note.

For the note-level analysis described in Section 4.4.3, an estimated note is
scored as correct if the onset is within 50 ms of the reference onset, the fun-
damental frequency is within a quarter tone of the reference fundamental,
and the offset value is within the larger of 20% of the duration of the note or
50 ms.

4.4.2 Piano Transcription

The classification-based piano transcription system was used to estimate the
musical score for the 35 (25 synthesized and 10 recorded) songs in the testing
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Algorithm Acc Etot Esubs Emiss Efa
SVM [54] 65.9% 34.2% 5.3% 12.1% 16.8%
Ryynänen and Klapuri [62] 46.3% 52.3% 15.0% 26.2% 11.1%
Marolt [43] 36.9% 65.7% 19.3% 30.9% 15.4%

Table 4.1: Frame-level piano transcription results.

0 1 2 3 4 5 6 7 8 9

30

40

50

60

70

80

Fr
am

e 
le

ve
l c

la
ss

ific
at

io
n 

ac
cu

ra
cy

 / 
% SVM

Klapuri&Ryynanen
Marolt

1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1

Notes present per frame
To

ta
l e

rro
r s

co
re missed notes

false alarms
substitutions

Figure 4.5: Left:Variation of classification accuracy with number of notes
present in a given frame and relative note frequency. Right: Error score
composition as a function of the number of notes present.

set, and the results of the frame-level evaluation are displayed in Table 4.1.
In addition, direct comparisons are provided to the systems proposed in [62]
and [43]. We note that the Ryynänen and Klapuri system was developed for
general music transcription, and the parameters have not been tuned specifi-
cally for piano recordings.

As displayed in Table 4.1, the classification system provides a significant per-
formance advantage on the test set with respect to frame-level accuracy and
the error scores – outperforming the other two systems on 33 out of the 35

test pieces. Since the transcription problem becomes more complex as the
number of simultaneous notes increases, we have also plotted the frame-level
classification accuracy versus the number of notes present for each of the algo-
rithms in the left panel of Figure 4.5; the total error score (broken down into
the three components) with the number of simultaneously occurring notes for
the proposed algorithm is displayed in the right panel. As expected, there is
an inverse relationship between the number of notes present and the propor-
tional contribution of false alarm errors to the total error score. However, the
performance degradation is not as severe for the proposed method as it is for
the comparison systems.

In Table 4.2, a breakdown of the transcription results is reported between
the synthesized audio and piano recordings. The proposed system exhibits
the most significant disparity in performance between the synthesized audio
and piano recordings; however, we suspect that this is because the greatest
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Algorithm Piano (10) Synthesized (25) Both (35)
SVM (Piano Only) 59.2% 23.2% 33.5%
SVM (MIDI Only) 33.0% 74.6% 62.7%
SVM (MIDI & Piano) 56.5% 70.0% 65.9%
Ryynänen and Klapuri 42.2% 47.9% 46.3%
Marolt 35.4% 37.5% 36.9%

Table 4.2: Classification accuracy comparison for the MIDI test files and
live recordings. The MIDI SVM classifier was trained on the 92 MIDI
training excerpts, and the Piano SVM classifier was trained on the 20

piano recordings.

proportion of the training data was generated using synthesized audio. In ad-
dition, Table 4.2 displays the classification accuracy results for SVMs trained
on MIDI data and piano recordings alone. The specific data distributions per-
form well on more similar data, but generalize poorly to unfamiliar audio.
These results clearly indicate that the implementations based only on one
type of training data are over-trained to the specific timbral characteristics of
that data and may provide an explanation for the poor performance of neural
network-based system. However, the inclusion of both types of training data
does not come at a significant cost to classification accuracy for either type.
As such, it is likely that the proposed system may be generalized to different
types of piano recordings when trained on a diverse set of training instances.

In order to investigate the generalization assumption further, the proposed
system was used to transcribe the test set prepared by Marolt in [43]. This
set consists of six recordings from the same piano and recording conditions
used to train his neural network and is different from any of the data in our
training set. The classification results on the Marolt test set are displayed in
Table 4.3. The SVM system commits a greater number of substitution and
miss errors compared to its performance on the relevant portion of our test
set, reinforcing the possibility of improving the stability and robustness of the
SVM with a broader training set. Marolt’s classifier, trained on data closer to
his test set than to ours, outperforms the SVM here on the overall accuracy
metric, although interestingly with a much greater number of false alarms
than the SVM (compensated for by many fewer misses). The system proposed
by Ryynänen and Klapuri outperforms the classification-based approaches
on the Marolt test set; a result that underscores the need for a diverse set
of training recordings for a practical implementation of a classification-based
approach.

Frame-level accuracy is a particularly exacting metric. Although offset esti-
mation is essential in generating accurate transcriptions, it is likely of lesser
perceptual importance than accurate onset detection. In addition, the prob-
lem of offset detection is obscured by relative energy decay and pedaling
effects. In order to account for these effects and to reduce the influence of
note duration on the performance results, we report an evaluation of note
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Algorithm / test set Acc Etot Esubs Emiss Efa
SVM / our piano 56.5% 46.7% 10.2% 15.9% 20.5%
SVM / Marolt piano 44.6% 60.1% 14.4% 25.5% 20.1%
Marolt / Marolt piano 46.4% 66.1% 15.8% 13.2% 37.1%
Ryynänen and Klapuri /
Marolt piano

50.4% 52.2% 12.8% 21.1% 18.3%

Table 4.3: Frame-level transcription results on recorded piano only
(ours and the Marolt test sets).

Algorithm Acc Etot Esubs Emiss Efa
SVM 69.1% 43.2% 4.5% 16.4% 22.4%
Ryynänen and Klapuri 60.2% 46.0% 6.2% 25.3% 14.4%
Marolt 33.6% 87.5% 13.9% 41.9% 31.7%

Table 4.4: Piano note onset detection results.

onset detection. A note onset was labeled as correct if the estimated onset
was within 100 ms of the ground-truth onset. The systems were scored on the
metrics described above with respect to note onsets rather than frame-level
transcription accuracy, and the note onset transcription results are reported
in Table 4.4. When scoring the systems, substitutions were counted first by
associating unattached system outputs and ground-truth notes. Even with-
out a formal onset detection stage, the proposed algorithm provides a slight
advantage over the comparison systems on the 35 song test set.

4.4.3 Multiple Fundamental Frequency Estimation

In 2007, the music information retrieval community conducted a multiple fun-
damental frequency estimation evaluation as part of MIREX 2007

2. Like the
melody transcription evaluations that preceded it, the goal of the multiple
fundamental frequency evaluation was to provide a unified set of test data
and evaluation metrics for the community of researchers working on auto-
mated transcription. For the frame-level analysis, the 28 song test set against
which the algorithms were evaluated consisted of 20 ensemble pieces (with
various combinations of woodwind, brass, and string instruments) and eight
synthesized recordings from the real world computing (RWC) database [34].
The ground-truth transcriptions for the 20 ensemble pieces were generated
using a procedure similar to that described in Section 3.1.1. The results of
the frame-level multiple fundamental frequency evaluation are presented in
Table 4.6.

2http://www.music-ir.org/mirex/2007/index.php/Multiple Fundamental Frequency

Estimation & Tracking Results

http://www.music-ir.org/mirex/2007/index.php/Multiple_Fundamental_Frequency_Estimation_&_Tracking_Results
http://www.music-ir.org/mirex/2007/index.php/Multiple_Fundamental_Frequency_Estimation_&_Tracking_Results
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In this experiment, the piano specific classification system was generalized in
order to perform instrument-independent music transcription. The classification-
based submission to the multiple fundamental frequency evaluation was trained
on the pop-based melody transcription training data3 described in Section 3.1,
the piano transcription training data described in Section 4.1, and 20 ad-
ditional synthesized MIDI files with varying instrumentation. In order to
maximize efficiency in classification time, linear kernel SVM classifiers were
trained for each of the C classes corresponding to the first 87 piano notes. A
two state HMM, as described in Section 4.3, was used to temporally constrain
the classification posteriors based on the state dynamics observed in the train-
ing data. Despite the fact that the data used to train the classification system
bore little resemblance to the 20 ensemble pieces, the SVM-based approach to
music transcription performed relatively well as compared to the other sub-
missions finishing 6th out of 12 research groups on the total frame-level error
score.

In addition to the frame-level evaluation, an analysis of note-level transcrip-
tion systems was performed on a set of 30 recordings. The note-level test set
consisted of 16 ensemble recordings, eight synthesized recordings from the
RWC database, and six piano recordings selected from the test set described
in Section 4.1. Seven of the participants attempted to formulate the funda-
mental frequency estimates into notes, and the results of the note-level tran-
scription analysis are displayed in Table 4.7. The note-level classifiers, which
discretize the fundamental frequency estimates to the nearest semitone, per-
formed near the top of the evaluation as a result of operating on the note
level of abstraction. The proposed system likely received an advantage on
the six piano test cases that were created in the same recording environment
as a fraction of the training data; however, the SVM approach was able to
generalize to a number of unseen instruments and recording environments
represented in the remaining testing cases.

3Only positive training instances were selected from the melody transcription training data
since we could not exclude the possibility of a positive accompanying note instance for any given
training frames.
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Composer Training Testing Validation
Albéniz España (Prélude†, Malagueña,

Sereneta, Zortzico) Suite
Española (Granada, Cataluña,
Sevilla, Cádiz, Aragon,
Castilla)

España (Tango), Suite
Española (Cuba)

España (Capri-
cho Catalan)

Bach Well-Tempered Clavier 1: Pre-
lude & Fugue No. 5

Well-Tempered Clavier 1:
Prelude & Fugue No. 2

Well-Tempered
Clavier 1: Pre-
lude & Fugue
No. 1

Balakirew Islamej†
Beethoven Appassionata 1-3, Moonlight

(1, 3), Pathetique (1)†, Wald-
stein (1-3)

Für Elise† Moonlight (2),
Pathetique (3)†

Pathetique (2)

Borodin Petite Suite (In the
monastery†, Intermezzo,
Mazurka, Serenade, Noc-
turne)

Petite Suite (Mazurka) Réverie

Brahms Fantasia (2†, 5), Rhapsodie Fantasia (6)†
Burgmueller The pearls†, Thunderstorm The Fountain
Chopin Opus 7 (1†, 2), Opus 25 (4),

Opus 28 (2, 6, 10, 22), Opus 33

(2, 4)

Opus 10 (1)†, Opus 28 (13) Opus 28 (3)

Debussy Suite bergamasque
(Passepied†, Prélude)

Menuet Clair de Lune

Granados Danzas Españolas (Oriental†,
Zarabanda)

Danzas Españolas (Vil-
lanesca)

Grieg Opus 12 (3), Opus 43 (4), Opus
71 (3)†

Opus 65 (Wedding) Opus 54 (3)

Haydn Sonata in G major 1† Sonata in G major 2 †
Liszt Grandes Etudes de Paganini

(1†-5)
Love Dreams (3) Grandes Etudes

de Paganini (6)
Mendelssohn Opus 30 (1)†, Opus 62 (3,4) Opus 62 (5) Opus 53 (5)
Mozart Sonata in C Major (1†-3),

Sonata in B Flat Major (3)
Sonata in B Flat Major (1)† Sonata in B Flat

Major (2)
Mussorgsky Pictures at an Exhibition

(1†,3,5-8)
Pictures at an Exhibition
(2,4)

Schubert Sonata in A Minor (1†,2), Fan-
tasy in C Major (1-3), Sonata in
B Flat (1,3)

Fantasy in C Major (4)† Sonata in B Flat
(2)

Schumann Scenes from Childhood (1-3, 5,
6†)

Scenes from Childhood (4)
†

Opus 1 (1)

Tchaikovsky The Seasons (February, March,
April†, May, August Septem-
ber, October, November, De-
cember)

The Seasons (January†,
June)

The Seasons
(July)

Table 4.5: MIDI compositions from http://www.piano-midi.de/. †
denotes songs for which piano recordings were made.

http://www.piano-midi.de/
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Algorithm Etot Esubs Emiss Efa Acc
Pertusa [51] 44.5% 9.4% 29.8% 5.3% 58.0%
Yeh [79] 46.0% 10.8% 23.8% 11.5% 58.9%
Ryynänen [62] 47.4% 15.8% 13.3% 18.3% 60.5%
Zhou [80] 49.8% 14.1% 19.7% 16.0% 58.2%
Vincent [75] 53.8% 13.5% 24.0% 16.3% 54.3%
Poliner 63.9% 12.0% 37.5% 14.4% 44.4%
Leveau [42] 63.9% 15.1% 43.2% 5.5% 39.4%
Raczyński [59] 67.0% 18.5% 21.9% 26.5% 48.4%
Cao [7] 68.5% 20.0% 12.8% 35.6% 51.0%
Emiya [28] 95.7% 7.0% 76.7% 12.0% 14.5%
Cont [12] 99.0% 34.8% 22.1% 42.1% 31.1%
Egashira [37] 118.8% 40.1% 5.2% 73.4% 33.6%

Table 4.6: MIREX 2007 frame-level multiple fundamental frequency
evaluation results. For brevity, systems are referred to by their first
authors alone.

Algorithm Precision Recall F1 Overlap
Ryynänen 0.312 0.382 0.337 0.884

Poliner 0.305 0.278 0.277 0.879

Pertusa 0.206 0.262 0.226 0.844

Vincent 0.162 0.277 0.204 0.859

Egashira 0.071 0.130 0.09 0.847

Emiya 0.098 0.052 0.076 0.804

Cont 0.015 0.044 0.023 0.831

Table 4.7: MIREX 2007 note-level multiple fundamental frequency eval-
uation results.



52 4.5 Summary

4.5 Summary

In this chapter, we presented a classification approach to music transcription.
We have shown that a data driven approach may be used to classify the notes
of a specific instrument or generalized to an instrument agnostic transcrip-
tion framework. We observed that the relevance of the training data had
the single greatest impact on classification accuracy; however, representative
training data is often limited. As such, we seek to investigate methods for
improving classification generalization and extending a limited training set
in the following chapter.



53

Chapter 5

Improving Generalization for
Classification-Based
Transcription

In this chapter, we present methods to improve the generalization capabilities
of the classification-based approach to music transcription. Although the sys-
tem proposed in Chapter 4 compared favorably with model-based approaches
when both the training and testing recordings were made from the same set
of pianos, the classification-based system exhibited a performance degrada-
tion when presented with piano recordings made under different conditions.
As described in the preceding chapters, classifier performance is limited by
the amount and diversity of the labeled training data available; however, a
great deal of relevant, yet unlabeled, audio data exists. In this chapter, we
seek to exploit the vast pool of unlabeled data and to improve the value of
the limited labeled data. To that end, we investigate semi-supervised learning
and multiconditioning techniques for improving generalization.

5.1 Audio Data

The 92 synthesized MIDI files and 20 piano recordings described in Section 4.1
were used as the labeled training data in the generalization experiments. The
validation set used to tune classifier parameters was collected from the RWC
database [34], and the ground-truth transcripts for the three validation files
were aligned by Cont [11] following the method described in [38]. The gen-
eralization test set consisted of 19 piano recordings made from three differ-
ent pianos including six pieces from the test set generated by Marolt [43],
two pieces created by Scheirer [64], and 11 pieces recorded on a Roland HP
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330e digital piano downloaded from the Classical Piano Midi Page1. In cases
where limitations in the MIDI file parsing resulted in a linear scaling between
the labels and test audio, a compensating scaling constant was estimated to
maximize the alignment between the reference score and a noisy transcription
of the audio made by the baseline SVM system. In addition to the labeled
audio, 54 unlabeled polyphonic piano files were collected from 20 different
recording environments to be used as training data in the semi-supervised
learning experiments.

5.2 Generalized Learning

Although the classification-based system performs well on different record-
ings made from the same set of pianos in the same recording environments,
the success of the transcription system does not translate as well to novel
pianos and unseen recording settings. In this section, we propose methods
for improving generalization by learning from unlabeled training data and by
augmenting the value of the data for which training labels are available.

5.2.1 Semi-Supervised Learning

Millions of music recordings exist, yet only a very small fraction of them are
labeled with corresponding transcriptions. Since the success of the proposed
transcription system is so heavily dependent on the quantity and diversity of
the available training data, we have attempted to incorporate more of the data
available to train new classification systems by applying different techniques
to assign labels to unlabeled data.

Nearest neighbor clustering is a simple classification system in which a label
is assigned to a particular point in the feature space based on its proximity,
using a given distance metric, to its k-nearest neighbors. For each frame-level
feature vector2 in the unlabeled data set, a set of 87 binary labels was gener-
ated by calculating the Euclidian distance to each point in the training data
for a given note class and assigning the label of the (majority vote of the)
k-nearest neighbors to the unlabeled point. For each note, an equal num-
ber of positive and negative training instances generated from the unlabeled
data was added to the original training data set, and a new system of SVM
classifiers was trained.

In our semi-supervised SVM approach, labels were assigned to unlabeled
data by classifying the unlabeled points with our baseline SVM system. Al-
though formal semi-supervised support vector machine methods have been
proposed for minimizing the structural risk by calculating the misclassifica-
tion error for each unlabeled feature vector (i.e. minimizing the additional

1http://www.piano-midi.de/
2The acoustic features were calculated following the procedure described in Section 4.1.2.

http://www.piano-midi.de/
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risk of adding the data point as a positive or negative training instance) [3],
classifying the unlabeled data using the framework described in Chapter 4

enables the incorporation of temporal constraints. As an alternative to using
the raw classifier output as a proxy for training sample selection, the HMM
post-processing stage described in Section 4.3 may be applied to the output
of the unlabeled data classification. In some cases, the inclusion of the HMM
stage results in class assignment updates due to temporal context, thus im-
proving the insight of the trained classifier in ambiguous situations. Again,
for each note, an equal number of positive and negative training instances
generated from the unlabeled data was added to the original training set in
order to create an updated system of classifiers.

5.2.2 Multiconditioning

The quantity and diversity of the training data was extended by resampling
the audio to effect a global pitch shift. Each recording from the training
set was resampled at rates corresponding to frequency shifts of a fraction
of a semitone in order to account for differences in piano tunings. The cor-
responding ground-truth labels were unaffected (since the target note class
remained the same); however, the time axis was linearly interpolated in or-
der to adjust for the resulting time scaling. Symmetrically shifted frequency
data was added to the original training set in order to create additional clas-
sifiers. As such, this method for extending the training data corresponds to a
sub-semitone version of the resampling approach described in Section 3.1.

5.3 Experiments

In the first semi-supervised learning experiment, each frame of audio in the
unlabeled data set was assigned the label of its k-nearest neighbors. From
each song in the unlabeled set and for each note in the classification system, 50

negative training instances and 50 positive training instances (when available)
were added to the original set of training data This addition increased the
quantity of training data by approximately 50%. The amount of training data
used was held constant while the number of nearest neighbors, k, was varied
from 1 to 7 in odd increments. A classification system of SVMs was trained
from each of the updated training sets; however, each resulted in a negligible
change in transcription error on the validation set.

The baseline SVM system was then used to estimate transcriptions for each
song in the unlabeled data set. Positive training instances were selected by
varying the range of the distance to classifier boundary used for sampling
selection. While holding the 50% increase in training data constant, we at-
tempted sampling from a series of ranges by performing a grid search over
the distance to classifier boundary, the best of which resulted in a 0.8 point
decrease in total error score for the validation set. In addition to sampling
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different distance to classifier ranges to generate training instances, the HMM
post-processing stage was applied to the raw classifier transcriptions of the
unlabeled data set. From each song, 50 positive and negative instances were
selected for each note class and additional classifiers were trained resulting
in an 1.1 point reduction in the total error on the validation set. In order
to demonstrate the variation in classifier performance due to the addition
of semi-supervised training instances, the amount of estimated training data
was varied as a fraction of percent increase in total data from 10-100% (in
10% increments) resulting in a monotonically decreasing reduction in the to-
tal error score on the validation set up to 1.9 points for the training instances
generated from the output of the SVM classifier with HMM smoothing.

Four additional classifiers were trained in order to investigate the effects of
generating training data from resampled audio. Each recording from the
training set was resampled at symmetric rates corresponding to ± 0.5, 1.0,
1.5, 2.0% deviations from the original tone (where a full semitone shift corre-
sponds to a ≈ 6% deviation). In this experiment, the amount of resampled
training data was held constant, while the range of resampled audio used to
train the classifiers was varied. Incorporating the resampled audio resulted
in 3.1, 1.2, 1.1, and 0.9 point reductions, respectively, in frame-level error
score for the validation set. We suspect that the resampling rates closer to
the original tone provide an advantage in performance because they are more
likely to be in line with mild instrument de-tuning. The top performing re-
sampled classifier was then used to generate labels for the unlabeled data
set. The transcriptions were temporally smoothed via the HMM, and the es-
timated labels were sampled (50 positive and negative instances per class) to
create additional training data for a final set of classifiers. The combination
of the semi-supervised learning with the resampling technique resulted in a
4.7 point improvement in total error score on the validation set.

The parameters for each of the generalization techniques were optimized on
the validation set by minimizing the frame-level transcription error score, and
the top performing classification system from each of the proposed frame-
works was used to transcribe the 19 songs in the test set. The corresponding
frame-level transcription results are displayed in Table 5.1. The top perform-
ing system, a combination of the semi-supervised and multiconditioning tech-
niques, provided a 10 point reduction in total frame-level error score on the
test set.

Finally, both the baseline system and the system combining training data from
multiconditioning and semi-supervised learning were used to transcribe the
10 test piano recordings described in Section 4.1. Including the diversifying
training data resulted in a mild 0.4 point performance degradation in total
error score for the original instruments; however, the 10 point improvement
in generalization on the novel test set seems to warrant the addition.
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Frame-level transcription
System Etot Esubs Emiss Efa
SVM (baseline) 69.7% 15.8% 36.3% 17.6%
k-NN 70.5% 15.1% 37.3% 18.1%
SVM 68.9% 10.2% 49.7% 9.0%
SVM + HMM 68.5% 15.6% 33.9% 19.0%
MC 63.0% 12.4% 39.5% 11.1%
MC + SVM + HMM 59.1% 8.6% 38.6% 12.3%

Table 5.1: Generalization experiment transcription error results for the
19 song test set. The systems reported correspond to methods for creat-
ing additional training data.

5.4 Summary

In this chapter, we presented a number of methods for improving classifica-
tion generalization for piano transcription. We have shown that a reduction
in total transcription error may be achieved by combining multiconditioning
and semi-supervised learning in order to generate additional training data
for a classification-based music transcription system. The proposed meth-
ods demonstrate that limited quantities of training data may be augmented
in order to reduce classification error. In the following chapter, we investi-
gate these concepts further by examining the effects of using classification
posteriors as alignment features in order to facilitate bootstrap learning for
developing training data and improving transcription accuracy.
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Chapter 6

Score to Audio Alignment

In this chapter, we present a method for score to audio alignment based on
synchronizing an estimated transcript with a reference score. The framework
described in the preceding chapters is used to transcribe polyphonic audio
recordings, and the classification posteriors are synchronized to a MIDI tran-
script by dynamic time warping. A key advantage of the proposed method
for score to audio alignment is that the time-alignment is performed in the
score domain and, as such, does not require an artificial synthesis of the score.
We describe a novel method for generating test cases based on leveraging a
small amount of aligned data by systematically distorting the reference score,
and we report empirical comparisons to a number of alternative alignment ap-
proaches. Finally, we present a keystone experiment in which the proposed
method for score to audio alignment is used to develop a semi-supervised
classification system for music transcription.

6.1 Audio Data and Features

6.1.1 Audio Data

The typical method for evaluating score to audio alignment approaches in-
volves hand-labeling the time mapping between a recording and the corre-
sponding score for a small test set. In the typical case, the audio recording is
considered a distorted version of the target reference score. Rather than lim-
iting our evaluation to a small set of hand-labeled test files, we examined the
converse approach of generating a reference recording directly from a tran-
script, then distorting the reference transcript by a known warping to create
misaligned pairs of scores and recordings. In this complementary case, the
recordings (and the transcripts used to generate them) are considered the ref-
erence, and we attempt to map the distorted scores onto the time axis of the
reference recordings. This alternative method allows us to employ a larger



60 6.1 Audio Data and Features

Reference MIDI

Recorded Audio

Synthesized Audio

Feature Analysis

DTW

MIDI 
to WAV

Playback piano

t

Warping
Function

r

t (t   )r   wt  (t  )w   r

^

Warped MIDI

STFT

chroma

STFT

chroma

posteriors

Transcription
classifier

MIDI score

tw

Figure 6.1: Flow chart of the data generation and feature analysis for
score to audio alignment.

test set (potentially including a large number of distortions) without requir-
ing a large number of recordings, since each recording is aligned to multiple,
distorted, scores. Consequently, the statistical quality of our analyses are
improved, and the time required for test set development is significantly re-
duced.

The experimental audio data was derived from the 10 piano recording/MIDI
transcript pairs described in Section 4.1. We attempted to account for typi-
cal deviations that might be expected between scores and recordings when
generating the test cases. Therefore, the reference MIDI files were distorted
by varying the local tempo and by modifying the notes present in the ref-
erence transcript. A complete description of the experimental distortions is
provided in Section 6.3. Figure 6.1 displays the development of the test data
and time-warping analysis.

In addition to the set of piano recordings and distorted MIDI files, we com-
piled a small set of operetta songs from the 1993 D’Oyly Carte recording of
Gilbert and Sullivan’s Mikado and the corresponding MIDI karaoke files from
The Gilbert and Sullivan Archive, http://math.boisestate.edu/gas/. The
beginning of each line of lyrics was hand labeled for the recordings and read
directly from the karaoke file transcripts.

6.1.2 Short-Time Fourier Transform

The magnitude short-time Fourier transform was used as our baseline align-
ment feature. The piano recordings and synthesized MIDI files were re-
sampled to 8 kHz, and the STFT was applied to the audio files using 1024 point
discrete Fourier transforms (i.e. 128 ms), a 1024 point Hanning window, and
an 80 point advance between adjacent windows (for a 10 ms hop between

http://math.boisestate.edu/gas/
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successive frames). The frequency coefficients below 2 kHz (i.e. the first
256 spectral bins) were used as the features in the calculation of the similarity
matrix as described in Section 6.2.

6.1.3 Classification Posteriors – Transcription Estimate

The posterior features were calculated using the piano transcription system
described in Chapter 4 (without the HMM post-processing stage) trained on
the generalized data described in Chapter 5. As in Chapter 5, linear kernel
SVMs were used in order to maximize classification efficiency. The system
of SVM classifiers was used to detect the presence or absence of each note
in a frame of audio, a process that resulted in an estimated transcript for
each recording. The transcript estimations were limited to the first 63 piano
notes (i.e. notes with a fundamental frequency less than 2 kHz) when calcu-
lating the similarity between the warped MIDI transcript and the estimated
reference transcript.

6.1.4 Peak Structure Distance

Like us, the authors of [49] wished to avoid having to employ an explicit
synthesized audio version of their score to achieve alignment. Their solution
was to define a specialized similarity measure, the Peak Structure Distance
(PSD). For a given set of notes from the score, PSD hypothesizes the loca-
tions of associated harmonics in the spectrum (taking for example the first 8

multiples of the expected fundamentals), then calculates the similarity of the
observed spectral frames to the set of notes as the proportion of the total spec-
tral energy that occurs within some narrow window around the predicted
harmonics. As the actual spectrum tends towards pure sets of harmonics at
the correct frequencies, the similarity tends to 1. This is then converted to a
distance by subtracting the similarity metric from 1. Thus, the measure neatly
avoids having to model the relative energies at each harmonic.

6.1.5 Chroma

Chroma features attempt to capture the dominant note as well as the broad
harmonic accompaniment by folding all spectral information into the 12 semi-
tones within an octave. Rather than using a coarse mapping of FFT bins to
the chroma classes they overlap (which is particularly blurry at low frequen-
cies), the phase-derivative (instantaneous frequency) within each FFT bin was
used both to identify strong tonal components in the spectrum (indicated by
spectrally-adjacent bins with close instantaneous frequencies) and to improve
the resolution of the underlying frequency estimate [9, 1]. The chroma was
generated on a 10 ms grid from the spectral components below 1 kHz.
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In addition to calculating the chroma features from the synthesized MIDI files,
we attempted to estimate chroma directly from the MIDI transcript. Reference
power curves, created by varying the ‘velocity’ of individual piano notes and
measuring the power versus time, were used to approximate the relative loud-
ness and decay of each note. In order to calculate the chroma features directly
from the notes in the MIDI file, the corresponding reference power was added
to the feature matrix rather than using a binary representation of each note in
the transcript.

6.2 Time Alignment

6.2.1 Similarity Matrix

In order to calculate the similarity between two feature matrices, we took
the normalized inner product or cosine distance. The similarity matrix M is
calculated by:

M =
AT B

ET
AEB

(6.1)

where A is the feature matrix for the reference audio recording (one column
per time step) and B is the feature matrix for the time-warped recording in our
analysis. EA and EB are row vectors containing the norms of each column of
A and B respectively, and the division is applied elementwise. The elements
of the resulting matrix M are bounded by 0 and 1, where a cell value of 1

indicates a region of high similarity between the cells of the feature matrices.

6.2.2 Dynamic Time Warping

Dynamic time warping was used to identify the least-cost time-alignment
path through each similarity matrix. The least-cost path p is computed it-
eratively via dynamic programming by minimizing the cost function for the
distance matrix, D = 1− M:

p(i, j) = min


p(i − 1, j − 1) + D(i, j)
p(i − 1, j) + D(i, j)
p(i, j − 1) + D(i, j)

(6.2)

An example similarity matrix and the corresponding least-cost path is dis-
played in Figure 6.2. A complete treatment of DTW for audio alignment is
available in [58].
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Figure 6.2: Similarity matrix calculated between an audio recording and
a MIDI rendition of Tchaikovsky’s January: At the Fireside from The
Seasons. Dark regions indicate similarity between the feature matrices,
and the least-cost path warping estimate is overlaid in white.

6.3 Alignment Experiments

6.3.1 Evaluation Metric

We assess the success of each of the feature representations considered by
evaluating the timing error between the reference transcript and the estimated
alignment. We report the average onset timing error which is defined as the
mean of the timing error, errk = |tre f

k − test
k |, for each note onset k in the

reference transcript. This metric is similar to the “average offset” reported in
[49] and the “error” score described in [13].

6.3.2 Time Distortion

The tempo of the reference transcript was varied in order to account for lo-
cal deviations (e.g. stylistic performance differences) and global shifts (e.g.
playing the song more slowly). A Brownian walk W(t) was applied to the
reference tempo in order to generate the warped time tw as a function of
reference time tr

W(t) = W(t − 1) + N(0, σ2) (6.3)

tw(tr) =
tr

∑
t=0

exp
{

B · log(2) · W(t)
maxτ |W(τ)|

}
(6.4)

where B is a warp bound varied between 0.1 to 1. Thus, the warped time tw is
obtained as the sum of a sequence of time steps that can individually vary be-
tween 0.5 and 2.0 for the largest warp bound. 10 random walk iterations were
performed for each warp bound resulting in 1000 time-warped MIDI and au-
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Figure 6.3: Time warp mean onset errors.

dio recording pairs. The resulting mean onset error evaluated on a 10 ms grid
for each of the features considered is displayed in Figure 6.3. Although not
displayed in Figure 6.3, the chroma features generated directly from the MIDI
transcript result in an approximate 40 ms performance degradation as com-
pared to the chroma calculated from the synthesized MIDI. Chroma features
give relatively poor temporal alignment compared to STFT1, but PSD and pos-
terior features are significantly better, with posteriors achieving a slight edge
for more drastic distortions.

Each of the comparison systems operates by making some kind of prediction
of the spectrum from the score, then comparing with the actual signal in the
spectral domain. The key advantage of using a classifier to generate score-like
note posteriors appears to lie in its ability to generalize across all the different
spectral realizations that a particular pitch may take. Synthetic audio derived
from MIDI makes a single guess about the anticipated spectra of each note,
and to the extent this fails to match the actual notes observed, the similarity
matrix is compromised and alignment will suffer. The classifier, by contrast,
has been trained on multiple instances of each note’s spectra, and will map
any of these versions to the same transcribed event. This result is most clearly
illustrated in the substantial improvement between alignment based on STFT
features and that using posteriors. The PSD, which also is able to accept
a note regardless of its precise harmonic spectrum, performed comparably
to posterior matching in our tests; however, posterior feature matching was
superior in most cases.

1A single song containing a number of arpeggios contributed disproportionately to the total
error for the Chroma features. This test case highlights the conspicuous weakness of folding
the observations into a single octave representation; however, the chroma features provide a
theoretical advantage when the recorded audio is played in a different octave than the score.
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Figure 6.4: Note deletion mean onset errors.

6.3.3 Note Deletion

A portion of the notes present in the reference transcript were removed in
order to account for variations in performance (e.g. misplayed or spurious
notes). Uniform random sampling was used to delete a fraction of the notes
while holding the original tempo of the reference transcript constant. For each
fraction of notes deleted, 10 files were created resulting in 900 additional test
cases. The results of the mean note onset error calculation for varying note
deletion percentages are displayed in Figure 6.4.

Both the PSD and posterior features appear to gain an advantage from the
dynamic programming bias towards jointly advancing a step in each time
axis. As such, the note deletion experiment was repeated for those two fea-
tures with a constant, linear time-scaling in the distorted transcripts while
holding the specific notes deleted fixed. The test cases were scaled such that
the distorted transcripts were 50% longer in duration, and the results of the
supplemental note deletion experiment are displayed in Figure 6.5. The poste-
rior features still resulted in note onset errors of approximately 100 ms or less
when up to 50% of the notes were deleted from the linearly scaled transcript.

6.3.4 Variation in Instrumentation

In order to account for variations in instrumentation and synthesis quality
between a MIDI transcript and an audio recording, a set of eight operetta
recordings, for which the symphonic MIDI representation differed from the
recorded audio, were hand labeled at the beginning of each line of lyrics.
These instants were selected since hand-labeling every note onset is imprac-
tical for an opera recording and because the practical task of voice detec-
tion facilitates vocal performance analysis such as an examination of vowel-
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Figure 6.5: Note deletion mean onset errors for the linearly scaled test
cases.

Feature ¯err (ms) ¯err (frames)
STFT 324 1.62

Posteriors 316 1.58
PSD 322 1.61

Chroma 375 1.87

Table 6.1: Error results for the hand-labeled opera recordings.

modification. The start times for each line of lyrics were labeled on a 100 ms
grid, but the error evaluation between the recorded audio and karaoke tran-
script was performed on a 200 ms grid in order to account for inaccuracies in
the hand-labeling. The mean onset error results for the hand-labeled data set
are displayed in Table 6.1. In this experiment, the classification-based features
were generated using the instrument agnostic classification system described
in Section 4.4.3.

We suspect that the hop size used in the evaluation may be a limiting factor in
the mean note onset errors (especially for the opera experiments). However,
the average time alignment errors were limited to a small number of frames
in the feature representation for the majority of cases.

6.4 Bootstrap Learning

The proposed method for score to audio alignment was used to synchronize
46 MIDI transcripts from the data set described in Section 3.1 to piano record-
ings made in a number of different recording environments (i.e. different
studio, piano, performer, etc.) for which an exact transcript was unavailable.
The note labels from the time-aligned score were associated with frames from
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Frame-level transcription
System Etot Esubs Emiss Efa
SVM (baseline) 69.7% 15.8% 36.3% 17.6%
MC + SVM + HMM 59.1% 8.6% 38.6% 12.3%
MC + SVM + HMM + Bootstrap 58.1% 11.7% 31.8% 14.6%
Bootstrap 64.8% 12.8% 35.8% 16.2%
Bootstrap + MC 64.3% 16.6% 30.3% 22.4%

Table 6.2: Bootstrap generalization experiment transcription error re-
sults for the 19 song test set described in Section 5.1. The first two rows
of the table have been repeated from Table 5.1.

the additional audio recordings and used to train a piano transcription classi-
fication system based on all of the available piano training data2. As displayed
in Table 6.2, the final piano transcription system resulted in a 1.0 point reduc-
tion in total error score on the test set described in Section 5.1 as compared
with the best performing system from Chapter 5.

Comparing the baseline system with the systems reported in the last two rows
of Table 6.2 has more dramatic implications. Training on the bootstrap data
alone resulted in a 4.9 point reduction in total error score as compared to the
baseline system (despite learning from ≈ 1/3 the amount of data which was
unlabeled to begin with), a result that highlights both the merit of the boot-
strapping method for generating labeled training data and the importance
of relevant training data for successful music transcription. Incorporating a
more diverse training set has a similar effect to the proposed methods for
generalization, and as such, increasing the quantity of training data with mul-
ticonditioned bootstrap data results in a modest 0.5 point reduction in total
error score. However, the systems based on bootstrap learning are signifi-
cantly inferior to the system that incorporates all available training data. We
speculate that this results stems from the vast difference in training data vol-
ume.

6.5 Summary

In this chapter, we described a method for score to audio alignment based
on classification posterior features. The posterior features were used in a dy-
namic time warping framework to align MIDI transcripts to recorded audio
under a number of distortion conditions, and the proposed features appear
to provide a modest improvement in mean onset error for larger deviations
between the transcript and a recorded performance. The score to audio align-
ment system was used to synchronize MIDI transcripts to unlabeled audio

2The training data for the final classification system consisted of the time-aligned ‘bootstrap’
recordings, the MIDI syntheses, the playback piano recordings, the semi-supervised training data,
and the multiconditioned piano recordings.
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recordings in order to facilitate bootstrap learning, a process that resulted in
an improvement in classification generalization.
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Chapter 7

Conclusion

We have presented a classification-based approach for automatic music tran-
scription. The proposed system of support vector machine note classifiers
temporally constrained via hidden Markov models may be cast as a general
transcription framework, trained specifically for a particular instrument, or
used to recognize higher-level musical concepts such as melodic sequences.
Although the classification structure provides a simple and competitive al-
ternative to model-based systems, perhaps the most important result of this
thesis is that no formal acoustical prior knowledge is required in order to
perform music transcription.

Music transcription has a number of practical applications in content-based
retrieval/organization, signal transformation, and as a pedagogical tool. For
examples, the transcription system described may be used to identify multiple
performances of the same piece from within a music database, synthesize a
recording with different instrumentation, or analyze a performance to identify
stylistic interpretations or variations. In addition, the estimated transcripts
may be used as acoustic features in order to solve related music information
retrieval problems (e.g. score to audio alignment).

As with any artificial intelligence system, one may begin to wonder what
characteristics the classifiers are learning. Although the mechanics of the clas-
sifiers are rather opaque (i.e. a SVM formulates classification decisions on
input feature vectors in a black box framework), we may speculate about the
underlying nature of the system by examining the common transcription er-
rors. Figure 7.1 displays the log-probability of a note occurrence during an
insertion error for the piano transcription validation set. Insertion errors com-
monly occur when (sub)octave and harmonically related notes are present1.
As such, it appears that the classifier is learning empirical models of har-
monic structure; however, the framework allows for the potential of a more
generalized form since the classifier may learn to map many harmonic series

1Similar error patterns have been observed for note omission errors.
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Figure 7.1: Left: Log-probability note accompaniment occurrence for
note insertion errors. Right: Log-probability note accompaniment inser-
tion errors normalized by averaging along the diagonals of the matrix
in order to facilitate generalization.

weightings to a single note class (as long as representative patterns exist in
the training data).

An examination of the transcription errors leads us to consider the upper
bound of the proposed system. An attractive feature of the data driven ap-
proach is that improvements in classification accuracy may be obtained by
adding novel, relevant training data as illustrated in Figures 3.3 and 4.3. We
expect to observe these incremental gains in classification accuracy until the
subtle nuances of the testing distribution are represented in the training data.
Unfortunately, labeled training data is often difficult or expensive to obtain.
As such, we were motivated to extend the value of the limited data through
semi-supervised learning, multiconditioning, and bootstrapping, and subse-
quent improvements were achieved. Furthermore, dependency on represen-
tative data is also the key limitation of the proposed approach, and the clas-
sification system was observed to perform poorly in cases where exemplary
data was unavailable. However, the training requirements for characteristic
data were generally modest.

As with any classification approach, the proposed framework assumes a pre-
defined system dependency. In the reported structure, we regard a note class
as a conventional western tonal note that bears a resemblance to the data rep-
resented in the training set. As such, the described implementation cannot
perform sub-note-level (e.g. quarter-tone) pitch estimation without training
additional classifiers and may have difficulty resolving notes played in dif-
ferent contexts (e.g. unseen simultaneous note combinations). However, a re-
lated advantage of the proposed system is the potential to exploit higher-level
concepts such as commonly related notes when performing transcription.

Although a strong dependency on training data was observed, there are a
number of directions to pursue with respect to the classification framework.
We recognize that separating the classification and temporal constraints is
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somewhat ad hoc. A system for applying maximum-margin classification
in a Markov framework was proposed in [71]; however, solving the entire
optimization problem may be impractical for the scope of the evaluation.
Moreover, treating each frame independently does not come at a significant
cost to classification accuracy. Perhaps the existing SVM framework may be
improved by optimizing the discriminant function for detection rather than
maximum-margin classification as described in [65].

Despite the fact that a variety of acoustic features were implemented, none
of the representations provided a significant advantage in terms of classifica-
tion accuracy. This result is note entirely surprising since all of the features
contain largely equivalent information; however, it may be that a better nor-
malization scheme remains to be discovered. For example, a log-frequency
spectral representation may allow for the incorporation of higher frequency
harmonic information without an excessively large feature vector.

Figures 3.6 and 7.1 illustrate common note errors for the proposed melody
transcription system and piano transcription system respectively. Many of the
errors may be categorized as adjacent note confusion or octave transpositions.
More advanced training sample selection methods such as disproportionately
sampling members of the same chroma class, harmonically related notes, or
adjacent note boundaries (i.e. note classes with the greatest probability of
classification error) may result in improved transcription results.

Provided the appropriate training data is available, the proposed framework
may be extended to perform a number of related tasks such as chord tran-
scription and local key estimation. Independent estimates of the key and
chord may be combined in a hierarchical model to improve the temporal con-
text of the transcriptions. Similarly, the inclusion of a formal onset detection
stage may reduce note detection errors occurring at rearticulations and pro-
vide a perceptual advantage for common onset clustering.

In addition to framework enhancements to the classification approach, there
are several research directions that may benefit from investigating the use of
the proposed system. We observed that posterior features provided an advan-
tage for score to audio alignment. Classification posteriors could also serve as
a replacement for chroma or spectral features for similar tasks such as cover
song detection [27] and phrase segmentation [14]. The classification posteri-
ors may even be used as features for another classification system (e.g. key
or chord), similarly to the method proposed in [77] for speech/non-speech
discrimination.

Finally, the proposed system may be used to learn the structure of musical
composition. For example, the classification system may be trained on the
accompaniment data without the lead melody mixed in, but still using the
melody transcripts as the target labels. The resulting classification system
would be trained to predict an ‘appropriate’ melody from an accompaniment
alone. With suitable temporal smoothness constraints, as well as perhaps
some random perturbation to avoid boring melody choices, the proposed
framework could be used as a robotic improvisor or compositional aid.
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