
Towards Optimal Discriminating Order for Multiclass Classification

Dong Liu∗†, Shuicheng Yan†, Yadong Mu†, Xian-Sheng Hua‡, Shih-Fu Chang§ and Hong-Jiang Zhang¶
∗School of Computer Science and Technology, Harbin Institute of Technology, Harbin, P. R. China
†Department of Electrical and Computer Engineering, National University of Singapore, Singapore

‡Microsoft Research Asia, Beijing, P. R. China
§Department of Electrical Engineering, Columbia University, New York, USA

¶Microsoft Advanced Technology Center, Beijing, P. R. China
Email: dongliu.hit@gmail.com, {eleyans,elemuy}@nus.edu.sg, {xshua,hjzhang}@microsoft.com, sfchang@ee.columbia.edu

Abstract—In this paper, we investigate how to design an
optimized discriminating order for boosting multiclass classifi-
cation. The main idea is to optimize a binary tree architecture,
referred to as Sequential Discriminating Tree (SDT), that
performs the multiclass classification through a hierarchical
sequence of coarse-to-fine binary classifiers. To infer such a
tree architecture, we employ the constrained large margin
clustering procedure which enforces samples belonging to the
same class to locate at the same side of the hyperplane
while maximizing the margin between these two partitioned
class subsets. The proposed SDT algorithm has a theoretic
error bound which is shown experimentally to effectively
guarantee the generalization performance. Experiment results
indicate that SDT clearly beats the state-of-the-art multiclass
classification algorithms.

Keywords-Discriminating Order, Multiclass, Sequential Dis-
criminating Tree.

I. INTRODUCTION

Supervised multiclass learning aims at deriving a function
that can accurately assign class labels to instances where the
label set is of finite cardinality yet contains at least three
elements. Such a learning problem is becoming increasingly
important in various disciplines including natural language
processing [1], computer vision [2] and computational biol-
ogy [3].
ℓ(x) = (1− x)+
Many algorithms have been proposed to solve the multi-

class classification problem, varying both on the decomposi-
tion of the multiclass problem into a set of binary problems
and on the “all-together” single formulation used to optimize
multiclass discrimination. However, these algorithms suffer
from such limitations as the high variance in the output
prediction and the computational burden in solving a large
scale optimization problem (see Section II for details).
Therefore, how to effectively solve multiclass classification
is still an unsolved research problem.

The multiclass classification problem needs to discrimi-
nate samples from N(N > 2) classes, thus intuitively the
procedure is inevitably implemented in a stepwise elimina-
tion manner, where a subset of the N classes are discrimi-
nated at first, followed by the further discrimination of the
remaining classes. For such stepwise elimination process, an

appropriate discriminating order is critical, especially when
using linear classifiers. As an example, Figure 1(a) depicts
a case where the discriminating order has a direct impact
on the final decision of multiclass discrimination. As can
be observed, the 4-class data are linearly inseparable under
“one-versus-all” settings [4], yet become linearly separable
under the deliberate discriminating order as presented in
the figure. However, existing multiclass classification algo-
rithms [5], [6], [7], [8], [9], [10], [11] typically do not take
the discriminating order into consideration, which directly
motivates our work in this paper.

In this work, we propose a new algorithm towards the
optimal discriminating order in multiclass discriminating
procedure. The proposed algorithm, referred to as Sequen-
tial Discriminating Tree (SDT), performs a coarse-to-fine
multiclass discrimination by recursively dividing the classes
into two subsets until all classes are completely separated.
As shown in Figure 1(b), the top-down architecture of
SDT renders an optimized discriminating order with the
most separable class clusters discriminated at the root node,
more sophisticated classes discriminated at the lower layers
and so on until the decisive leaf nodes. We employ the
constrained large margin clustering procedure to discover
such a tree architecture and perform binary discrimination in
the sequence, by identifying the maximum margin between
two class clusters while enforcing the samples in the same
class to locate at the same side of the hyperplane. In addition,
the theoretic analysis indicates that such a learning process is
guaranteed by an generalization error bound. Extensive ex-
periments well validate the superiority of the proposed SDT
algorithm over those state-of-the-art multiclass classification
algorithms.

The rest of this paper is organized as follows. In Sec-
tion II, we briefly introduce the related work on the state-of-
the-art multiclass classification algorithms. Then we propose
the sequential discriminating tree algorithm in Section III.
Section IV provides the algorithmic theoretic analysis in-
cluding time complexity and generalization error bound. In
Section V, we report the experimental results on a board
range of data sets. The last section concludes this work along
with future work discussion.



(b)

d1

d2 d3

Positive �egative

Decision 

function 1 (d1)

Decision function 3 (d3)

Decision 

function 2 (d2)

Positive �egative Positive �egative

(a)

Figure 1. (a) The 4-class data cannot be well separated with the simple linear classifiers unless using the deliberate discriminating order presented in
the figure. (b) The architecture of SDT for the given task that sequentially performs the discriminating in an optimal order. Note that although only linear
planes are shown here for illustration, we will present extensions to nonlinear kernels later in the paper.

II. RELATED WORK

Many multiclass classification algorithms [5], [6], [7], [8],
[9], [10] have been developed during the last decade. As this
work focuses on solving multiclass classification problem
based on large margin optimization, Here we only briefly
review the multiclass learning algorithms that are closely
related to large margin learning.

There are four popular large margin N -class classification
algorithms in literature. The first one is to construct and
combine N binary Support Vector Machines (SVM) [4].
The i-th SVM is trained with all of the training samples
in the i-th class as positive samples, and all other training
samples in the other N − 1 classes as negative samples.
Therefore, the training time of this approach scales linearly
with the number of classes. We refer to the classifier trained
in this way as one-versus-all SVM (OVA SVM). In the
testing phase, the testing sample is evaluated against the
N binary SVMs, and the one which gives the highest
decision value is chosen as the predicted class. However, the
unbalanced numbers of the positive and negative samples in
the binary SVM training cause issue with the “OVA” strat-
egy, especially when it has few training samples per class.
Besides, there is no theoretic bound for the generalization
error of the OVA SVM.

The second algorithm is called one-versus-one SVM (O-
VO SVM) [12]. OVO SVM trains a binary SVM classifier
for any two out of the N classes, which consequently results
in N(N − 1)/2 binary SVM classifiers. To combine these
classifiers, Kreßel [5] suggested a Max Win strategy in
which each binary classifier casts one vote for its preferred

class, and the final result is the class with the largest vote.
To implement the above strategy, each test sample has to
be presented to a number of N(N − 1)/2 classifiers, which
thus results in slower testing, especially when the number of
the classes is large. To enforce fast testing for OVO SVM,
Platt [6] proposed the DAGSVM algorithm, the training of
which is the same as that for OVO SVM. In the testing
phase, the algorithm utilizes a rooted binary directed acyclic
graph to make a decision, which results in only N−1 binary
evaluations. The disadvantage of this approach, however, is
that the individual binary SVM classifiers tend to overfit
the concerned 2-class training samples, hence the learned
discriminating boundaries cannot provide meaningful gen-
eralization analysis for the unseen testing samples from the
other N − 2 classes.

The third algorithm is to construct a piecewise separation
of the N classes in an all-together optimization formula-
tion [8], [10], [13]. The basic idea is to build N binary
classification rules where the i-th function separates training
samples of the i-th class from the other training samples.
Hence there are N decision functions but all are learned
by solving a single optimization problem. For any testing
sample, the class with the largest decision value is output as
the decision. Therefore, the entire scenario of this algorithm
is still similar to OVA SVM.

The fourth algorithm for multiclass classification arranges
the classes into a hierarchial binary tree such that the
involved classes at each internal node are divided into two
clusters, one for each child node [9], [14]. The division
process continues until the leaf node contains only a single



class. At each node of the tree, a binary SVM classifier is
constructed to make discrimination between the two child
class clusters. Although this approach also relies on orga-
nizing a number of binary classifiers in a tree architecture,
it separates the tree construction from the classifier learning
and neglects the data labels in determining the discriminating
order. Therefore, the entire scenario of this algorithm is es-
sentially different from our proposed SDT algorithm which
directly optimizes ordinal sequence of binary divisions in
the tree construction process by taking the class labels into
consideration.

There are also some pieces of works [15], [16] that ad-
dress the multiclass problems by simply ensembling multiple
candidate hierarchial trees of a given problem with C4.5
and logistic regression as base learners. Besides, the work
on Error-Correcting Output Codes [17], [18] allows a com-
bination of classifiers which benefit from error-correcting
principles. The work in [19] provides a tree decomposition
framework for large-scale SVM learning. Despite the above
progresses, the main focus of these works is the decision
tree ensemble, which, however, is essentially different from
determining the optimal discriminating order exploited in
this paper. On the other hand, our proposed algorithm
can also be utilized as a pre-processing of these ensemble
algorithms, which may further improve the performance.

III. SEQUENTIAL DISCRIMINATING TREE

As aforementioned, the discriminating order has a great
impact on the performance of multiclass classification.
However, identifying the optimal discriminating order and
incorporating it into the multiclass learning process is a
challenging task. The most straightforward approach to
tackle this issue is to rank the classes according to the
their difficulties in discrimination, but it is obviously not
the best solution since the correlation among the classes are
not exploited. Another alternative is to estimate the merits
of different tentative discriminating orders of the classes,
however, this may result in the combinatorial explosion,
especially when the class number is large.

To address this problem, we propose a Sequential Dis-
criminating Tree (SDT) algorithm which derives the op-
timal discriminating order through a hierarchical binary
partitioning of the classes. It is worth noting that such a
partition based learning strategy is critical in identifying
the optimal discriminating order in multiclass classification.
Taking the classification problem in Figure 1 as an example,
if we perform the class-wise discrimination, the data cannot
be separated with the simple linear classifiers, whereas if
we apply the partition based discriminating, the problem
becomes linearly separable. On the other hand, the binary
partition of the classes breaks the whole difficult problem
into its subparts, making each of them easier to be solved.

Besides explicitly exploiting the separability among the
classes, the proposed SDT algorithm uses a binary tree

architecture to represent the discriminating order of mul-
ticlass classification, where the root node denotes the first
discriminating function and each leaf node denotes the final
decision of one specific class. Starting from the N -class
training samples, the SDT sequentially partitions the data
such that the samples in the same class are grouped into
the same subset until every subset consists of samples from
a single class. By doing so, we convert the combinational
optimization problem into a sequence of computationally
practical binary partition problems, making the proposed
SDT algorithm more applicable in real world problems. In
this section, we will first introduce the learning strategy
for the SDT induction and then describe how SDT makes
decision for the testing samples based on the learned tree
architecture.

A. Tree Induction

The induction of SDT focuses on recursively partitioning
the current training samples into two non-overlapping sub-
sets by a binary discriminating function, which is applied as
the node classifier of SDT. Therefore, the key ingredient
in SDT induction concerns how to perform an effective
binary partition at each non-leaf node. To this end, two
important characteristics are desired: (1) the training samples
belonging to the same class should be grouped together in
the same subset, and (2) to ensure the generalization ability
to the unseen testing samples, the partition function should
have the largest possible margin. These two criteria can
be well realized via the constrained large margin binary
clustering algorithm which was first introduced in [20]. The
authors in [21] further proposed a constrained large margin
clustering algorithm and applied it into the task of semi-
supervised hashing. In this work, we employ this constrained
clustering algorithm as the binary partition procedure at each
node of SDT. For completeness, we will first elaborate on
the algorithm in [21].

Given a collection of samples X = {xi}ni=1, where each
xi denotes the feature vector of a sample and n denotes the
total number of samples in the collection. The constrained
large margin clustering algorithm aims at finding an optimal
binary partition hyperplane vector f(xi) = ω⊤xi + b, as
well as the corresponding binary partition label yi1, where
ω denotes the hyperplane function and b is the offset scalar.
In the binary partition procedure of the constrained large
margin clustering algorithm, samples of the same class
should be partitioned into the same side of the hyperplane,
and thus trigger a penalty when they are projected into
different sides of the hyperplane. Denote the constraint set
for all the training samples as Θs, in which (i, j) ∈ Θs

denotes that the training samples xi and xj are from the

1Here yi does not denote the class label of the sample xi, instead, it is
used to represent which side of the hyperplane the sample xi locates at,
where yi = +1 indicates that xi is at the positive side while yi = −1
shows that xi is at the negative side.



same class. Based on these constraints, the objective of the
large margin binary clustering can be formulated as

Jω = Ω(ω) + λ1

∑
i

ℓ (−yif(xi)) + λ2

∑
(i,j)∈Θs

~((i, j)), (1)

where Ω(ω) = 1
2∥ω∥

2 denotes the regularization term, and
ℓ(·) is the hinge loss function defined as ℓ(yif(xi)) = (1−
yif(xi))+. Moreover, the constraint loss term ~(·) can be
defined as:

~((i, j)) =
{

0, yi = yj ,
(−yiyj)+, yi ̸= yj .

(2)

Following the notations in the max-margin formulation
[22], the objective function in Eq. (1) can be written as:

min
ω,b,ξ,ζ,y

1

2
∥w∥2 + λ1

n

∑
i

ξi +
λ2

n

∑
(i,j)∈Θs

ζij (3)

s.t. yi(ω
T xi + b) + ξi ≥ 1, ξi ≥ 0, ∀ i,

yiyj + ζij ≥ 0, ζij ≥ 0, ∀(i, j) ∈ Θs.

Obviously, the above constrained large margin binary
clustering objective is only designed for the raw feature
vectors. To handle the non-linear relations among the sam-
ples, the kernel trick can be applied, where a mapping
function ϕ(·) is employed to transform the features into the
Reproducing Kernel Hilbert Space (RKHS). In this case,
according to the representer theorem [23], the vector ω
in Eq. (1) can be written as a linear combination of the
mapped feature vectors, i.e., ω =

∑n
i=1 αiϕ(xi), where αi

represents the weighting parameter. Moreover, by definition,
yi equals to sign(ωT xi + b) [4], then yi(ω

T xi + b) is con-
sequently non-negative and can be equivalently expressed
as |ωT xi + b|. Furthermore, yiyj can be replaced with
(ωT xi + b)(ωT xj + b), such that the variables yi’s are
eliminated in the optimization. Finally, by incorporating
ω =

∑n
i=1 αiϕ(xi) into the optimization objective, we get

the relaxed formulation:

min
α,b,ξ,ζ

1

2
αTGα+

λ1

n

∑
i

ξi +
λ2

n

∑
(i,j)∈Θs

ζij (4)

s.t. |αT ki + b|+ ξi ≥ 1, ∀ i, (5)
(αT ki + b)(αT kj + b) + ζij ≥ 0, (6)
ξi ≥ 0, ∀ i,

ζij ≥ 0, ∀ (i, j) ∈ Θs,

where G is an n × n Gram matrix computed from the n
training samples, and ki denotes the inner products between
the i-th training sample and all n samples.

The objective in Eq. (4) is convex, and the constraints in
Eqs. (5) (6) can all be expressed as the difference of two con-
vex functions after simple algebra derivation. Therefore, the
Constrained Concave-Convex procedure (CCCP) [24], [25],
can be used to solve this optimization problem. However,
|αT ki + b| in Eq. (5) is non-smooth, and thus its gradient

possibly does not exist at some locations. To make CCCP
applicable, we can replace their gradients by subgradients at
the t-th iteration of CCCP as follows:

∂α|αT ki + b| = ki · sign(αT
t ki + bt),

∂b|αT ki + b| = sign(αT
t ki + bt),

where αt denotes the solution of the weighting vector α at
the t-th CCCP iteration.

Based on the above subgradients, the Taylor approxima-
tions for the terms in constraints Eqs. (5) (6) can be written
as:

|αT ki + b| ≈ (αT ki + b) · sign(αT
t ki + bt), (7)

1

2
α̃TMijα̃ ≈ α̃T

t Mijα− 1

2
α̃T
t Mijαt, (8)

where α̃ = (α⊤, b)⊤, α̃t denotes the value of α̃ at the t-th
CCCP iteration and

Mij =

[
kik

T
j

1
2 (ki + kj)

1
2 (ki + kj)

T 1

]
.

In Eq. (5), the number of slack variables ξi equals to the
sample number while the number of ζij in Eq. (6) equals to
the number of the constraints in set Θs. By introducing two
variables to reduce the parameter number, i.e., ξ =

∑
i ξi

and ζ =
∑

θij∈Θs
ζij , we can obtain the optimization

problem at the t-th iteration of the CCCP procedure as:

Jt = min
α,b,ξ,ζ

1

2
αTGα+

λ1

n
ξ +

λ2

n
ζ, (9)

which is subject to the following two convex constraints:

ξ ≥
∑
i

(
1− (αT ki + b) · sign(αT

t ki + bt)
)
+
,

ζ ≥
∑

θij∈Θs

(1
2
α̃T (Mi +Mj)α̃− α̃T

t Mijα+
1

2
α̃T
t Mijαt

)
+
.

In this way, we can obtain a sequence of sub-problems Jt,
t = 0 . . . tmax, as in Eq. (9), each of which is essentially a
Quadratic Programming (QP) problem [26]. However, the
constraints are non-linear, which makes the optimization
very complex. To solve the optimization problem more effi-
ciently, the cutting plane method [27] can be applied to ease
the optimization [28]. The basic idea of cutting plane method
is to maintain a collection of linear constraints, substituting
the original nonlinear ones.This constraint set is initialized
as empty and expended progressively after obtaining a new
solution. These constraints are called cutting planes. We
add the obtained cutting planes into the constraint set and
then use QP to solve the reduced problem. In practice, the
optimization procedure halts until satisfying the ε-optimality
condition, i.e., the difference between the objective value of
the original problem and the objective value of the reduced
cutting plane problem is smaller than a threshold ε. Assume
that the cutting plane method takes at most kmax itera-
tions to converge for optimizing Jt. According to cutting



plane method, the optimum sequence J ∗
t,k, k = 0 . . . kmax

monotonically decreases until the convergence to the optimal
solution of Jt. The constrained large margin binary partition
procedure can be summarized as in Algorithm 1.

Algorithm 1 The large margin binary partition procedure
with label constraints.

1: for t = 1 to tmax do
2: Relax the CCCP problem into convex sub-

problem Jt using Taylor expansion, and initialize
(ωt,0, bt,0) = (ωt, bt);

3: k = 0;
4: while ε-optimality condition is not satisfied do
5: Calculate the cutting planes at location (ωt,k, bt,k)

and add them into the constraint set;
6: Use QP to solve the reduced cutting-plane problem

and obtain a new solution (ωt,k+1, bt,k+1);
7: k = k + 1;
8: end while
9: end for

Based on the constrained large margin binary partition
procedure, we can describe the induction process of SDT as
in Algorithm 2. In fact, the induction of SDT is equivalent
to implementing an ordinal discrimination for multiclass
classification problem with the most straightforward sep-
aration performed at the root node, more sophisticated
discrimination at the lower layers of the tree and so on
until the leaf nodes of the tree. The proposed tree classifier
architecture takes advantage of both the efficient induction of
tree architecture and the high classification accuracy of large
margin discriminative classifiers. Based on this architecture,
the multiclass classification problem can be conducted in an
optimized sequence, which thus boosts the performance of
multiclass classification.

Algorithm 2 The Induction of SDT.
1: Input: N -class training data T .
2: Output: SDT.
3: Partition T into two non-overlapping subsets P and

Q using the large margin binary partition procedure in
Algorithm 1;

4: Repeat step 3 on datasets P and Q respectively until all
obtained subsets only contain training samples from a
single class.

B. Prediction

Once a SDT has been constructed, it can be used to predict
the class labels of the testing samples. To test a particular
sample, starting at the root node, the corresponding binary
discriminative function is evaluated. The node is then exited
via the left edge if the value of the binary function is non-
negative, or the right edge, if the value is negative. The final

decision of the testing sample is given by the class label
associated with the leaf node of SDT.

C. Discussion

The proposed SDT algorithm can be meant as a data
driven approach for the task of multiclass classification. In
fact, each binary partitioning in SDT has to choose the most
appropriate separation of the classes with the largest possible
margin, which explicitly exploits the structure information
of data. Applying the binary partition sequentially may
result in a discriminating order towards the optimality in
multiclass classification. In addition, the tree architecture
of SDT as well as the large margin binary partitioning
procedure implemented at each node allow us to naturally
optimize the error bound of the sequential discriminating,
which guarantees the theoretical generalization ability of the
proposed SDT algorithm as described in the Appendix.

IV. ALGORITHMIC ANALYSIS

In this section, we first analyze the time complexity of our
proposed SDT algorithm, and then give its generalization
error bound.

A. Time Complexity

Since the proposed SDT algorithm in Algorithm 2 is
essentially a recursive calling of the large margin partition
procedure in Algorithm 1. Therefore, we first analyze the
time complexity of Algorithm 1, and then get the overall
time complexity for Algorithm 2 accordingly.

In Algorithm 1, the outer iteration is CCCP, which has
been shown to decrease the objective function monotonically
and converge to a local minimum solution [25]. As for the
inner cutting plane iteration, we have the following two
theorems:

Theorem 1. Each iteration in steps 6-7 of Algorithm 1 takes
time O(sl) for a constant constraint set Ω, where s is the
average number of non-zero entries in α̃ and l is the number
of two class training samples that will be partitioned by one
node of SDT.

Theorem 2. The cutting plane iteration in steps 4-8 of
Algorithm 1 terminates after at most max{ 2

ε ,
8λR2

ε2 } steps,
where

R2 = ∥
∑
i

sign(α⊤
t ki + bt)(k

⊤
i , 1)

⊤∥,

and ε is the threshold for terminating the cutting plane
iteration (see Section III-A). ∥·∥ denotes ℓ2-norm of a vector.

The proofs of the above two theorems are easy to verify
by following the proofs in [28], and therefore are omitted
here. In Figure 2, we show the convergence curve of the
objective value, which is captured during the first binary
partition on iris dataset using linear kernel. Here one iter-
ation refers to one round of iterative optimization, which
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Figure 2. The convergence curve of applying Algorithm 1 in the first
binary partition of iris dataset, where the linear kernel is used.

corresponds to steps 5-7 of Algorithm 1. As can be seen,
the objective function converges to the minimum after about
3 iterations, which accords with the convergence analysis
discussed above.

Now, we analyze the overall time complexity of Algo-
rithm 2. As stated in Theorem 1, training a single binary
partition in Algorithm 1 is observed to scale in linear time
with the training set size l:

Tsingle = βl, (10)

where β is a proportionality constant. Furthermore, as-
suming that the classes have the same number of train-
ing data samples, we can obtain a balanced tree in SDT
using the large margin binary partition procedure in Al-
gorithm 1. Therefore at any i-th level of the tree (i =
0, 1, . . . , ⌊log2(N)− 1⌋+ 1), the training time would be

Tleveli = 2iβ(
n

2i
) = βn, (11)

where N denotes the number of classes and n denotes size
of the whole training set. Then the total training time for
SDT becomes

TSDT ≤
⌊log2(N)−1⌋+1∑

i=0

(βn) = (⌊log2(N)− 1⌋+ 2)βn.

(12)

B. Generalization Error Bound of SDT

Now we will present the generalization ability of SDT. It
is worth noting that SDT forms a binary decision tree that
is actually an directed acyclic graph. An important property
of the directed acyclic graph based decision strategy is that
an error bound can be maintained, which thus guarantees
the generalization ability. The following theorem with proof
omitted presents the error bound via VC analysis of directed
acyclic graph [6], using the results derived in [7].

Theorem 3. Suppose we are able to classify a random n
sample of labeled examples using a directed acyclic graph
on N classes containing K decision nodes with margins γi

at node i, then we can bound the generalization error with
probability greater than 1− δ to be less than

130R2

n

(
D

′
log(4en)log(4n) + log

2(2n)N−1

δ

)
,

where D
′
=

∑K
i=1

1
γ2
i

, e is the Napierian base, and R is the
radius of a ball containing the support of the distribution.

As for our large margin binary partition, let ωi and bi
be the partition parameters correctly splitting the training
samples at the i-node of SDT. We define the margin of i-
node in SDT to be γi = minci(x)=+1,−1{|ω⊤

i x+bi|}, where
ci(x) is the partition associated to training sample x, and
its value +1 or −1 represents which sides of the binary
hyperplane the sample x should be located at. The above
theorem implies that the error bound of directed acyclic
graph can be constrained within an expected interval if we
can enlarge the classification margin of each node classifier.
Note that the individual nodes of SDT are actually a set of
binary classifiers with the largest possible margins, thus the
overall discriminating error of SDT is theoretically bounded,
which consequentially ensures the generalization ability of
SDT.

V. EXPERIMENTAL RESULTS

In this section, the proposed SDT sequential multiclass
classification algorithm is evaluated on a toy data (Sec-
tion V-A), various benchmark datasets (Section V-B), a real
world image dataset (Section V-C) and a real world text
dataset (Section V-D). In each task, the performances of the
following six popular multiclass classification algorithms are
compared. For SVM related algorithms, we use the LIBSVM
toolbox [29] for the implementation.

• OVA SVM. We train N binary SVM classifiers to
separate each class from the other N − 1 classes. As
the algorithm solves several binary SVMs, for each
model we assume the penalty parameter C of all binary
classifiers are the same and its best parameter setting
is determined via cross validation.

• OVO SVM. On each dataset, a number of N(N−1)/2
binary SVM classifiers are constructed to separate any
pair of the N classes. We use the same experimental
routine as that in OVA SVM classification, i.e., the
penalty parameter C is set the same for all binary SVM
classifiers on each data set.

• DAGSVM. The training phase of DAGSVM is the
same as OVO SVM and thus we employ the same
experimental setting.

• C&S SVM. Here “C&S” means the multiclass SVM
algorithm proposed by [8]. An all-together optimization
formulation is solved to tackle the multiclass classifi-
cation problem, and the best penalty parameter C is
determined via cross validation.

• Hierarchical SVM. At each node of the hierarchical
tree, the k-means clustering algorithm [30] is employed



Table I
STATISTIC OF THE DATASETS.

Dataset #training/testing data #class #dim.
iris 150/0 3 4
glass 214/0 6 13
vowel 528/0 11 10
vehicle 846/0 4 18
segment 2310/0 7 19
satimage 4435/2000 6 36

to divide the training samples into 2 non-overlapping
subsets. Then a binary SVM classifier is trained as the
node classifier. The best penalty parameter C for all
binary SVMs is set the same via cross validation.

• SDT. The parameters λ1 and λ2 are empirically selected
on each dataset through cross validation.

A. Toy Problem

In this subsection, we use a toy problem to illustrate
that the proposed SDT algorithm is able to achieve the
optimal discriminating order for multiclass classification.
As shown in Figure 3(a), the toy problem is a 4-class
classification task in which each class consists of 60 2-D data
points represented with a specific shape. We use different
multiclass classification algorithms with linear kernel to
classify the 4-class data and observe the discriminating order
for each algorithm. As the discriminating orders for the non-
hierarchical algorithms including OVO SVM, OVA SVM
and DAGSVM are arbitrary, here we only present the result
for OVA SVM due to space limit. The results are shown in
Figure 3(b) to Figure 3(d). From the subfigures, we can have
the following observations. 1) The discriminating order of
hierarchical SVM heavily relies on the clustering result of
the current classes, resulting in less effective discriminating
power. 2) The discriminating order is totally ignored in the
OVA SVM algorithm, which affects its discriminating ability
to the given toy problem. 3) The proposed SDT algorithm
is able to classify the data in an optimal order in which
the most separable class clusters are discriminated by the
first large margin binary classifier, followed by the further
separation of the remaining classes with two more classifiers.
This demonstrates the effectiveness of our proposed SDT
algorithm in determining the optimal discriminating order
in multiclass classification.

B. Benchmark Tasks

In this subsection, we evaluate the proposed SDT algorith-
m on six benchmark datasets popularly used in the studies
of multiclass classification problem, including iris, glass,
vowel, vehicle, segment and satimage [31]. The detailed
statistics of these datasets are shown in Table I. Note that
only for satimage, the testing data set is available, while for
the other five datasets, only training data sets are available.
For each dataset, we scale the training data to be in [−1, 1],

and then adjust the testing data to [−1, 1] accordingly, if the
corresponding testing data set is available [29].

We employ the classification accuracy rate as the perfor-
mance evaluation metric of different algorithms. To fairly
evaluate these six algorithms, we seek the best parameters
on each dataset for each algorithm by performing cross
validation. To train each of the six algorithms, we select
two kinds of kernel functions including the parameter-
free linear kernel K(u, v) = ⟨u, v⟩ and the RBF kernel
K(u, v) = exp(−γ∥u− v∥2), where the value of parameter
γ is selected from {2−5, 2−4, . . . , 24, 25}. For each of the
SVM based algorithms, the choice of the penalty parameter
C is determined from {2−5, 2−4, ..., 24, 25}. We use two
different criteria to estimate the generalized accuracy. For
satimage where both training and testing sets are available,
for each parameter C (for linear kernel) or parameter pair (γ,
C) (for RBF kernel), the validation performance is measured
by training 70% of the training data and testing the other
30% of the training data. Then we train the whole training
set using the parameter (or parameter pair) that achieves the
best validation rate and predict on the testing set. For the
other five datasets where the testing data are not available,
we simply conduct a 10-fold cross-validation on the whole
training data and report the best cross-validation rate. Note
that this evaluation strategy is adopted by most of the
state-of-the-art multiclass classification algorithms on the
same benchmark datasets [9], [6]. To coincide with these
algorithms, we also employ this evaluation strategy, and do
not report the means and standard deviations obtained from
multiple trainings/testings on each dataset (See Section V-C).
For the proposed SDT algorithm, we select the values for pa-
rameter λ1 and λ2 from {100, 200, . . . , 900, 1000} through
10-fold cross validation, and then report the validation rate
as the final result of each dataset.

In Table II, we present the classification results using the
linear kernel and the RBF kernel, where each row shows the
accuracy rates of different algorithms on one dataset and
the best performance is indicated with bolded font. From
these results, we can have the following observations. 1) The
accuracy rates are similar for all five SVM based algorithms,
in which the OVO SVM algorithm performs relatively better.
2) Overall the RBF kernel produces better accuracy than the
linear kernel, which reveals the necessity of using nonlinear
kernels in real applications. 3) The proposed SDT algorithm
achieves higher classification accuracy rates compared to
the other state-of-the-art multiclass classification algorithms
over most of the datasets, which confirms the effectiveness
of seeking the optimal discriminating order in multiclass
classification.

C. Image Categorization

Image categorization is one of the natural applications of
multiclass classification. To evaluate the proposed algorithm
on image categorization task, we use the COREL image
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Figure 3. First three classification hyperplanes obtained with different multiclass algorithms, which shows the discriminating order adopted by different
algorithms.

dataset with 25 categories, where each category has 100
images [32]. For each image, we extract a 255-dimensional
color moment vector as its low level feature representation.

On the COREL image dataset, images within each cat-
egory are randomly partitioned into two equal partitions.
One is used for training and the other for testing. Each
experiment is repeated five times based on five random
splits, and the average results are reported. We use lin-
ear kernel and RBF kernel to train each of the compar-
ison algorithms. For RBF kernel parameter γ, we select
its value from {2−5, 2−4, . . . , 24, 25}. For the five SVM
based algorithms, the penalty parameter C is selected from
{2−5, 2−4, ..., 24, 25}. For each parameter or parameter pair,
we validate the performance of each algorithm by training
on 70% of the training data and testing over the other 30%
of the training data. Then the best parameter that achieves

the best validation rate is adopted to train a classifier on the
whole training data, which is used for further prediction on
the testing set. For the proposed SDT sequential classifica-
tion algorithm, the parameter λ1 and λ2 are selected from
{100, 200, . . . , 900, 1000}, respectively.

Table III
ACCURACIES (%) ON THE IMAGE CATEGORIZATION TASK. THE BEST

PERFORMANCE IS BOLDED.

Linear kernel accuracy RBF kernel accuracy
OVA SVM 66.79± 2.13 OVA SVM 70.12± 3.31
OVO SVM 71.17± 2.25 OVO SVM 75.81± 3.62
DAGSVM 69.09± 2.74 DAGSVM 75.55± 3.63

C&S 68.59± 2.16 C&S 73.86± 3.03
HierSVM 70.12± 2.37 HierSVM 72.27± 2.96

SDT 73.26 ± 1.98 SDT 77.25 ± 3.09



Table II
ACCURACY (%) ON THE BENCHMARK DATASETS USING THE LINEAR KERNEL (UPPER ROWS) AND USING THE RBF KERNEL (LOWER ROWS). THE

BEST PERFORMANCE ON EACH DATASET IS BOLDED.

Linear Kernel OVA SVM OVO SVM DAGSVM C&S SVM Hierarchical SVM SDT
iris 96.00 97.33 96.67 96.67 97.33 98.00

glass 60.28 66.82 61.23 64.95 65.32 68.49
vowel 50.95 80.49 81.03 82.57 81.01 83.75

vehicle 78.72 81.09 80.13 78.72 79.82 82.83
segment 92.47 95.24 94.38 95.37 93.83 97.75
satimage 80.35 85.50 86.30 85.15 87.15 86.20

RBF Kernel OVA SVM OVO SVM DAGSVM C&S SVM Hierarchical SVM SDT
iris 96.67 97.33 96.67 96.67 97.33 98.00

glass 71.76 71.47 72.96 70.87 72.61 73.16
vowel 97.79 98.93 98.26 98.85 98.18 97.02

vehicle 86.63 86.64 86.32 87.12 86.13 87.26
segment 96.78 97.13 97.24 96.88 97.16 97.53
satimage 91.45 91.30 91.25 92.35 92.10 92.45

Table III lists the results of different algorithms on the
image categorization task, where both mean and standard
derivation of each algorithm are reported. From the table, we
can see that the proposed SDT algorithm also outperforms
the other multiclass classification algorithms, which further
validates that the discriminating order plays an important
role in the multiclass classification task.

D. Text Categorization

We derive a text categorization dataset from the 20
Newsgroups corpus popularly adopted in text categorization
task [33]. For each category, we randomly select 100 sam-
ples and thus form a dataset with 2, 000 documents. Note
that each document is represented as a 62, 061 dimension
feature vector, making the classification task extremely chal-
lenging.

We use the same experimental routine as that in im-
age categorization, namely, the parameter γ is determined
from {2−5, 2−5, . . . , 24, 25}. For the SVM related algo-
rithms, the optimal penalty parameter C is selected from
{2−5, 2−4, ..., 24, 25}. The parameters are validated with
70%/30% split of the training data, and the parameter
achieving the best performance is utilized to train a classifier
on the whole training data. The parameters λ1 and λ2 in SDT
are empirically validated from {100, 200, . . . , 900, 1000},
respectively.

Table IV
ACCURACIES (%) ON THE TEXT CATEGORIZATION TASK. THE BEST

PERFORMANCE IS BOLDED (STATISTICAL SIGNIFICANCE EXAMINED VIA
PAIRWISE T-TESTS AT 95% SIGNIFICANCE LEVEL).

Linear Kernel accuracy RBF Kernel accuracy
OVA SVM 51.93± 5.72 OVA SVM 52.83± 5.93
OVO SVM 57.23± 6.82 OVO SVM 60.05± 2.74
DAGSVM 59.00± 6.79 DAGSVM 67.67± 3.67

C&S 55.34± 6.26 C&S 66.75± 2.96
HierSVM 61.71± 5.51 HierSVM 68.26± 2.43

SDT 63.23 ± 5.27 SDT 68.72 ± 3.04

From Table IV, we can see that the proposed SDT
algorithm clearly outperforms other multiclass algorithms in
text categorization task.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a sequential discriminat-
ing tree (SDT) algorithm towards the optimal discriminating
order in multiclass classification. The proposed algorithm
is motivated by a theoretical bound, which guarantees its
generalization ability. Experimental results demonstrate that
the proposed SDT algorithm outperforms the state-of-the-
art multiclass classification algorithms on a wide range of
classification tasks.

The proposed algorithm has a potentially large number of
applications in various areas where multiclass data are con-
sidered. Besides multiclass classification, the idea of seeking
the optimal learning order can also be applied to many
other learning scenarios such as unsupervised clustering,
multiclass active learning and so on.
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