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Abstract. Complex events consist of various human interactions with
different objects in diverse environments. The evidences needed to rec-
ognize events may occur in short time periods with variable lengths and
can happen anywhere in a video. This fact prevents conventional machine
learning algorithms from effectively recognizing the events. In this pa-
per, we propose a novel method that can automatically identify the key
evidences in videos for detecting complex events. Both static instances
(objects) and dynamic instances (actions) are considered by sampling
frames and temporal segments respectively. To compare the character-
istic power of heterogeneous instances, we embed static and dynamic
instances into a multiple instance learning framework via instance simi-
larity measures, and cast the problem as an Evidence Selective Ranking
(ESR) process. We impose �1 norm to select key evidences while us-
ing the Infinite Push Loss Function to enforce positive videos to have
higher detection scores than negative videos. The Alternating Direction
Method of Multipliers (ADMM) algorithm is used to solve the optimiza-
tion problem. Experiments on large-scale video datasets show that our
method can improve the detection accuracy while providing the unique
capability in discovering key evidences of each complex event.

Keywords: Video Event Detection, Infinite Push, Key Evidence Selec-
tion, ADMM.

1 Introduction

Recognizing complex multimedia event in videos is becoming increasingly
important in the field of computer vision. In 2010, the TREC Video Retrieval
Evaluation (TRECVID) [15] Multimedia Event Detection (MED) evaluation
task defined a wide range of complex events, and spurred broad research in-
terests in the computer vision community. These complex events include “at-
tempting board trick”, “landing a fish”, “changing a vehicle tire”, and “flash
mob gathering”, to name a few. In contrast to the human activity videos in ac-
tion recognition [19], which mainly focus on a single person’s simple motions in
the 5 to 10 seconds short video clips, the complex event videos consist of various
interactions of human actions and objects in different scenes, and may last from
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Fig. 1. The proposed Evidence Selective Ranking (ESR) framework. The
static/dynamic instances of variable lengths are first extracted from a video, and
mapped to a pre-learnt static/dynamic instance codebook via maximum similarity
measure (instance embedding). The heterogeneous embedded vectors are then con-
catenated and trained by Infinite Push loss function with �1 norm to select the key
evidences while enforcing positive videos to have higher detection scores.

several minutes to even an hour. Therefore, it is challenging to develop robust
event detection models that can precisely capture the essential information in
event videos.

Althoughmany algorithms have been proposed to recognize complex events [8],
the most popular method is still aggregating the raw audio/visual/motion fea-
tures extracted from the videos into different variants of Bag-of-Words (BoW)
histogram, and then feed it into sophisticated statistical learning models for event
modeling. However, themain issue with this strategy is that it treats different com-
ponents of a long event video as equally important, and ignores the fact that an
event video may contain significant amount of background components that have
no direct association with the target event. In fact, a complex event can usually be
recognized by spotting a few key static and/or dynamic evidences [2]. For example,
a “wedding ceremony” video can be correctly detected by successfully identifying
several static frames containing bride and groom, while a “attempting bike trick”
video can be detected by spotting some dynamic short segments containing the
activity of jumping with a bike.

This motivates us to develop a method that is able to identify the key static-
dynamic evidences in event videos and leverage them for improving the overall
performance of event detection. Nevertheless, this is a nontrivial task due to the
following reasons. First, given a complex event video, there are large amounts
of frames and video segments that can be potential evidences, and the char-
acteristic power of heterogeneous instances cannot be directly compared. To
address those issues, we employ the instance embedding method [4] to map dif-
ferent kinds of instances into pre-learnt instance codebooks and concatenate the
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Fig. 2. Some of the top key event evidences selected by our method. (A) to (E) are
static instances, while (F), (G) are dynamic instances with 15 and 10 seconds length.
(A) is changing a tire; (B), (C) are fixing an appliance; (D) is sewing project; (E), (F)
are grooming animals; (G) is parade.

embedded vectors. Specifically, given an event video set, we first sample frames
from each video as static instances and short video segments at varied length
as the dynamic instances. The static and dynamic instances are then clustered
respectively to form the static and dynamic instance codebooks. Finally, we map
all static/dynamic instances in a video onto the static/dynamic instance code-
book, in which the value of each static/dynamic codeword is determined by the
maximal similarity between all static/dynamic instances and the codeword. In
this way, we end up with a compact heterogeneous instance representation that
comprehensively encodes static and dynamic instances in each video.

Second, even after we have a compact instance representation, we need to
investigate novel solutions that can select most distinctive evidences (positive
instances) from videos and effectively utilize the information to detect complex
events. Indeed, the video event detection task can be seen as a ranking process
that aims at assigning higher detection scores to positive videos than negative
videos. This inspires us to formulate event detection problem as an Evidence
Selective Ranking (ESR) procedure, which discovers the key static-dynamic evi-
dences in event videos while directly enforcing positive videos to have the highest
scores in the detection results. Specifically, a �1-norm is first imposed to induce
sparsity on the heterogeneous instance representation and determine a subset of
dimensions. To ensure that the positive videos have the highest detection scores,
we use �1,∞ infinite push loss to maximize the number of positive videos having
higher detection scores than the negative videos. With this evidence selective
ranking process, we can identify the key static-dynamic evidences while pushing
the positive videos to rank at higher positions in the ranking list of detection
result. Figure 1 illustrates the framework of our proposed method.

In the following sections, we will demonstrate experimentally that the pro-
posed ESR method can achieve significant performance gains over various video
event detection benchmarks. We will also show that our method is able to reveal
the key static-dynamic evidences for identifying a video event (see Figure 2).
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2 Related Work

Complex event detection has attracted many research interests in recent years.
A recent literature review can be found in [8]. A video event detection sys-
tem usually consists of the following procedures: feature extraction, quantiza-
tion/pooling, training/recognition, and multimodal fusion. The local low-level
features include static features, spatio-temporal features and audio features. Re-
cently the Dense Trajectory based Features (DTF) [24] achieved great results
on action recognition and is widely applied in event detection system. In terms
of training/recognition approaches, the current methods can be roughly catego-
rized into large margin based methods, graphical models, and knowledge based
techniques. The commonly used method is baesd on large margin framework
with kernel techniques. Most previous methods represent video as an aggregated
global feature vector and train the event model with SVM [8,12,20]. However, as
aforementioned, these approaches treat all evidences in videos as equally impor-
tant and cannot effectively leverage the key evidences to improve the detection
performance. To alleviate the above issue, some existing works exploited the
short segments in event videos to improve event detection performance. Cao et
al. [3] proposed a scene aligned pooling method for video representation. The
basic assumption in this method is that a video clip is often composed of seg-
ments of different scenes, and this motivates the authors to perform video feature
pooling within the individual scenes. However, the main focus of this work is to
obtain a robust video feature pooling result, and cannot judiciously select the
key evidences in event videos as our method does. Similarly, Li et al [10] pro-
posed a Dynamic Pooling method for event detection, in which an event video
is decomposed into short segments, and the most informative segments for de-
tecting this event are identified through latent variable inference and used for
video feature pooling. Differently, our method focuses on selecting the most in-
formative evidences in videos, which goes beyond feature pooling procedure and
achieves better performance than the method in [10] (see Table 2).

One available solution for learning key evidences in videos is Multiple Instance
Learning (MIL). Initially MIL was introduced to solve drug design problem [5].
The labels are given to bags (drugs) instead of to the instances (molecules)
inside. A bag is labeled as positive if at least one of its instance is positive,
or negative if all its instances are negatives. This assumption works well for
drug design because only one molecule form works for a drug. But in computer
vision applications, the positive and negative bags may share some visual cues
in common, and the above assumption is typically not true. In contrary, our
method based on instance embedding [4,6] does not make any assumption on
the instances in videos, and directly chooses any number of the most useful
instances for event modeling.

Methodologically, our method adopts learning-to-rank algorithm to perform
video event detection. One classic large-margin ranking algorithm that can be
applied is Ranking SVM [9]. However, it focuses on optimizing pairwise ranking
accuracy without considering the entire ranking list. Newly developed ranking
algorithms, such as p-norm push [18] and Infinite Push [16], put emphasis on
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optimizing the accuracy at the top of the rank list, which is more suitable for
event detection. Inspired by the Infinite Push ranking [1], which is the general-
ization bound of lp norm push, we utilize the infinite push model to ensure a
good ranking in the video detection results.

3 Evidence Selective Ranking for Video Event Detection

3.1 Compact Heterogeneous Instance Representation

Suppose there is an event video collection X = {Xi}Ni=1 with N videos, where
Xi={Si

⋃
Di} is a video consisting of a static instance subset Si={si1, . . . , si,ni}

with ni static frames and a dynamic instance subset Di = {di1,di2, . . . ,di,mi}
with mi dynamic segments. Here sij ∈ R

ks and dij ∈ R
kd are respectively the

feature vector of the j-th static and dynamic instance of video Xi with ks and kd
being the feature dimensionality. Furthermore, we collect all frames and segments
into a static instance set S = {Si}Ni=1 and a dynamic instance set D = {Di}Ni=1.

We first construct codebooks for the static and dynamic instance set respec-
tively. Specifically, we perform K-means clustering to partition S and D into
Gs and Gd clusters, and treat each cluster center as one codeword. We define
Vs = {cs1, . . . , csGs

} and Vd = {cd1, . . . , cdGd
} as the static and dynamic codebooks,

where csi ∈ R
ks (cdi ∈ R

kd) is the i-th codeword in static (dynamic) codebook.
Next, the static and dynamic instances in a video are mapped onto their

respective codebooks to generate the heterogeneous instance representation. In
this work, we apply a similarity embedding method in [4] to effectively encode
multiple instances in a video onto each codeword. Given the static instance set
Si of video Xi, its encoding value on the l-th static codeword csl is defined as:

s(Si, c
s
l ) = max

1≤j≤ni

exp(−d(sij , c
s
l )

σ
) , (1)

where d(sij , c
s
l ) is the χ

2 distance function which measures the distance between
an instance sij and codeword csl . σ is the radius parameter of the Gaussian
function, which is set as the mean value of all pairwise distances among the
static instances. The encoding value of the dynamic instance set Di of video Xi

can be calculated in a similar way. In the end, video Xi is encoded as a compact
static-dynamic instance vector mi ∈ R

Gs+Gd :

mi = [s(Si, c
s
1), . . . , s(Si, c

s
Gs

), s(Di, c
d
1), . . . , s(Di, c

d
Gd

)]�. (2)

In the heterogeneous instance representation, each codeword in static/dynamic
codebook characterizes a consistent static/dynamic pattern. When mapping the
static/dynamic instances in a video onto one codeword, we use the maximum sim-
ilarity to choose the most similar instance to generate the encoding value. This
essentially measures the maximal coherence between the instances in a video and
one pattern in the entire video set, and thus achieves robust heterogeneous in-
stance representation.
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3.2 Evidence Selective Ranking

Given an event category, assume we have a labeled training video set {mi, yi}Vi=1

with V videos, in which mi is the static-dynamic evidence vector of the i-th
video, and yi ∈ {0, 1} is the event label. To ease the following presentation, we
partition all labeled training videos into a positive subset P = {m+

i }pi=1 and a
negative subset N = {m−

i }ni=1, where m
+
i and m−

i denote the evidence vector of
a positive video and a negative video. p and n are respectively the total number
of positive and negative training videos.

We want to learn an event detection function f(m) = w�m, where w ∈
R

Gs+Gk is the parameter vector. Our evidence selective ranking based event
detection method is formulated as follows:

min
w

‖w‖1 + λ�(P ,N ;w), (3)

where λ is a tradeoff parameter among the two terms. The first term is a �1 norm
induced sparse regularization on the heterogeneous instance representation that
explicitly selects a subset of codeword dimensions. Such selected dimensions can
be used to identify the key evidences in each event video. Specifically, given a
selected dimension, the corresponding key evidence in a video is actually the
instance that has been used to generate the encoding value on this dimension
(i.e., the one which has maximal similarity with the corresponding codeword of
this given dimension).

The second term is a ranking loss function, which is used to penalize a mis-
ranked pair in which the negative video has higher detection score than the
positive one. In principle, we can instantiate this loss with any loss function in
the learning-to-rank algorithms. In this work, we choose the recently introduced
Infinite Push loss function as the loss function in our model due to its outstanding
performance [1]. The objective of Infinite Push is to maximize the number of
positive videos on the absolute top positions of the entire video rank list, without
paying too much attention about getting an accurate ranking order among other
parts of the list, which perfectly matches the goal of video event detection.

To design the Infinite Push loss function, the authors notice that maximizing
positive videos at top is equivalent to minimize the number of positive videos
scored lower than the highest-scored negative video. Furthermore, the number of
positive videos scored lower than the highest-scored negative video is equivalent
to the largest number of positive training videos scored lower than any negative
video, which is a fraction of the total number of positive videos p and can be
defined as:

�(P ,N ;w) = max
1≤j≤n

(
1

p

p∑

i=1

IwT m+
i <wTm−

j

)

, (4)

where I(·) is the indicator function which is 1 if the argument is true or 0 other-
wise. Directly optimizing Eq. (4) is infeasible due to its discrete nature. There-
fore, it is relaxed into a convex upper bound as below:

�(P ,N ;w) = max
1≤j≤n

(
1

p

p∑

i=1

max
(
1−w�(m+

i −m−
j ), 0

)
)

, (5)
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Based on the above definition, the objective function can be rewritten as:

min
w

‖w‖1 + λ max
1≤j≤n

(
1

p

p∑

i=1

max
(
1−wT (m+

i −m−
j ), 0

)
)

, (6)

The above objective function is actually the sparse support vector Infinite
Push recently proposed in [17], which is convex and thus can achieve global op-
timum. In the next subsection, we will elaborate on the optimization procedure.

3.3 Optimization Procedure

We directly adopt the Alternating Direction Method of Multipliers (ADMM)
iterative optimization procedure in [17] to solve the optimization problem. The
objective function is first rewritten as the following linearly-constrained problem:

min
w,{aij}

‖w‖1 + λ max
1≤j≤n

(
1

p

p∑

i=1

max(aij , 0)

)

, (7)

s.t., ai,j = 1−w�(m+
i −m−

j ).

By defining matrix M whose rows are of the form (m+
i − m−

j )
�, vector a

composing of all αij ’s and function g(a) = λmaxj(
1
p

∑
imax(aij , 0)), the opti-

mization can be rewritten as :

min
w,a

‖w‖1 + g(a), (8)

s.t., Mw+ a− 1 = 0.

The augmented Lagrangian of the above problem is:

L(w, a, δ, μ) = ‖w‖1 + g(a) + δ�(Mw + a− 1) +
μ

2
‖Mw+ a− 1‖2, (9)

where δ is a vector of Lagrangian multipliers for the equality constraint, and μ
is a parameter of quadratic penalty setting as 10−4 according to the suggestion
in ADMM procedure. The formula can be rearranged as:

L(w, a, γ) = ‖w‖1 + g(a) +
μ

2
‖Mw+ a− 1+ γ‖2, (10)

where γ = δ
μ . Finally, the problem can be solved alternatively at iteration k the

following subproblems:

wk+1 = argmin
w

L(w, ak, γk), (11)

ak+1 = argmin
a

L(wk+1, a, γk), (12)

γk+1 = γk +Mw+ a− 1. (13)

In particular, subproblem in Eq. (11) can be solved as a standard Lasso prob-
lem. Subproblem in Eq. (12) can be solved by first decoupling a into a+ and
a−, and then solving them by Block Coordinate Descent as introduced in [17].
ADMM has a fast convergence rate of O(1/t), where t is the iteration number.
The running time of ESR will be reported in our experiments.
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4 Experiments

In this section, we will evaluate the effectiveness of our Evidence Selective Rank-
ing (ESR) method over the currently largest video datasets: TRECVID Multi-
media Event Detection (MED) 2011 and 2012. In MED evaluation tasks, the
test events of each year include events from pervious years. There are 15 events
in MED 2011 and 25 events in MED 2012, which are listed in Table 1. We
compare our ESR method with (1) Static instance (ST-inst) only. (2) Dynamic
instances (Dyn-inst) only. (3) MILES [4], which is based on instance embedding
and �1 SVM feature selection. We train an event model with a binary SVM clas-
sifier after the features are selected, and (4) The state-of-the-art event detection
methods.

To generate the static instances, we extract frames from each video every 2
seconds and scale them down to 320 × 240 pixels. Then the SIFT features [11]
are extracted by dense SIFT function in VLFeat library [23] with a 10-pixel
step. Finally, each frame is represented as a 5, 000-dimensional SIFT BoW. The
dynamic instances are generated by applying the sliding window approach to
each video clip. We consider 5 kinds of video segments with different lengths
as all dynamic instances in a video, in which we adopt 3, 5, 10, 15, 20 seconds
sliding windows with 2, 3, 7, 10, 15 seconds overlapping to extract segments.
For static and each of the 5 dynamic instances, the Yael K-means library [7] is
used to learn a codebook with 5, 000 codewords. The final static-dynamic video
instance vector is the concatenation of all encoding values over all 6 kinds of
codebooks, which has 30, 000 feature dimensions in total.

To evaluate the performance of each method, the Average Precision (AP)
is employed as the evaluation metric. Regarding the parameter setting, we use

Table 1. The 25 events defined in TRECVID MED 2011 and 2012

ID MED 2011 Events ID MED 2012 Events

1 Attempting board trick 16 Attempting bike trick
2 Feeding animals 17 Cleaning appliance
3 Landing a fish 18 Dog show
4 Wedding ceremony 19 Give directions to location
5 Woodworking project 20 Marriage proposal
6 Birthday party 21 Renovating a home
7 Changing a tire 22 Rock climbing
8 Flash mob gathering 23 Town hall meeting
9 Getting vehicle unstuck 24 Win race without a vehicle
10 Grooming animal 25 Work on metal craft project
11 Making sandwich
12 Parade
13 Parkour
14 Repairing appliance
15 Work on sewing project
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3-fold cross-validation and vary the value of parameter λ = {0.1, 1, 10} in the
objective function to determine the appropriate parameter for each method.

4.1 Experiment on TRECVID MED 2011

The official MED 2011 dataset consists of three data splits: Event Collection
(EC), the development collection (DEVT) and test collection (DEVO). The EC
set contains 2, 680 training videos over 15 events. The DEVT set includes 10, 403
videos and is provided for participants to validate their systems. The DEVO set
containing 32, 061 test videos is used to evaluate final performance. In MED
2011, the length of the videos ranges from several seconds to one hour. In this
experiment, we follow these official data splits, in which we use EC and DEVT
set to train/validate and use DEVO set to test. Notice that DEVO set does not
include any videos of Event 1 to Event 5, so only test results of Event 6 to Event
15 are reported. Empirically we can achieve satisfactory results within only 5
iterations, so we set the max iterations of our ESR to 5 to save running time.
The average running time of ESR for each MED11 event on a single Intel Xeon
2.67GHz core is around one hour.

Figure 4 and Table 2 show the performance of different methods in compar-
ison, in which Table 2 mainly quotes the state-of-the-art results in literature.
These results are from the recent proposed methods including DMS [13], VD-
HMM [21], dynamic pooling with segment-pairs (SPP) [10] and multiple kernel
latent SVM (MKL-KLSVM) [22], each of which follows the same setting of the
official MED 11 data splits.

Table 2. The APs of different methods on TRECVID MED11 DEVO dataset

Event Name (006 - 015)
DMS
[13]

VD-HMM
[21]

SPP [10]
MKL-

KLSVM[22]
MILES

(SVM-l1)
Our

Method

Birthday party 2.25% 4.38% 6.08% 6.24% 5.08% 7.45%

Change a vehicle tire 0.76% 0.92% 3.96% 24.62% 9.50% 14.44%

Flash mob gathering 8.30% 15.29% 35.28% 37.46% 33.77% 40.87%

Get a vehicle. unstuck 1.95% 2.04% 8.45% 15.72% 7.38% 7.72%

Groom an animal 0.74% 0.74% 3.05% 2.09% 1.76% 1.83%

Make a sandwich 1.48% 0.84% 4.95% 7.65% 3.13% 4.86%

Parade 2.65% 4.03% 8.95% 12.01% 14.34% 17.69%

Parkour 2.05% 3.04% 24.62% 10.96% 20.14% 25.3%

Repair an appliance 4.39% 10.88% 19.81% 32.67% 25.81% 31.75%

Work on sewing project 0.61% 5.48% 6.53% 7.49% 4.66% 8.34%

mean AP 2.52% 4.77% 12.27% 15.69% 12.56% 16.02%

From the results, we have the following observations: (1) The proposed ESR
method produces better results than all other methods in comparison, which
demonstrates its effectiveness in the task of video event detection. (2) The ESR
method performs significantly better than the single instance based methods,
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and (3) Our ESR method shows performance improvement over MILES method
that detects videos based on SVM classifier instead of the infinite push ranking
model. This verifies the benefits of introducing ranking model to event detection
task. Notice that some new proposed technique like Fisher vector can be adopted
in our framework and further improve the recognition accuracy [14].

As mentioned, one advantage of our method is that it is capable of locating
the selected key evidences in each video for further visualization and analy-
sis. Recall that, although the instances in a video are embedded into instance
codebook space, the selected instances can be located simply by searching the
instances with maximum similarities to the instance codebook in a video. Using
this method, Figure 3 shows three of top evidences with the largest weights in
the videos of some exemplary events, in which the static evidence is represented
as a frame and the dynamic evidence is represented as a sequence of successive
frames in the selected key segment. As can be seen, for “flash mob gathering”
and “parade”, the most distinctive event evidences are dynamic instances; for
“change vehicle tire”, “fix an appliance”, and “sewing project”, the selected event
evidences are mainly static frames. These selected evidences are interpretable for
human and useful for analyzing event videos.

To study the influences of the length of the video segments, we generate video
segments with length of 3, 5, 10, 15 and 20, and use each kind of segments as
dynamic instances to run our ESR method. We compare these results with our
proposal that mixes segments of different lengths together, and the results can be
shown in Figure 5. From the results, we can see that when there is only one fixed
length dynamic instance for evidence selection, the 3-second and 5-second short
video segments achieve best results on most events. However, using mixed length
segments as dynamic instances always generates better performance than oth-
ers, which confirms the soundness of our proposed dynamic evidence generation
strategy.

In Figure 6, we further plot the proportions of each kind of evidences (both
static and dynamic) selected from training videos of each MED11 event. As
shown, event “flash mob gathering”, “getting vehicle unstuck”, and “grooming
animals” have higher proportion of dynamic evidences, while “birthday party”,
“changing a tire” and “working on sewing project” have selected more static
evidences. The evidence proportion distributions are intuitive to human and
further show the advantages of our method.

4.2 TRECVID MED 2012

The MED12 dataset contains 25 complex events as shown in Table 1, which
includes 15 events in MED11. The total training videos of the 25 events is 5, 816
videos. We choose two thirds of the data as training set (3, 878 videos) and use
the rest as test set (1, 938 videos). In this experiment, we follow the same setting
as we did in MED11. The APs of MED12 events are shown in Figure 7. The
average running time of ESR is similar to MED11 events since the dimensions of
heterogenous instance vectors are the same. Once again, the experiment results
confirm the effectiveness of our proposed event detection method.
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(a) change a vehicle tire

(b) flash mob gathering

(c) parade

(d) fix an appliance

(e) sewing project

Fig. 3. The top static/dynamic evidences selected for identifying target events
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Fig. 4. The APs of different methods over TRECVID MED11 dataset. The methods
in comparison include static instance only (ST-inst), all dynamic instances (Dyn-inst
all), MILES with �1 SVM based feature selection and our ESR method.
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Fig. 5. The APs of dynamic instances with varied time lengths (3, 5, 7, 15, 20 seconds)
on TRCVID MED11 DEVO dataset. “All” represents the result of using all kinds of
dynamic instances. The applied low-level feature is MBH [25].
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Fig. 7. The APs of different methods over TRECVID MED12 dataset. The methods
in comparison include static instance only (ST-inst), all dynamic instances (Dyn-inst
all), MILES with �1 SVM based feature selection and our ESR method.

5 Conclusion

We have proposed a novel event detection method by selecting key static-dynamic
evidences from video content. To represent the static and dynamic evidences in
videos, we encode the static frames and dynamic video segments into a compact
heterogeneous instance representation through codebook generation and similar-
ity mapping. Then a novel Infinite Push Ranking algorithm with �1-norm regu-
larization is applied to simultaneously select the most useful evidences and rank
positive videos at the top positions in the event detection rank list. Furthermore,
the evidences discovered in our framework are interpretable for human, which can
facilitate deep analysis of the complex events. The experimental results on large
video dataset are promising and verify the effectiveness of our method.

References

1. Agarwal, S.: The infinite push: A new support vector ranking algorithm that di-
rectly optimizes accuracy at the absolute top of the list. In: SDM, pp. 839–850.
Society for Industrial and Applied Mathematics (2011)

2. Bhattacharya, S., Yu, F.X., Chang, S.F.: Minimally needed evidence for complex
event recognition in unconstrained videos. In: ICMR (2014)

3. Cao, L., Mu, Y., Natsev, A., Chang, S.-F., Hua, G., Smith, J.R.: Scene aligned
pooling for complex video recognition. In: Fitzgibbon, A., Lazebnik, S., Perona,
P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 688–701.
Springer, Heidelberg (2012)

4. Chen, Y., Bi, J., Wang, J.Z.: Miles: Multiple-instance learning via embedded in-
stance selection. PAMI 28(12), 1931–1947 (2006)

5. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance
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