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Abstract—Photo sharing websites such as Flickr host a massive
amount of social images with user-provided tags. However, these
tags are often imprecise and incomplete, which essentially limits
tag-based image indexing and related applications. To tackle this
issue, we propose an image retagging scheme that aims at refining
the quality of the tags. The retagging process is formulated as a
multiple graph-based multi-label learning problem, which simul-
taneously explores the visual content of the images, semantic corre-
lation of the tags as well as the prior information provided by users.
Different from classical single graph-based multi-label learning al-
gorithms, the proposed algorithm propagates the information of
each tag along an individual tag-specific similarity graph, which
reflects the particular relationship among the images with respect
to the specific tag and at the same time the propagations of dif-
ferent tags interact with each other in a collaborative way with
an extra tag similarity graph. In particular, we present a robust
tag-specific visual sub-vocabulary learning algorithm for the con-
struction of those tag-specific graphs. Experimental results on two
benchmark Flickr image datasets demonstrate the effectiveness of
our proposed image retagging scheme. We also show the remark-
able performance improvements brought by retagging in the task
of image ranking.

Index Terms—Image retagging, label propagation, multi-graph
multi-label learning, semantic correlation.

I. INTRODUCTION

T HE prevalence of digital cameras and the growing practice
of photo sharing in community-contributed image web-

sites like Flickr [1] and Zooomr [2] have led to a flourish of
social images on the Web. Besides plain visual information,
such large-scale images are augmented with user-provided tags,
which greatly benefit a wide variety of applications such as
image search, organization and management.
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Despite the high popularity of manually tagging social im-
ages, the quality of the tags associated with images is still far
from satisfactory. Currently, the image tagging on the image
sharing websites solely relies on the manual inputs, which is
an extra burden for grassroots Internet users and often prohibits
accurate and comprehensive textual descriptions of the visual
content. A recent study reported in [3] and [4] reveals that the
user-provided tags associated with social images are rather im-
precise, with only about 50% precision rate. On the other hand,
the average number of tags for each social image is relatively
small [5], which is far from the number that can fully describe
the content of an image. Without accurate and sufficient tags, so-
cial images on the Web cannot be well indexed by search engine
and consequently, cannot be well accessed by users. Therefore,
effective methods to refine these unreliable tags have become
emerging needs.

In this work, we propose an image retagging scheme that aims
at improving the quality of the tags. The proposed scheme is
motivated by the following three observations from real-world
social images. 1) Visually similar images often reflect similar
theme and thus are typically annotated with similar tags. The
observation, referred to as visual consistency, has been widely
explored in visual category learning [6], [7], but the correlations
among tags are generally not utilized. 2) The tags associated
with social images do not appear in isolation. Instead, they ap-
pear correlatively and naturally interact with each other at the
semantic level. For example, the presence of tag “dog” often
occurs together with the presence of tag “animal” while rarely
co-occurs with “vegetable”. We refer it as semantic consistency
assumption. It also has been applied in some multi-label or con-
textual learning algorithms [8], [9] , while typically a unique
affinity matrix (i.e., similarity graph) is applied for all the dif-
ferent tags and they often can only handle dataset with clean la-
bels (rather than the social images with noisy tags). 3) With the
general knowledge that human-beings share most of common
concepts in the semantic space, the user-provided tags of an
image, despite imperfect, still reasonably reveal the primary se-
mantic theme of the image content. We can regard these tags as
prior information and use them to guide our retagging process.

Actually, image retagging can be regarded as a multi-label
learning problem from imperfectly-labeled image set, since
each social image is typically associated with multiple (noisy)
tags. Graph-based approaches are frequently applied to solve
multi-label learning problems, which can be categorized into
two main paradigms. In the first paradigm, the multi-label
problem is transferred into a set of independent label propa-
gation problems [10]. The drawback of this approach is the
lack of consideration of the inherent correlation among the
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Fig. 1. Schematic illustration of the proposed collaborative image retagging approach. Given a collection of social images with initial user-provided tags, the
tag-specific visual sub-vocabulary is first learned for each tag, based on which, the tag-specific image similarity graph is constructed. Then the image retagging is
performed across multiple tag-specific similarity graphs in a collaborative way with an extra tag similarity graph. Finally, we obtain the image retagging result.

labels. The second paradigm moves one step ahead and further
leverages the correlation among the labels in the propagation
procedure [11], [12] . The key issue in the second paradigm, as
aforementioned, is the measurement of the vertex similarities,
where the existing methods simply infer a unique similarity
graph based on low-level features and a similarity function.
However, whether two images are similar actually depends on
what the semantic tags are that we are caring about. Using a
single graph to measure the image similarity is unable to take
the tags into account; thus, it may not be able to well capture
the desired semantic relationship among the images.

In this paper, we cast the image retagging task into an op-
timization problem with graph regularization, which simulta-
neously maximizes the visual and semantic consistency and at
the same time minimizes the derivation from initial user-pro-
vided tags. Besides explicitly modeling the inter-dependency
among the tags, the proposed algorithm addresses the issue in
the second paradigm by constructing a set of tag-specific image
similarity graphs to precisely reflect the relationships of the im-
ages with respect to different tags. The optimization problem
is solved with an efficient multiplicative nonnegative iterative
procedure, which can be interpreted as a propagation of the tag
information among multiple graphs. Specifically, the tag infor-
mation is propagated in two different dimensions: one is within-
graph propagation, where the confidence scores for a specific tag
are propagated among the images on the corresponding tag-spe-
cific graph; the other is cross-graph propagation, where the in-
herent correlation among the tags can be sufficiently exploited.
By doing so, this work tries to propagate multiple tags on mul-
tiple graphs in an integrated manner and makes them benefit
from each other in a collaborative way.

The tag-specific visual similarity measurement is crucial for
the good performance of our retagging algorithm since it di-
rectly determines the underlying structure of each tag-specific
graph. The traditional distance metric learning approaches,
although effective in learning tag-specific distance/similarity
measure, are often sensitive to the noisy tags in the social
image collection. Instead, we pursue tag-specific low-level
representations that are robust to tag noises in data. Specifi-
cally, we propose a novel algorithm to learn the tag-specific

visual sub-vocabulary for each tag, which consequently results
in tag-specific image similarity graph better revealing the
relationship of the images with respect to the specific tag.

Fig. 1 illustrates the pipeline of our approach. The scheme
consists of two steps: tag-specific visual sub-vocabulary
learning and collaborative image retagging. In the first step,
tag-specific visual vocabulary is optimized for each tag by
leveraging a collection of images with noisy tags. Based on
the learned vocabulary for each tag, we construct tag-specific
similarity graph to characterize the relations of the images
with respect to a certain tag. A retagging process is then imple-
mented across the multiple tag-specific graphs in a collaborative
way. The entire framework is fully automatic without any user
interaction. Furthermore, we can also implement the two steps
iteratively to boost the retagging performance if the time com-
plexity and computational cost are not a concert. It is also worth
noting that our approach can not only refine the imperfect tags
associated with those social images but also indicate their rele-
vance scores with respect to the associated images. Therefore,
we can achieve the purpose of image ranking, which orders
images based on their relevance with respect to a specific query
tag.

The main contributions of this paper are as follows: 1) we
propose a graph-based optimization algorithm to improve the
quality of tags by modeling visual consistency of the images
over multiple tag-specific similarity graphs, semantic consis-
tency of the tags as well as prior information provided by users.
Comparing with existing graph-based algorithms, we perform
the tag propagation over the multiple tag-specific similarity
graphs in a collaborative way; (2) to construct tag-specific
similarity graph, we propose a robust optimization algorithm
to learn tag-specific visual sub-vocabulary from a collection of
social images with noisy tags.

II. RELATED WORK

Our work is first related to the automatic image annotation
(tagging), a process to predict the tags associated with an
image. Many algorithms have been proposed for this task,
varying from building classifiers for individual semantic labels
[13], [14], [15] to learning relevance models between images
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and keywords [16], [17] . Much of this excitement centers
around utilizing the machine learning techniques to learn the
mapping between the image contents and semantic tags based
on a collection of precisely labeled training images and then use
the learnt model to predict the tags of those unlabeled images.
On the contrary, the original goal of our work here is not to
predict tags for the unlabeled images, but rather to refine the
imprecise tags provided by the users. Moreover, we do not have
precisely labeled training images in the refinement procedure.
Instead, the only available supervision to learn the improved
tag assignment in our scenario is the imprecise, incomplete or
subjective tags provided by the users. Therefore, we argue that
image retagging is a more challenging task.

There are some efforts on social tagging in the literature.
Kennedy et al. [3] evaluated the performance of the classifiers
trained with Flickr images and their associated tags and demon-
strated that tags provided by Flickr users contain many noises.
Liu et al. [18] proposed to rank the tags according to their rel-
evance with respect to the associated images. Weinberger et al.
proposed a method to analyze the ambiguity of tags [19]. De-
spite the fact that these works have shown encouraging results,
they focus on directly utilizing the tags as a knowledge source
or simply analyzing the relation between images and their asso-
ciated tags, whereas there is still a lack regarding improving the
quality of tags.

The previous research on improving unreliable descriptive
keywords of images to date has focused on annotation refine-
ment, i.e., identifying and eliminating the imprecise annota-
tion keywords produced by the automatic image annotation al-
gorithms. As a pioneering work, Jin et al. [20] used WordNet
[21] to estimate the semantic correlation among the annotated
keywords and then those weakly-correlated ones are removed.
However, this method can only achieve limited success since it
totally ignores the visual content of the images. To address this
problem, Wang et al. [22] proposed a content-based approach to
re-rank the automatically annotated keywords of an image and
only reserve the top ones as the refined results. Despite these
efforts, existing methods typically focus on selecting a coherent
subset of keywords from the automatically annotated keywords.
This is reasonable since the underlying assumption for annota-
tion refinement is that the generative likelihoods between visual
content and annotation keywords have been maximized by the
automatic annotation algorithms. On the other hand, the tags as-
sociated with social images are often imprecise and incomplete,
and thus, their descriptive capability to the visual content cannot
be guaranteed. Therefore, the reranking-and-removing strategy
in annotation refinement methods is not applicable in the image
retagging scenario. To address this difficulty, Liu et al. [23] pro-
posed to refine the tags based on the visual and semantic consis-
tency residing in the social images, which assigns similar tags to
visually similar images. However, it still uses the holistic image
similarity to model the image relationship and thus only results
in limited performance improvements (see Section IV-B).

Recently, several approaches have been proposed to con-
struct discriminative visual sub-vocabularies, which explicitly
incorporate the category-specific information. For example, Liu
et al. [24] proposed to unify the discriminative visual codebook
generation with the classifier training in the task of object
category recognition. Moosmann et al. [25] accomplished the
task through randomized clustering forests. Zhang et al. [26]

proposed to learn descriptive visual words to represent images
under different concepts, which results in good performance in
a series of image applications. However, despite these efforts,
there are difficulties in directly applying the existing methods
in our scenario, due to the fact that our training images are
collected from the Internet based on tag queries, and thus, many
of the returned images do not even contain the desired targets.
Handling such mistagged data is beyond the capability of
existing methods. Therefore, we need to design a noise-tolerant
algorithm to accomplish the task.

There are also some “multi-graph” label propagation works
[27], [28] , but the focus of these works is to combine multiple
graphs to obtain a complementary graph, which, however, is
essentially different from this work where each graph is con-
structed to characterize the particular relationship among the
images with respect to a certain tag.

III. COLLABORATIVE IMAGE RETAGGING

This section presents our proposed scheme for image retag-
ging. We first describe the problem formulation and then intro-
duce an efficient multiplicative nonnegative iterative procedure
for the optimization. Finally, we present the tag-specific visual
vocabulary learning algorithm.

A. Problem Formulation

Denote by a social image collection,
where is the size of the image set. All unique initial tags ap-
pearing in this collection form a tag set ,
where denotes the total number of unique tags. The initial tag
membership for the whole image collection can be presented in
a binary matrix , whose element indicates
the presence of tag in image (i.e., if is associated with
image , then and otherwise). To represent
the final retagging results, we define another matrix whose
element denotes confidence score of assigning tag to
image .

The entire formulation of the image retagging algorithm
consists of three components: a loss term and two
regularization terms and . Specifically,
corresponds to the deviation of the retagging results from the
initial user-provided tags; is a regularizer to enforce the
visual consistency over multiple tag-specific similarity graphs
while is another regularizer to enforce the semantic
consistency. Based on these three terms, the image retagging
problem can be formulated as minimizing the following objec-
tive function:

(1)

where and are two tunable parameters that balance the latter
two terms.

First, we consider the visual regularization term. For a tag
, we have a corresponding weighted and undirected

graph where the vertices are the images in and the
symmetric edge weight matrix is estimated based
on the tag-specific visual similarity for tag , which is very
sparse based on k-Neighbor Neighbor graph. Details of gen-
erating tag-specific similarity graph will be presented later in
Section IV. The node degree matrix of graph is defined as
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, where . Further-
more, the normalized graph Laplacian of graph is defined
as .
Based on the above terminologies, the visual regularization term
is formulated as

(2)

which is actually a smoothness constraint with the normalized
graph Laplacian matrix (normalized using node degrees). Com-
paring with the formulation of the unnormalized version that
directly minimizes , the inclusion

of the normalization factors and will penalize a nor-
malized version of within-class edge weights when such an edge
connects two nodes with different scaling factors. Such a nor-
malization scheme often leads to better performance in many
graph-based learning algorithms [10], [12], and a recent theo-
retical analysis in [29] further confirms its superiority from the
learning theory aspect. It is worth noting that the minimization
of (2) actually reflects the visual consistency over tag-spe-
cific similarity graphs. For example, if image and image have
high visual similarity conditioned on tag , i.e., the value of

is large, the values of and tend to be close,
indicating that these two images should be assigned with sim-
ilar confidence scores with respect to tag . By enforcing such
a regularization term, visually similar images are inclined to be
annotated with similar tags, leading to the consistent tagging
results.

We then introduce the regularization term for the semantic
consistency assumption. To this end, we introduce the tag sim-
ilarity matrix whose element indicates the se-
mantic similarity between tags and . In this work, we adopt
a concurrence-based method to estimate this similarity, which
is analogous to the Google distance [30]. We first estimate the
semantic distance between tags and as

(3)

where and are the numbers of images containing
tag and tag , respectively, and is the number of
images containing both tag and tag . These numbers can be
obtained by performing search by “tags only” on Flickr website
using the tags as queries [1]. Moreover, is the total number
of images in Flickr. Then the semantic similarity between
and is defined as . After obtaining the
semantic similarity, the semantic regularization term is defined
as

(4)

where is defined as . Let
, we define a normalized graph Lapla-

cian for modeling the semantic correlations among the tags as
, which is the

normalized version of the graph Laplacian for semantic simi-
larity graph among the tags. Obviously, the above formulation
imposes a smoothness constraint on the semantic correlation
among the tags within the tag similarity graph. For example,
if tag and have high semantic similarity, i.e., the value of

is high, the confidence score and are enforced to be
close, which indicates the highly semantically correlated tags
are inclined to be simultaneously assigned to a same image.
Therefore, the formulation in (4) actually models the semantic
consistency assumption, which can be used to ensure high
performance of image retagging.

Finally, we consider the deviation between the image retag-
ging results and the initial user-provided tags, which is formu-
lated as

(5)

where is a weighting factor characterizing the importance
of tag to image , which is estimated from the visual dis-
tribution of image on the specific visual vocabulary for tag

(detailed in Section III-D). Moreover, all entries
form a matrix .

Based on the above three terms, the unified formulation can
be written as

(6)

To further ease the representation, we vectorize each matrix
by stacking their columns into a vector. Denote by ,

, and , the objective function can be
rewritten in a more compact form

(7)

where is defined as and is an
binary matrix defined as

if ,
otherwise.

(8)

The operator denotes the ceiling function which gives
the smallest integer not smaller than the given value. In
addition, and are two block-wise matrices defined as

. The block denotes the nor-
malized graph Laplacian of images conditioned on tag . The
matrix is diagonal and defined as ,
which is a diagonal matrix with repetitions of the block ,
each of which denotes the normalized graph Laplacian for tags.
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A practical issue in the above formulation is the number of
graphs, which equals to the number of tags in the social image
collection. When the number of tags becomes extremely large,
we need to involve a large number of tag-specific image sim-
ilarity graphs into the optimization procedure, which will in-
crease the computational cost tremendously. To tackle this defi-
ciency, we can segment the tag similarity graph into a number of
subgraphs via certain graph partition algorithm such as Normal-
ized Cut, where the tags residing within the same subgraph are
highly semantically correlated while the tags from different sub-
graphs are considered to be totally uncorrelated. Starting from
the tag subgraphs, the whole retagging problem can be divided
into a set of independent subproblems, each of which contains
only a small number of image similarity graphs corresponding
to those tags that reside within one tag subgraph.

B. Nonnegative Optimization Procedure

The formulation in (7) is a quadratic optimization problem
with nonnegative constrains. Typically, such an optimization
problem can be solved with the standard quadratic programming
(QP) software package. However, the number of involved vari-
ables in (7) is extremely large, which makes the optimization
computationally intractable by the standard QP optimization
package. Instead, we propose a scalable iterative optimization
procedure with multiplicative nonnegative update rule to derive
the solution. Our proposed optimization procedure is scalable in
the sense that it is able to handle a large number of variables
in the optimization objective, which is beyond the capability of
most of the existing QP methods. As the objective function is
quadratic, its derivative with respect to is then of first order
and

(9)

Let denote the Lagrange multiplier for constraint
, we apply the Karush-Kuhn-Tucker (KKT) condition

of to the derivative of the Lagrange function and then
obtain

(10)

Then we can obtain the following update rule:

(11)

Theorem 1: The update rule in (11) will converge and lead to
the global minimum of the objective function.

Proof: First, each item of the objective function in (6) is
quadratic and the coefficients for squared items are positive;
thus, the convexity can be naturally guaranteed. Then the ob-
jective function in (7) can be written as

(12)

which is actually in a special form of with being
positive definite. As proven in [31], the nonnegative update will
lead to a global minimum of the objective function.

Fig. 2. Convergence process of the objective function over MIRFlickr.

Algorithm 1: Multiplicative updating procedure for
collaborative image retagging

1: Initialize , and , set .

2: while not converged do

3: ;

4: Assign
;

5: end while

Algorithm 1 summarizes the entire procedure for the opti-
mization. Denote by the iteration index, the updating rules are
performed iteratively until , where
denotes the -norm of a vector. Based on the converged , the
tags with the top largest values in are consid-
ered as the retagging result of a social image . In this work,
we implement Algorithm 1 on the MATLAB platform of an
Intel Xeon X5450 workstation with 3.0-GHz CPU and 16-GB
memory and observe that the multiplicative updating iteration
converges fast. For example, in our image retagging experiment
on MIRFlickr dataset (see Section IV-B), each iterative proce-
dure updating all entries of will be processed with 6.3 min.
Fig. 2 shows the convergence process of the iterative optimiza-
tion, which is captured during the image retagging experiment
on the MIRFlickr dataset. Here one iteration refers to one round
of multiplicative updating for , which corresponds to steps 2–3
of Algorithm 1 .

C. Discussions

The proposed collaborative image retagging algorithm has an
intuitive interpretation in the viewpoint of graph-based tag prop-
agation. Based on each tag-specific similarity graph along with
the initial user-provided inputs as imperfect “priors”, we propa-
gate the tag information through tag-specific visual similarities
among the images. This is actually a within-graph propagation,
and the images with higher confidence scores are more likely
to be assigned with the given tag. Moreover, the incorporation
of semantic correlation among different tags achieves the cross-
graph propagation, in which the propagations of different tags
are interacted with each other, making them benefit each other
in a collaborative way. Note that such a graph-based tag prop-
agation method is essentially different from the existing graph-
based propagation methods where only one graph is utilized to
model the relationship of the images. In Table I, we summarize
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TABLE I
COMPARISON BETWEEN DIFFERENT GRAPH-BASED MULTI-LABEL LEARNING METHODS

the differences between our proposed collaborative multi-label
propagation method with the existing graph-based multi-label
propagation methods including 1) multi-label local and global
consistency (ML-LGC) method proposed by Zhou et al. [10]
and 2) Semi-supervised Multi-label learning method by solving
a Sylvester Equation (SMSE) proposed by Chen et al. [12].

In particular, a close analysis on ML-LGC and SMSE reveals
the fact that the objective functions of these two methods are
actually the special form of our proposed formulation. This ob-
servation can be easily obtained by a simple modification of our
proposed objective function in (6). For example, setting to be
0 while only constructing a single graph to model the holistic
image relationship, the objective function will degenerate into
that of ML-LGC. Moreover, the objective function will degen-
erate into the objective function of SMSE if we do not construct
the individual tag-specific graphs.

D. Learning Tag-Specific Visual Sub-Vocabulary From Social
Images With Noisy Tags

As discussed in Section I, the tag-specific image similarity
graph plays an important role in our proposed image retagging
scheme. However, learning such similarity measure is a chal-
lenging task since the initial tags of the social image collec-
tion contains a lot of noises. Here we propose a noise-tolerant
algorithm to accomplish the task. Specifically, we adopt the
widely-used bag-of-words (BoW) model to represent the visual
content of the images and then learn a tag-specific visual vocab-
ulary for each tag.

The purpose of the visual sub-vocabulary related to a target
tag is to select the most informative visual words to represent
the corresponding tag. Therefore, two criteria are desired for
selecting the visual words: 1) the visual words in the tag-spe-
cific visual sub-vocabulary should appear more frequently in
images labeled with the given tag than in images without the
tag; and 2) they should locate on the object/scene, even if the
object/scene is surrounded by cluttered background. In the fol-
lowing, we propose an optimization scheme to effectively incor-
porate these two criteria in the process of learning tag-specific
visual sub-vocabulary from a collection of social images anno-
tated with the given tag.

Suppose we have a collection of social images , in
which the images annotated with a given tag form a subset

and is the number of im-
ages in . Assume we have a universal visual codebook

learned from a set of scale in-
variant feature transform (SIFT) features [32] extracted from
the entire social image collection , where denotes the
size of the codebook. For any image , we first extract
its SIFT-features ’s and then represent by a bag of
visual words , where is the
corresponding visual word for SIFT feature .

First, we define as the probabilistic score to mea-
sure the possibility of a visual word being descriptive to
the target object/scene corresponding to tag and the scores
for all visual words in can be represented as a vector

. In order to combine these probabilities to ob-
tain the probability for image having at least one visual word
being descriptive to tag , we use the softmax function:

(13)

where the summation range on the numerator and denominator
of (13) covers all the visual words contained in image and

denotes the index of visual word in . The above
formulation can also be rewritten as

(14)

where denotes the number of occurrences for the th visual
word in image .

According to the first criterion for tag-specific visual sub-vo-
cabulary, the frequency-of-occurrence information of each vi-
sual word is important for identifying its descriptiveness. Be-
sides, spatial co-occurrence information between a pair of vi-
sual words is another important clue, since spatially consistent
visual words are more likely to locate on the target object/scene
corresponding to the tag. Based on these two clues, the task of
learning tag-specific visual sub-vocabulary from a noisy social
image collection is formulated as

(15)

where the value of measures the inherent sig-
nificance of visual word and can be adopted as a prior prob-
ability to estimate the descriptive capability of visual word .
Here denotes the occurrence frequency of the visual word

in the image subset and denotes the occurrence
frequency of visual word in the whole image collection .

denotes the co-occurrence frequency between visual words
and , which is defined as ,

where denotes the number of images that simul-
taneously contain visual words and .
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Note that: 1) the first term in the objective function mea-
sures the data fitting capability, namely, the deviation between
the estimated probabilistic confidence score and the prior prob-
ability; 2) the second term measures the smoothness of confi-
dence score for different visual words, i.e., two visual words
with high co-occurrence should also have similar confidence
scores of being selected to be descriptive; 3) the third term de-
notes the negative probability for the th image to have at least
one visual word descriptive to the tag, which penalizes the cases
of noisy images without the target object/scene; and 4) each
term is normalized by the number of elements in the summa-
tion, while and are two parameters that control the tradeoff
among these three normalized terms. In practice, we can also
normalize the second and third terms of (15) by and , re-
spectively, making the determination of the values and in-
dependent of the dataset size.

The optimization problem in (15) is a standard bound-con-
strained optimization problem that has been well investigated in
both theory and practice. Among the existing bound-optimiza-
tion techniques, the projected gradient method is proven to be
simple and effective. Here we also employ the projected gra-
dient method for the optimization. First, the partial derivation
of the objective function with respect to is calculated as

(16)

where

.
Denote by and also as-

sume denotes the index of iterations. The projected gradient
method updates the current solution to by the following
rule:

(17)

where is the step size and

if
if ,
if

(18)

maps a point back to the bounded feasible region. The step size
plays a key role in the iterative optimization procedure. To

find the appropriate parameter setting that ensures the sufficient
decrease of the objective function per iteration, we consider a
simple and effective strategy proposed by Bersekas et al. [33].
Based on the obtained optimization result, the tag-specific vi-
sual sub-vocabulary for the given tag is constructed by se-
lecting the top codewords with the highest confidence scores.
Fig. 3 illustrates some examples in which each image is repre-
sented with the tag-specific visual sub-vocabulary learned by
our proposed algorithm. From this figure, we can conclude that
tag-specific visual sub-vocabulary is descriptive for the visual
representation of the specific tag.

Fig. 3. Some exemplary images from Flickr. The interest points marked in red
circle are obtained with the tag-specific visual sub-vocabularies (top row). The
interest points marked in green circle are found by the Harris-Laplace detectors
which are used for determining the salient points in an image (bottom row). As
can be seen, most of the red points in each image locate at the target objects
under consideration, which indicates that the learnt tag-specific visual sub-vo-
cabularies are descriptive to the visual representations of the individual tags.
On the contrary, the green points merely correspond to visual salient regions
in the images and thus are not descriptive to the underlying semantic concepts.
(a) Flower. (b) Fox. (c) Bear. (d) Car. (e) People. (f) Bird.

With the learned tag-specific visual sub-vocabulary
for tag , we then present image in a vector

. Each element in cor-
responds to a descriptive visual word for the given tag and
is simply a count of the number of features indexed with this
visual word in image . Such a feature vector can be seen as
a tag-specific visual representation of the image, in which the
visual words are descriptive to the specific tag. After obtaining
the tag-specific visual representation for each image, we define
the tag-specific visual similarity between and as

(19)

which is the number of visual words shared between these two
images divided by their average number of visual words. Based
on it, the tag-specific visual similarity graph can be constructed.
Furthermore, the value of in (6), which modulates the impor-
tance of tag to image , is defined as

(20)

where denotes the number of nonzero elements in the
tag-specific visual representation and is the size of the
tag-specific visual sub-vocabulary.

IV. EXPERIMENTS

A. Dataset

As the initial user-provided noisy/missing tags are not avail-
able in the benchmark datasets such as COREL [34] and MSRC
[35], we employ the real-world social images with human
annotated tags to evaluate the performance of the proposed
algorithm. Specifically, two publicly available Flickr image
datasets, NUS-WIDE [4] and MIRFlickr [36], are used for
the experiments. The NUS-WIDE dataset contains a total of
269 648 images and has averagely two tags per image. We
select a subset of this dataset, focusing on images containing
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at least two tags and obtain a collection of 24 300 images with
73 608 tags. The second dataset, MIRFlickr, comprises 25 000
images with 223 537 tags and the average number of tags per
image is 8.94.

We notice that the tags in the above two collections are rather
noisy and many of them are misspelling or meaningless words.
Hence, a pre-filtering process is performed for these tags. We
match each tag with entries in a Wikipedia thesaurus and only
the tags with coordinates in Wikipedia are retained. In this way,
11 370 and 10 026 unique tags are obtained in total for NUS-
WIDE and MIRFlickr, respectively. To avoid sample insuffi-
ciency issue in learning tag-specific visual vocabulary, we fur-
ther remove those tags whose occurrence numbers are below 50
and employ the remaining 749 and 205 tags as the tag vocabu-
lary for these two datasets. It is worth noting that although the
numbers of images in the above two social image datasets are
moderate, the involved tag numbers (even after removing) are
still quite large, leading to a challenge task for the visual con-
tent analysis and modeling.

In this work, the images are represented with the BoW image
representation. We use Harris-Laplace detectors [37] to deter-
mine local regions and extract the SIFT features as the region
descriptors. We then perform k-means clustering to obtain a vi-
sual codebook containing 500 visual words. Then each detected
feature is mapped to an integer (visual word index) between 1
and 500. Thus, an image is represented as a histogram of visual
words of size 500.

B. Evaluating Image Retagging

To evaluate the performance of our image retagging algo-
rithm, we need to manually label the ground-truth tags for all
images in the collection. However, this is a labor-intensive task
considering the large number of images and tags. Instead, we
evaluate the performance of our algorithm on the 81 tags in
NUS-WIDE and the 18 tags in MIRFlickr where the ground-
truth annotations of these tags have been provided. We adopt
F-score to measure the image retagging results for each tag and
then average them as the final evaluation measurement.

Firstly, we construct the tag-specific visual sub-vocabu-
lary for each tag by employing the optimization algorithm
in Section III-D. As aforementioned, our proposed noise-tol-
erant tag-specific visual sub-vocabulary (NTTSVSV) learning
algorithm is able to well handle the images with noisy tags
that may degrade the performance of the existing tag-specific
visual sub-vocabulary learning algorithms. To confirm this
superiority, we involve the state-of-the-art descriptive visual
words (DVW) learning algorithm proposed by Zhang et al. in
[26] as comparison. This algorithm learns the descriptive visual
sub-vocabulary for each tag through a random walk procedure,
in which the term frequency-inverse document frequency (tf-idf)
measurements of the individual visual words are employed to
estimate their descriptive power. Comparing with our proposed
algorithm, the DVW algorithm does not provide any mechanism
for handling the images with noisy tags. For the parameter set-
tings for and in (15), we set
and try various pairs of in the optimization. For each
parameter pair, we examine the value of the objective function

that equals to
[see (15)] and the one with minimum residual will be picked
as the optimal parameter setting for and .1 In the ex-
periments, the optimal parameter settings of on the
NUS-WIDE and MIRFlickr are and , respec-
tively. Furthermore, we set the size of each tag-specific visual
sub-vocabulary to be 200. For the parameters of the DVW
learning algorithm, we choose them according to the suggested
setting strategies in the original work.

Based on the learnt tag-specific visual sub-vocabulary for
each tag obtained with each of the two tag-specific visual
sub-vocabulary learning algorithms discussed above, we fur-
ther conduct experiments to evaluate the performance of our
proposed collaborative image retagging algorithm. The grid
search strategy is employed to set the value of and in (7).
Specifically, we set and seek the

pair with the best image retagging performance. In the
experiments, the values of are determined as and

on the NUS-WIDE and MIRFlickr dataset, respec-
tively. To confirm the effectiveness of our proposed method,
we compare the following six algorithms.2

• Baseline, i.e., the original tags provided by the users.
• Separated ReTagging (SRT). In this method, the tag in-

formation is propagated separately within the tag-specific
graph without considering the collaboration among the
tags. This can be achieved by setting the parameter
in (7) as zero and then implementing the multiplicative
nonnegative iterative optimization. This is essentially the
ML-LGC algorithm that converts the multi-label learning
problem into a number of independent single label prop-
agation problems. For fair comparison, the appropriate
parameter setting for is also determined via grid search
from the interval of , which is the
same as the parameter setting strategy in our proposed
collaborative retagging algorithm.

• Naive Collaborative ReTagging (NCRT). Rather than
learning tag-specific visual sub-vocabulary for each tag,
the general BoW model is adopted to represent the im-
ages. Consequently, the collaborative retagging algorithm
is implemented within a unique graph that connects all the
images in the collection. This can be realized by replacing
the first term in (7) with a single graph while setting the
parameter to be 0. This is essentially the SMSE algo-
rithm which performs multi-label propagation by taking
advantages of label correlation. The parameter setting for

is also determined from the via
grid search.

• Tag Refinement based on Visual and Semantic Consistency
(TRVSC) [23]. In this method, the tag refinement task is

1Actually, the three terms in (15) (without multiplying � and � ) can be seen
as three individual criteria for evaluating the obtained confidence vector � . For
any given � , we substitute it (15) and calculate the summation of the three terms.
The smaller the summation is, the better the obtained � is, which further indi-
cates that the given parameter pair � and � are appropriate for generating re-
liable � .

2For each algorithm that relies on tag-specific visual sub-vocabulary, we em-
ploy both our proposed RTSVSV learning algorithm and the DVW learning
algorithm to generate the visual sub-vocabulary and then perform image retag-
ging with the specific algorithm.
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addressed by maximizing the consistency between “visual
similarity” of the images and the “semantic similarity” of
the tags through an iterative bound optimization procedure.
There is only one tradeoff parameter in the algorithm. For
fair comparison, we also use grid search method to search
the appropriate parameter setting, where the parameter in-
terval is also set as .

• Content-based Annotation Refinement (CBAR) [22]. We
choose this algorithm as comparison since it is the first
work for the content-based image annotation refinement.
Note that this algorithm is actually a Markov process
which mainly relies on the a set of transition matrices
between the tags. Once these matrices are calculated, the
algorithm does not have any parameter. It is also worth
noting that the CBAR algorithm along with the TRVST
algorithm are actually the state-of-the-art algorithms for
image tag refinement.

• Our proposed Tag-aware Collaborative ReTagging
(TCRT). We construct tag-specific graph for each tag,
respectively, and then perform the collaborative image
retagging algorithm over the graphs. As aforementioned,
the grid search method is employed to determine the
appropriate parameter setting for and .

Note that each algorithm above can produce confidence
scores for all tags. Therefore, we rank the tags of each image
based on their confidence scores and then keep the top 5 tags
as the image retagging result for each image. Table II shows
the performance comparison of the above six algorithms on
the NUS-WIDE and MIRFlickr datasets. From the results, we
have the following observations. 1) The proposed algorithm
achieves much better performance compared to the user-pro-
vided baseline. This clearly demonstrates the effectiveness of
our proposed image retagging algorithm. 2) The algorithms
based on our proposed robust tag-specific tag sub-vocabulary
learning method outperform the DVW-based counterparts. This
clearly demonstrates that our proposed visual sub-vocabulary
learning method can alleviate problems caused by noisy la-
beled images. 3) The collaborative image retagging algorithms
including NCRT and TCRT outperform the SRT algorithm.
It indicates the effectiveness of enforcing the collaboration of
different tags in the image retagging process. 4) TCRT algo-
rithm results in better performance than the NCRT, CBAR, and
TRVSC algorithms which only rely on the general BoW image
representation, benefiting from the incorporation of tag-aware
image representation. 5) The proposed algorithm outperforms
the CBAR algorithm, which shows that our proposed algorithm
is more appropriate for refining the imprecise user-provided
tags associated with the social images. 6) Our proposed re-
tagging algorithm shows up better performance than TRVSC
algorithm, which owes to its explicit exploration on tag corre-
lation and tag-specific image similarity. Fig. 4 illustrates the
image retagging results for some exemplary images produced
by our proposed algorithm. From the results, we can see that the
refined tags are quite “computer-vision friendly” tags that have
high correspondence with the visual content. This is reasonable
since all content analysis techniques including our proposed
image retagging scheme can only handle content-related tags.
However, one may argue that those content-unrelated tags such
as “canada”, “madrid” are also useful. To handle this issue, we

Fig. 4. Several exemplary images and their top-ranked tags produced by our
proposed image retagging algorithm. (a) NUS-WIDE. (b) MIRFlickr.

TABLE II
PERFORMANCE COMPARISON (F-SCORE) OF DIFFERENT IMAGE RETAGGING

ALGORITHMS ON NUS-WIDE DATASET AND MIRFLICKR DATASET, WHERE

SRT AND TCRT ARE FURTHER COMPARED USING DIFFERENT TAG-SPECIFIC

VISUAL SUB-VOCABULARY LEARNING ALGORITHMS

can choose to keep both the original tags and the ones obtained
from retagging to support both specific and general image
search.

C. Improving Image Ranking

Our proposed image retagging algorithm is able to improve
the quality of the tags; hence, tag-based image search can be
improved. In addition, our algorithm also introduces a ranking
scheme for tag-based image search since it not only refines the
tags but also assigns them confidence scores. We can regard the
scores as the indication of relevance levels between the tags and
images and provide a relevance-based image ranking.

To evaluate our algorithm on an image ranking task, we per-
form tag-based image search with the 81 tags in NUS-WIDE
and the 18 tags in MIRFlickr as query keywords and then pro-
duce the ranking list for each query based on the confidence
scores. Specifically, we involve the ranking results produced by
different image retagging algorithms as comparison. In addition,
we adopt the ranking results obtained based on initial user-pro-
vided tags solely as our baseline, in which the relevance score
of a social image with respect to the query tag is defined as
the average semantic similarity between tag and all other tags
associated with image . Here the semantic similarity is also es-
timated with (3).

We use the popular normalized discount cumulative gain
(NDCG) [38] as the performance evaluation measurement for
image relevance ranking. Based on the obtained relevance
scores for a query tag, we rank the images in a descending
order. Then each image is manually labeled as one of three
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Fig. 5. Performance comparison of the image ranking results using different
algorithms on (a) NUS-WIDE and (b) MIRFlickr datasets.

levels with respect to the query tag: Most relevant (score 2),
Partially relevant (score 1), and Irrelevant (score 0). Given a
query tag, the NDCG score at the depth in the ranked image
list is defined as ,
where is the relevance level of the th ranked image and

is a normalization constant such that the NDCG score for
the optimal ranking is 1. After obtaining the NDCG measure
for each query, we average them as the final evaluation metric.
Fig. 5 illustrates the NDCG measurements at different return
depths for different algorithms. From the results, we can have
the following observations. 1) All algorithms outperform the
baseline result significantly, which shows the effectiveness of
the retagging-based image relevance ranking. 2) Our proposed
TCRT algorithm produces consistent performance improve-
ments over the other algorithms at variant return depths, and
this confirms the superiority of the proposed algorithm over
the other algorithms. 3) The performances of NCRT, CBAR,
and TRVST outperform SRT, which owes to the fact that these
algorithms have taken the correlations among the tags into
consideration.

V. CONCLUSIONS

In this paper, we have introduced a novel image retagging
scheme that aims at refining the quality of the tags associated
with social images. We formulate the problem as an optimiza-
tion scheme that simultaneously takes into account visual con-
sistency of images over multiple tag-specific similarity graphs,
semantic consistency of tags, and user-provided prior knowl-
edge. It is solved with a collaborative tag propagation algorithm.
A tag-specific visual sub-vocabulary learning algorithm is also
proposed to construct those tag-specific similarity graphs. Ex-
periments on two benchmark social image datasets have demon-
strated its advantages over classical methods. Although we have
put more emphasis on Flickr in this work, the proposed frame-
work is flexible and can be easily extended to deal with a va-
riety of online media repositories, such as Zooomr as well as
any other image databases with noisy and incomplete tags.
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