Tag Ranking

Dong Liu, Xian-Sheng Hua, Linjun Yang, Meng Wang, Hong-Jiang Zhang

Microsoft Research Asia
Harbin Institute of Technology
Social Media and the Associated Tags -
Towards Large-Scale Content-Based Multimedia Search

www, www2009, madrid, spain
w3c, Don Quixote, Don, Quixote
cervantes, Sancho, ...

www2009, w3c, futuro, future, workshop, congreso
palacio, municipal, Madrid, consortium, consorcio
20, aniversario, España, Spain, Vinton, ...
Social tags are good, but they are

- Noisy
- Ambiguous
- Incomplete
- No relevance information

Two directions to improve tag quality

- During tagging – Tag Recommendation
- After tagging – Tag Refinement/Ranking
The most relevant tag is NOT at the top position in the tag list of the following social image:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>alex</td>
</tr>
<tr>
<td>2</td>
<td>meditating</td>
</tr>
<tr>
<td>3</td>
<td>love</td>
</tr>
<tr>
<td>4</td>
<td>winter</td>
</tr>
<tr>
<td>5</td>
<td>dog</td>
</tr>
<tr>
<td>6</td>
<td>golden retriever</td>
</tr>
<tr>
<td>7</td>
<td>zen</td>
</tr>
<tr>
<td>8</td>
<td>calm</td>
</tr>
<tr>
<td>9</td>
<td>perfect</td>
</tr>
<tr>
<td>10</td>
<td>1-5-fav</td>
</tr>
<tr>
<td>11</td>
<td>5-10-fav</td>
</tr>
<tr>
<td>12</td>
<td>top_v111</td>
</tr>
<tr>
<td>13</td>
<td>100v 10f</td>
</tr>
<tr>
<td>14</td>
<td>top20dogpix</td>
</tr>
<tr>
<td>15</td>
<td>top_f25</td>
</tr>
<tr>
<td>16</td>
<td>25-0-fav</td>
</tr>
</tbody>
</table>

Social tags for online images are better than automatic annotation in terms of both scalability and accuracy.
This phenomenon is widespread on social media websites such as Flickr.

Only less than 10% images have their most relevant tag at the top position in their tag list.
This has significantly limited the performance of tag-based image search and other applications.

For example, when we search for “bird” on Flickr.
What we are going to do:

Rank the tags according to their relevance to the image.
But how can we make it? Automatically.
Image Ranking v.s. Tag Ranking

Image Ranking
- Order images according to the relevance (of the images) to the query term

Tag Ranking
- Order tags according to the relevance (of the tags) to the image
Image Reranking v.s. Tag Ranking

Image Reranking
- Initial image ranking list → Improved ranking list

Tag Ranking
- Initial tag list (no order) → Ranked tag list
Can we borrow some idea from image reranking?
Basic Assumptions

Image Reranking

- Large image clusters should be promoted
- Visually similar images should be ranked closely
Typical Image ReRanking – Random Walk

Graph construction
- Images as nodes
- Rank or ranking score of an image as the value of the node
- Visual similarities of images are the edges
- Transition probability between two nodes

Graph Iteration
- To refine the relevance scores step by step
- With the help of the scores of the visually similar images
Basic Assumptions

Image Reranking
- Large **image clusters** should be promoted
- **Visually similar images** should be ranked closely

Tag Ranking
- Large **tag clusters** should be promoted
- **Semantically close tags** should be ranked closely
Tag Ranking (for each image)

Graph construction
- Tags as nodes
- Rank of a tag as the value of the node
- Semantic similarities of tags are the edges
- Transition probability between two nodes

Graph Iteration
- To refine the relevance scores step by step
- With the help of the scores of the semantically close tags
The problem is:
How can we calculate the similarity or distance of two tags?
What We Can Use

• WordNet distance

• Google distance
WordNet

- 150,000 words

WordNet Distance

- Quite a few methods to get it in WordNet
- Basic idea is to measure the length of the path between two words

Pros and Cons

- **Pros**: Built by human experts, so close to human perception
- **Cons**: Coverage is limited and difficult to extend
Normalized Google Distance (NGD)

Reflects the concurrency of two words in Web documents

Defined as

\[
NGD(x, y) = \frac{\max(\log f(x), \log f(y)) - \log f(x, y)}{\log N - \min(\log f(x), \log f(y))}
\]

Pros and Cons

Pros: Easy to get and huge coverage

Cons: Only reflects concurrency in textual documents. Not really concept distance (semantic relationship)
What We Can Use

- WordNet distance
- Google distance
- Tag Concurrence Distance (Google Image Distance)
- Tag2Image Distance
Tag Concurrence Distance

Image Tag Concurrence Distance

- Reflects the frequency of two tags occur in the same images
- Based on the same idea of NGD
 so we can also call it “Google Image Distance”

Pros and Cons

Pros: Images are taken into account

Cons: Tags are not complete and noisy so visual concurrency is not well reflected. In addition, the distance is image independent
dog, grass, tree, leaf

tree, grass, dog, leaf
Tag2Image Distance

Tag2Image

Find images with a particular tag
Keep those close to the target image (finding N-neighborhood)
Named as “Tag2Image Set”

Tag2Image Distance

Distance between the corresponding tag2image sets of the two tags

Pros and Cons

Pros: Images are taken into account and the distance is image dependent
Cons: Finding neighbors may be expensive
Random Walk Based Tag Ranking

Tag Graph Construction

- Tag2Image similarity & Concurrence similarity

Combination

\[s_{ij} = s(t_i, t_j) = \lambda \cdot \varphi_c(t_i, t_j) + (1 - \lambda) \cdot \varphi_v(t_i, t_j) \]

Visual similarity Concurrence similarity
Random Walk Based Tag Ranking

Random walk over tag graph

Transition matrix P denotes the row-normalized matrix of similarity matrix S.

r is the vector of relevance score for each tag of the image.

v is the vector of relevance score obtained by initial probabilistic tag relevance estimation.

Alpha is the weighting parameter.
The bar chart shows the comparison of Average NDCG between the Initial List and the Random Walk Tag Ranking.

- **Initial List**: Average NDCG is approximately 0.8.
- **Random Walk Tag Ranking**: Average NDCG is significantly higher, at approximately 0.85.

The chart indicates a clear improvement in ranking performance with the Random Walk Tag Ranking method compared to the Initial List.
A Better Measure: Flicker Distance

Is It Enough?
Basic Assumptions

Image Reranking
- Large image clusters should be promoted
- Visual similar images should be ranked closely
- Initial ranks need to be kept as much as possible

Tag Ranking
- Large tag clusters should be promoted
- Semantically close tags should be ranked closely
- We don’t have initial rank

Typically got from text-based ranking

How can we get it?
A possible estimation

\[s(t, x) = p(t|x) \]

A better estimation (normalized by frequency)

\[s(t, x) = \frac{p(t|x)p(t)}{p(x)p(t)} \]

After some calculation based on Bayesian Rule

\[s(t, x) = \frac{p(x|t)p(t)}{p(x)p(t)} = \frac{p(x|t)}{p(x)} \]

It is about a particular image \(x \), so \(p(x) \) is a constant, therefore

\[s(t, x) \propto p(x|t) \]

What is it now?

Density of image \(x \) in the image space with tag \(t \)
Initial Rank Estimation

Can be estimated by Kernel Density Estimation

\[s(t_i, x) = p(x|t_i) = \frac{1}{|X_i|} \sum_{x_k \in X_i} K_\sigma(x - x_k) \]

An intuitive explanation

- For image \(x \), \(X_i \) can be regarded as \(x \)'s friends with tag \(t_i \)
- The sum of the similarities estimated based on Gaussian kernel can be regarded as the soft voting from the friends
- So the initial relevance is actually estimated based on “collective intelligence” from its friend images
In Summary: Tag Ranking

Two-step strategy

- Probabilistic Tag Relevance Estimation
- Random Walk Refinement
Performance Evaluation

In term of average NDCG

- 50,000 Flickr images (to mine distance and estimate density)
- 13,330 unique tags
- 10,000 test images (each was labeled by 5 persons with five levels of relevance)
Original Tag List:
- blue winter sky white mountain snow photography gold nikon paradise view
top greece drama

Ranked Tag List:
- mountain sky white snow winter blue nikon photography view paradise gold
greece top drama

Original Tag List:
- ocean city summer brazil praia beach water architecture fantastic warm
desert great playa best resort arena

Ranked Tag List:
- beach water ocean summer architecture fantastic paradise great resort playa city
brazil best desert praia arena warm

Original Tag List:
- pink light white flower green nature yellow spring flora gerbera

Ranked Tag List:
- flower white pink nature light green yellow spring flora gerbera

Original Tag List:
- sun sunlight animal cat kitten kitty gatta gatto

Ranked Tag List:
- cat kitten animal sunlight sun gatta gatto

Original Tag List:
- family wedding friends sunset red sea
love beach silhouette nikon flickr day
colours maldives

Ranked Tag List:
- sunset sea red beach nikon silhouette
maldives love colours flickr friends
family day wedding

Original Tag List:
- park morning mist holland tree
bird water fog duck baum

Ranked Tag List:
- tree water bird fog park mist morning duck holland baum

Original Tag List:
- ocean travel blue sea water philippines adventure

Ranked Tag List:
- sea water ocean blue travel philippines adventure

Original Tag List:
- ferrari concept car auto automobile

Ranked Tag List:
- automobile car auto ferrari concept
After tag ranking, almost 40% images have their most relevant tag appear at the top position in their tag list.
Application 1: Tag-based search

- Use tag position as relevance measure

- Ranking result for query “water”
Application 1: Tag-based search

- Use tag position as relevance measure

\[r(x_i) = -\tau_i + 1/n_i \]

- Ranking result for query “bird”
Our tag position-based ranking strategy outperforms all other image ranking strategies on Flickr.
Application 2: Auto Tagging

Use top tags of similar images as tags for a new uploaded image
Using top tags after tag ranking to perform auto tagging even outperforms human being
Application 3: Group recommendation

- Use the top tags of an image as query keywords to search for its potentially suitable groups.

```
bird  nature  wildlife  black  flight  action

Tags                                      Recommended Groups
bird:  Birds and Wildlife UK | Birds Photos | British Birds
nature:  Nature's Beauty | The World of Nature | Arizona Nature
wildlife:  we love wildlife | California Wildlife | The Wildlife Photography
```
Tag ranking based group recommendation can help users better share their media content.

Figure 18: Performance of group recommendation with different n. (a) illustrates the average numbers of relevant recommended groups and (b) illustrates the recommendation precisions.
Conclusion

- Initial tags are orderless in term of the relevance which limits the performance of tag-based search and other applications based on tags.

- We propose a tag ranking strategy to solve this problem:
 - Density estimation to obtain initial rank scores
 - Refined by random walk based on image-dependant tag graph

- Tag ranking benefits a series of tag-based applications on social media websites.
Future Work

- Extending it to surrounding text
- Extending it to videos
- Extending it to textual documents
- Using more sophisticated distance measures
Thank You
If tags associated with social images can be ordered according to their relevance to the image, many tag based applications can be enhanced, e.g.

- **Tag based image search**
 - Ranking images according to tag position

- **Auto tagging**
 - Annotate top ranked tags to new uploaded images

- **Group recommendation**
 - Use the top ranked tags of an image to search for suitable groups to recommend to the user
1st step: Probabilistic Tag Relevance Estimation

We define the relevance score of a tag t with respect to an image x as

$$s(t, x) = \frac{p(t|x)}{p(t)}$$

We further derive the formula based on Bayes’ rule.

$$s(t, x) = \frac{p(x|t)p(t)}{p(x)p(t)} = \frac{p(x|t)}{p(x)}$$

Thus the relevance of t with respect to image x becomes

$$s(t, x) \doteq p(x|t)$$

Kernel Density Estimation is then adopted to obtain this score.
1st step: Probabilistic Tag Relevance Estimation (cont.)

- The relevance score of tag \(t_i \) with respect to image \(x \) can be estimated by KDE as follows.

\[
s(t_i, x) = p(x|t_i) = \frac{1}{|X_i|} \sum_{x_k \in X_i} K_\sigma(x - x_k)
\]

where \(|X_i| \) the cardinality of the set of images tagged with tag \(t_i \), and \(K_\sigma \) the Gaussian kernel function with radius parameter \(\sigma \), i.e.,

\[
K_\sigma(x - x_k) = \exp\left(-\frac{||x - x_k||^2}{\sigma^2}\right)
\]
2nd step: Random walk based refinement

Tag Graph Construction

- Exemplar similarity & Concurrence similarity

Combination

\[s_{ij} = s(t_i, t_j) = \lambda \cdot \varphi_e(t_i, t_j) + (1 - \lambda) \cdot \varphi_c(t_i, t_j) \]

- Visual similarity
- Concurrence similarity
2nd step: Random walk based refinement (cont)

- Random walk over tag graph

\[r_k = \alpha \text{Pr}_{k-1} + (1 - \alpha)v \]

- Transition matrix P denotes the row-normalized matrix of similarity matrix S.
- \(r \) is the vector of relevance score for each tag of the image.
- \(v \) is the vector of relevance score obtained by initial probabilistic tag relevance estimation.
- Alpha is the weighting parameter.