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ABSTRACT
We present a novel approach to automatically discover ob-
ject categories from a collection of unlabeled images. This is
achieved by the Information Bottleneck method, which finds
the optimal partitioning of the image collection by maxi-
mally preserving the relevant information with respect to
the latent semantic residing in the image contents. In this
method, the images are modeled by the Bag-of-Words rep-
resentation, which naturally transforms each image into a
visual document composed of visual words. Then the sIB
algorithm is adopted to learn the object patterns by max-
imizing the semantic correlations between the images and
their constructive visual words. Extensive experimental re-
sults on 15 benchmark image datasets show that the Infor-
mation Bottleneck method is a promising technique for dis-
covering the hidden semantic of images, and is superior to
the state-of-the-art unsupervised object category discovery
methods.

Categories and Subject Descriptors: H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Indexing

General Terms: Algorithms, Performance, Experimenta-
tion

Keywords: Unsupervised Object Category Discovery, In-
formation Bottleneck, Bag-of-Words

1. INTRODUCTION
The existing approaches for object category discovery can

be mainly classified into two paradigms. The first one is
supervised learning [1, 2], which needs a large amount of la-
beled images to train the classifiers. However, it is a labor-
intensive and time-consuming task to manually label the
images, and the labeling process would often invite subject
biases or mistakes by human labelers. Therefore, it is tech-
nically more feasible to use the second paradigm, i.e., the
unsupervised learning [3, 4], which relies solely on the unla-
beled images, to perform the recognition. In this paradigm,
we aim to find coherent clusters that are highly correlated
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with the true object categories of the images. Such a task
has been fruitfully explored in image content understanding
discipline, which is also the main focus of our work in this
paper.

Two key issues need to be well addressed before we can
automatically discover object categories from the unlabeled
image collections. The first is the image processing tech-
niques. Note that the images in the same object category
may take on diversified visual appearances while the images
from different object categories may also have ambiguous vi-
sual pattern. Our goal is to find the common visual pattern
for each object category, even though no prior knowledge
is provided. Intuitively, the global image features that de-
scribe the holistic image content are not appropriate for this
given task due to their sensitivity to the scale or orientation
of the object appearances. Instead, we look for low level
features that are invariant to the types of degradation. In
this work, we employ the local features to describe the image
content. Specifically, we extract the SIFT features [5] from
the images and then adopt the Bag-of-Words (BoW) [1, 2,
3] model as the low-level feature representation.

The second issue associated with unsupervised object cat-
egory discovery is that even after obtaining robust image
representations, we still need a reliable mechanism to learn
the object categories from the visual contents. The exist-
ing unsupervised learning algorithms such as K-means and
Affinity Propagation [6] typically try to solve this problem in
a two-step manner: (1) building an affinity matrix to reflect
the image relations based on image features; (2) partition-
ing the images into different groups based on the affinity
values. Here a basic assumption in the learning procedure
is that two images with high affinity value should be in the
same object category. However, due to the “semantic gap”
between the low-level features and the semantic concepts,
such an assumption does not hold in real scenarios, which
limits the performance of the existing unsupervised learn-
ing algorithms. To relieve this difficulty, an information-
theoretic approach is utilized to discover the visual pat-
terns of similar semantics in the image collection. Instead of
building mapping between the representative features and
semantic concepts, we conduct the object discovery process
based on the Information Bottleneck (IB) method [7], which
uses the information-theoretic optimization to automatically
learn the latent semantic correlations between the images
and their constructive visual words. As the visual words
carry the semantic clues about the underlying concepts (e.g.,
images in the same objective category can be identified via
a set of visual words that are informative to the given cate-
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gory), the obtained latent semantic relations provide a more
reliable clue for the object category discovery. In the exper-
iments, we will show that this algorithm outperforms the
state-of-the-art unsupervised object category discovery al-
gorithms.

The main contributions of this paper can be summarized
as follows:

• We propose an effective method to learn the latent
semantic correlations between the images and their
low-level features. In particular, we demonstrate that
the learnt correlations are essentially semantic related,
which alleviates the semantic gap in the existing un-
supervised learning techniques.

• We introduce an novel, simple and effective algorithm
to perform unsupervised object category discovery by
exploiting the latent semantic correlations between the
images and the visual words.

2. RELATED WORK
Some research efforts have been dedicated into the task

of unsupervised object category discovery. Several works [3,
8] have applied topic models, such as PLSA, LDA, to dis-
cover object categories from a set of unlabeled images. How-
ever, these algorithms typically learn latent semantic topics
based on visual words correlation while ignore the correla-
tions between the images and the visual words. Different
from these algorithms, the IB-based method can effectively
exploit the semantic correlations between the images and
the visual words, which results in more promising results in
the task of unsupervised object category discovery. Some
other methods try to solve the problem based on affinity-
based algorithm. For example, Grauman et al. [9] employed
the spectral clustering and Dueck et al. [6] employed Affinity
Propagation to address this problem. Tuytelaars et al. [4]
have experimented with various methods to discover object
categories, including baseline methods, two latent variable
models, as well as two spectral clustering methods. How-
ever, as aforementioned, these algorithms rely on typically
affinity matrix which is difficult to estimate due to the “se-
mantic gap” issues. On the contrary, the IB-based method
can relieve this difficulty in the task.

Winston et al. [10] have utilized the IB method for video
reranking and achieved good results, which proves IB is a
promising method for semantic learning, but the task fo-
cuses solely on video search reranking. Goldberger et al. [11]
have applied the aIB algorithm [12] to unsupervised image
clustering. They assumed that the image colors and their
spatial distribution in the image content are generated by a
mixture of Gaussians, and represented the images by Gaus-
sian mixture model. However, this method can only utilize
color information to perform clustering, which is not appli-
cable for object images with diverse visual contents. On the
contrary, our method uses the BoW model as the low-level
representation, which is more appropriate for the object cat-
egory discovery task.

3. OUR APPROACH
In this section, we introduce the IB-based object category

discovery method. We first discuss the low-level represen-
tation for the images, and then present how IB method is
utilized to learn the optimized category assignment.

3.1 Image Representation
We take the BoW model as our low-level feature represen-

tation. Generally, the BoW model represents each image as
a feature vector, which contains the occurrence number of
the individual visual words in the image. The construction
of BoW model can be implemented through the following
steps.

• Extracting local patches from each image and repre-
senting them by SIFT descriptors [5].

• Building a visual vocabulary by vector quantization
via the K-means algorithm in which each cluster cen-
troid is applied as a visual word.

• Mapping the SIFT descriptors into the vocabulary so
that the descriptors can be described by the visual
word index.

• Counting the occurrence number of the individual vi-
sual words in each image and using a histogram to
represent each image.

It is worth noting that such representation is analogous to
document representation in the text analysis domain, where
images can be treated as documents while the visual words
represent the keywords.

3.2 IB for Object Category Discovery
We now introduce the IB-based object category discovery

method. Assume we are given an image collection X =
{x1, x2, · · · , xn} and obtained the visual vocabulary Y =
{y1, y2, · · · , ym}, where n and m are the total number of
images and the size of vocabulary respectively. Based on the
BoW model, each image can be represented by a histogram.
Then we can define the conditional distribution of the visual
words as p(y|x) = n(y|x)∑

y′∈Y n(y′|x)
, where n(y|x) denotes the

number of occurrences of the visual word y in the image
x. The prior distribution of p(x) for each image is set as
an uniform distribution, i.e., p(x) = 1

n
. Using the above

definitions, the joint distribution between image variable X
and visual word variable Y can be obtained by p(x, y) =
p(y|x)p(x).

Based on the joint distribution p(x, y), we employ the IB
method [7] to discover the object categories in unlabeled im-
age collections. The IB method is a probabilistic distribu-
tional clustering method, which aims to extract a meaning-
ful representation by compressing the image space X into
a “bottleneck” variable T , while maximally preserving the
revelent information with respect to visual words Y . We
use mutual information I(T ; X) to denote the compression
of images X into clusters T and use mutual information
I(T ; Y ) to denote the preserving information of T with re-
spect to visual words Y . Then there is a tradeoff between
these two mutual information values, which can be mathe-
matically expressed as:

Lmin = I(T ; X)− βI(T ; Y ), (1)

where β is a trade-off parameter, and the mutual information
I(T ; Y ) can be defined as

I(T ; Y ) =
∑
t∈T

∑
y∈Y

p(t, y) log
p(t, y)

p(t)p(y)
. (2)

The formal solution to Lmin can be characterized by three
distributions [7]: p(t|x), the membership probability of im-
age x belonging to cluster t; p(y|t), the distribution t over
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the visual word variable Y ; p(t), the probability of the image
cluster t, whose formulation can be shown as follows:




p(t|x) = p(t)
Z(x,β)

e−βDKL(p(y|x)||p(y|t))

p(y|t) = 1
p(t)

∑
x p(x, y, t) = 1

p(t)

∑
x p(x, y)p(t|x)

p(t) =
∑

x,y p(x, y, t) =
∑

x p(x)p(t|x),

(3)

where Z(x, β) is a normalization function, and DKL(·||·) is
the Kullback-Leibler divergence.

Constructing the optimal solution to the IB objective func-
tion is a NP-hard problem, and several approximate algo-
rithms have been proposed to find the optimal solution. In
this work, we adopt the sIB algorithm [13] to solve the prob-
lem, which aims to optimize an equivalent objective func-
tion as Lmax = I(T ; Y ) − β−1I(T ; X). It takes a “draw-
and-merge” procedure to find optimal solution of the func-
tion and starts with some random partition of images X
into |T | clusters. At each step, a single image x ∈ X is
drawn from its current cluster t(x) as a new singleton clus-
ter, and then is merged into the cluster tnew such that
tnew = arg mint∈T d(x, t). The merge criterion d(x, t) is
computed by

d(x, t) = (p(x) + p(t)) · JSΠ(p(y|x), p(y|t)), (4)

where JSΠ(p(y|x), p(y|t)) is the Jensen-Shannon divergence.
After sequential “draw-and-merge” procedure for all images,
we can get a stable solution, where no more assignment up-
dates can further improve Lmax.

4. EXPERIMENTS

4.1 Datasets and Methodologies
We use two groups of benchmark image datasets to eval-

uate the performance of our proposed method. The first
group is constructed by [6], which includes two subsets from
Caltech101. These two sets are referred to as DataSet1 and
DataSet2 respectively, and their detailed information are
shown in Table 1. The other group is constructed in [4]
with 13 datasets in total. Among these datasets, the first
one is a subset of Caltech256 with 20 categories, which is
named as Dataset3 in Table 1. The other 12 datasets are
generated by dividing the whole Caltech256 into 12 subsets
according to the alphabetical order of the object category
names. Specifically, we use the DataSet1-20 to represent the
subset of the first 20 categories in Caltech256 and similarly
use DataSet21-40, · · · DataSet220-240 to represent other
datasets. In summary, 15 datasets (DataSet1, DataSet2,
DataSet3, DataSet1-20, · · · , DataSet220-240) are involved
in our experiments. It should be noted that the datasets
used in this paper all contain 20 categories except DataSet1,
so they are much more challenging than the datasets used
in the recent object category discovery works [3, 6].

In the experiments, different methods are compared in the
following.

• The IB-based object category discovery method.

• K-means algorithm, where the distance between an im-
age and a category centroid is measured by squared
Euclidean distance.

• Normalized Cuts algorithm [14], where the graph edge
wight matrix is calculated by negative squared Eu-
clidean distance.

• The PLSA object category discovery method [3].

Table 2: Comparison of different unsupervised
learning algorithms, evaluated by condition entropy
(lower is better).

DataSets K-means NCuts PLSA IB
DataSet1 1.34 0.90 0.74 0.68
DataSet2 2.04 2.02 1.81 1.51
DataSet3 2.03 2.13 2.03 1.81
DataSet1-20 3.48 3.51 3.41 3.25
DataSet21-40 3.53 3.51 3.47 3.27
DataSet41-60 3.54 3.65 3.47 3.33
DataSet61-80 3.43 3.52 3.42 3.22
DataSet81-100 3.22 3.32 3.23 3.11
DataSet101-120 3.49 3.49 3.42 3.27
DataSet121-140 3.44 3.38 3.34 3.14
DataSet141-160 2.79 2.86 2.76 2.52
DataSet161-180 3.41 3.36 3.30 3.14
DataSet181-200 3.43 3.50 3.44 3.27
DataSet201-220 3.53 3.51 3.40 3.32
DataSet221-240 3.17 3.21 3.09 2.93

In the experiments, 1000 local features are randomly ex-
tracted from each image [2], and the visual vocabulary is
constructed by K-means algorithm with 1000 visual words.

Following [4], we use conditional entropy to evaluate the
performance of different methods, which is defined as

H(C|T ) =
∑
t∈T

p(t)
∑
c∈C

p(c|t) log
1

p(c|t) , (5)

where C is the ground truth category labels and T is the
obtained cluster labels. The smaller the conditional entropy,
the better the performance.

To alleviate the influence caused by random initialization,
we ran sIB, K-means, Normalized Cuts and PLSA algo-
rithms 10 times, each with a new random initialization. For
the sIB algorithm, we select the one which maximizes the
mutual information I(T ; Y ) as the final result, and for the
other algorithms, the result with the smallest conditional en-
tropy is selected as the final result. The number of learned
clusters K is taken to be identical with the number of real
categories on each dataset.

4.2 Experimental Results and Analysis
The evaluation results on the 15 datasets are illustrated in

Table 2, from which we have the following observations. (1)
The IB-based object category discovery method consistently
outperform all the other algorithms in all 15 datasets, even
though the results for these algorithms are the best results
selected from 10 times running. (2) Our method is clearly
superior to K-means and Normalized Cuts algorithms which
discover object categories based on the affinity matrices that
are difficult to estimate due to the “semantic gap” issues.
On the contrary, the IB-based method can relieve this dif-
ficulty by exploiting the semantic correlations between the
images and the visual words. (3) The IB-based method can
get more promising results than the state-of-the-art object
category discovery method PLSA [3] because our method
exploit the semantic correlations between the images and
the visual words while the PLSA ignores these correlations.

We now demonstrate the performance of the IB-based ob-
ject category discovery method. Due to the space limitation,
only the confusion matrix of DataSet1 and DataSet2 are
shown in Table 3 and Figure 1 respectively. Table 3 shows
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Table 1: The details of the 15 benchmark datasets. The numbers in parentheses indicate the total images in
each category.
DataSet1 Faces(100), Motorbikes(100), dollar bill(52), garfield(34), snoopy(35), stop sign(64), windsor chair(56)
DataSet2 Faces(100), Leopards(100), Motorbikes(100), binocular(33), brain(98), camera(50), car side(100), dol-

lar bill(52), ferry(67), garfield(34), hedgehog(54), pagoda(47), rhino(59), snoopy(35), stapler(45),
stop sign(64), water lilly(37), windsor chair(56), wrench(39), yin yang(60)

DataSet3 American flag(97), diamond ring(118), dice(98), fern(110), fire extinguisher(84), fireworks(100), French
horn(92), ketch 101(111), killer whale(91), leopards 101(190), mandolin(93), motorbikes 101(798), pci
card(105), rotary phone(84), roulette wheel(83), tombstone(91), tower pisa(90), zebra(96), airplanes
101(800), faces easy 101(453)

Other datasets DataSet1-20, DataSet21-40, · · · , DataSet220-240

Table 3: Confusion matrix of the IB-based object
category discovery result on DataSet1.

Learned
categories→

T1 T2 T3 T4 T5 T6 T7

Faces 98 0 0 0 2 0 0
Motorbikes 0 60 0 0 40 0 0
dollar bill 0 0 48 0 4 0 0
garfield 7 0 0 27 0 0 0
snoopy 1 0 0 27 5 0 2
stop sign 5 0 0 0 18 40 1
windsor chair 1 0 0 0 7 0 48

the confusion matrix between the true categories and the
learned categories (denoted by T1, T2, · · · , T7). From this
table, we observe that the learned categories T1, T2, T3, T5,
T6 and T7 are rather pure, and each can be highly associ-
ated with one true object category (Faces, Motorbikes, dol-
lar bill, Motorbikes, stop sign and windsor chair). Almost
all images of garfield and snoopy are assigned to cluster T4,
and there is no image of other categories in T4. The confu-
sion matrix in Figure 1 demonstrates the encouraging result
for DataSet2, where 20 categories are learnt by unsuper-
vised learning method, and most of them can be associated
with the true categories with high probabilities. The re-
sults of these two datasets show that our proposed IB-based
method is able to automatically reveal the meaningful pat-
terns from the image collection without any supervision, and
is an effective object category discovery method.

5. CONCLUSIONS
We have introduced an IB-based method for unsupervised

object discovery. By representing the images with the BoW
model, we treat the images as a set of visual documents.
The sIB algorithm is then adopted to learn optimized object
categories by maximizing the semantic correlations between
the images and the visual words. Extensive experiments on
15 benchmark datasets have confirmed the effectiveness of
the proposed method. In the future, we will employ the IB-
based object category discovery in more difficult tasks such
as Web image recognition and retrieval. We believe this is
a promising direction.
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Figure 1: Confusion matrix for DataSet2. Bright-
ness indicates the purity of the learned categories.
The ideal is bright along the diagonal.
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