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Abstract. Both multiple-instance learning and active learning are
widely employed in image categorization, but generally they are applied
separately. This paper studies the integration of these two methods.
Different from typical active learning approaches, the sample selection
strategy in multiple-instance active learning needs to handle samples in
different granularities, that is, instance/region and bag/image. Three
types of sample selection strategies are evaluated: (1) selecting bags
only; (2) selecting instances only; and (3) selecting both bags and
instances. As there is no existing method for the third case, we propose
a set kernel based classifier, based on which, a unified bag and/or
instance selection criterion and an integrated learning algorithm are
built. The experiments on Corel dataset show that selecting both bags
and instances outperforms the other two strategies.

Keywords: Multiple-Instance Learning, Active Learning, Bag & In-
stance mixture selection, Image Categorization.

1 Introduction

There has been significant work on applying multiple-instance (MI) learning to
image categorization [1,2]. Key assumptions of these works are that each image
is represented as a bag which consists of segmented regions as instances and a
bag receives a particular label if at least one of its constitutive instances pos-
sesses the label. In MI learning, it is difficult to predict the labels of instances
given the bags’ labels. This difficulty is so-called MI ambiguity. Active learning
is also a widely applied method in image categorization as it can significantly
reduce the human cost in labeling training images. In its setting, the learner has
access to a large pool of unlabeled images and selects the most valuable images
for manual annotation, such that the obtained training set is more effective. Al-
though promising performance on image categorization has been reported using
these two methods, they are generally applied separately.
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In this paper, we study the integration of multiple-instance learning and active
learning in image categorization application. A first attempt on MI active learn-
ing [3] proposes a strategy that selectively labels certain portion of instances
from positive training bags. It firstly trains a MI logistic regression classifier,
then computes MI uncertainty of each instance in positive training bags using
current classifier’s prediction probability and selects the instance with the high-
est uncertainty as the next querying sample. After the corresponding instance
label is provided by the oracle, it updates the training set by adding a new sin-
gleton bag containing only a copy of the queried instance. The MI classifier is
retrained on the expanded training set with mixed-granularity labels and hence
the MI classifier’s performance can be improved.

We argue that whereas the above method works well for MIL by selecting only
instances of labeled bags for labeling, MIL based image categorization can also
benefit from selectively labeling some unlabeled bags. For MI learning, labeling
instance and labeling bag provide different information to the classifier in dif-
ferent cases. For example, if the chosen bag is labeled positive, then it provides
less information compared with labeling a positive instance in that bag, because
in this case the label of the bag can be inferred from the label of the instance,
but it is difficult to get the instance label through the bag label. On the other
hand, if the chosen bag is labeled as negative, it provides more information then
labeling any instance in that bag. Although labeling instance and labeling bag
can benefit the MI classifier, it remains a problem which is the most effective
labeling way for MI active learning, labeling bags, labeling instances, or labeling
bags & instances simultaneously.

In this paper, we conduct a comparative study on three different MI active
learning sample selection strategies for image categorization, including selecting
bags only, selecting instances only, and selecting bags and instances simultane-
ously. As there is no existing method for the third case, we need to build a mixed
bag and/or instance sample selection framework to perform MI active learning.

To develop such a unified MI active learning approach, two crucial problems
need to be solved. One is a unified MI classifier which can classify instances as
well as bags. The other is the sample selection criterion, which can maximally
reduce the classification error by selecting the most valuable samples for labeling.

The unified MI classifier is realized using standard SVM with a MI normal-
ized set kernel. By treating instances as singleton bags which comprise only one
instance, the MI normalized kernel can be employed to estimate the similarity
between bags and bags, instances and instances, bags and instances. To select
the most informative samples, regardless of bags or instances, a MI informative-
ness measure that takes uncertainty, novelty and diversity into consideration is
proposed to query unlabeled samples from the querying pool for labeling.

The experiments are conducted on Corel dataset. By comparing three different
sample selection strategies: selecting instances, selecting bags, and selecting the
mixture of bags & instances, we can conclude that: (1) selecting the mixture of
bags & instances performs the best in most of the active learning querying rounds;
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(2) selecting instances performs better than selecting bags when selected samples
are few while selecting bags performs better when more samples are selected.

The rest of this paper is organized as follows. Section 2 presents a framework
for MI active learning. Section 3 describes the experiments to evaluate three
different sample selection strategies for MI active learning on benchmark CBIR
dataset. Section 4 concludes the paper.

2 MI Active Learning

In this section, two critical problems in MI active learning, including the unified
bag/instance classifier and the sample selection criterion, are addressed. In order
to construct a MI classifier, which can classify bags (images) as well as instances
(image regions) in a unified fashion, a MI set kernel is adopted, as described in
section 2.1. With the MI set kernel, standard SVM is employed as the classifier
for both bags and instances. In section 2.2, the MI sample selection criterion is
proposed to maximize the performance of the classifier. The MI active learning
framework is presented in section 2.3.

2.1 MI Set Kernel

To build a unified MI classifier which can classify instances as well as bags, we
need to estimate the similarity between bags and bags, instances and instances,
bags and instances. To this end, we adopt a particular MI kernel called normal-
ized set kernel [4] in the learning of SVM. A kernel on sets can be derived from
the definition of convolution kernels and can be formally represented as follows,

(1)kset(B, B
′
) =

∑

x∈B,x′∈B′

k(x, x
′
)

where k(., .) is any valid kernel function defined on instances, B and B
′
are two

bags with x, x
′
are the corresponding instances. If the cardinalities of bags vary

considerably, bag with large cardinalities will dominate the set kernel estimation.
To overcome this problem, a natural normalization is given

(2)knset(B, B
′
) =

kset(B, B
′
)√

kset(B, B)
√

kset(B
′ , B′)

To estimate the kernel between the bag B and the instance b, we can regard the
instance as a singleton bag which consists of only one instance. Thus the kernel
can be defined as follows,

(3)knset(B, b) = knset(B, {b})

where B is the bag and b is the instance.
Accordingly, the kernel between two instances can also be defined in the same

way,
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(4)
knset(b, b

′
) = knset({b}, {b

′})

=
k(b, b

′
)√

k(b, b)
√

k(b′ , b′)

which is degenerated to be the usual normalized kernel.
Once the kernel between bags and bags, instances and instances, bags and

instances, is defined, by employing standard SVM, a unified multiple-instance
classifier, which can predict the label of bags as well as instances, is constructed.

2.2 MI Sample Selection Criterion

In active learning, the most ”informative” samples to the classifier learning
should be selected for labeling by oracles firstly, so as to maximally reduce the
classification error. Some heuristic rules, such as uncertainty and diversity, are
proposed to approximate the ”informativeness” measure. In this paper, we ap-
proach the ”informativeness” by taking multiple measures including uncertainty,
novelty, and diversity, into consideration. As a result, a MI sample selection cri-
terion is proposed by fusing the multiple measures.

Uncertainty. Tong [5,6] proposed a SVM active learning sample selection cri-
terion from the perspective of version space, aiming at selecting the unlabeled
samples which can provide most valuable information for the retraining of cur-
rent SVM classifier. The basic idea is to find the unlabeled sample which results
in the maximal reduction of the version space. An efficient implementation of
this idea is to select the sample which is the closest to the SVM hyperplane
in the kernel space. In other words, the samples with the largest 1 − |f(x)| are
selected for labeling by oracles, where f(x) is the prediction score of the sample
x by the SVM classifier, as defined in the below from the dual view,

(5)f(x) =
l∑

i=1

αiknset(x, xi) + b

where αi is the coefficient and b is the offset.
The measure is called uncertainty in that the sample with larger 1 − |f(x)|

is closer to the classification boundary f(x) = 0 and can be regarded the more
uncertain to the prediction.

The uncertainty measure can be defined as follows

(6)u(x) = 1 − |f(x)|

Where x is a unlabeled sample and f is the decision function.

Novelty. One intuitive assumption in the sample selection is that the samples
will be selected with less chance if they are similar to the existing training data.
In other words, the samples which are more novel to the training data should be
selected with higher probability. The novelty criterion aims to select the samples
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with minimum overlapping with the existing training samples and enforces that
the redundancy in the training samples is minimized.

The novelty measure can be defined as follows,

(7)d(xj) = 1 − max1≤i≤lknset(xi, xj)

where xj is the unlabeled sample and xi is an existing training sample and l
refers to the number of samples in the training set.

Diversity. In this paper, the MI active learning problem we would like to ad-
dress is batch-mode active learning, i.e., we select multiple samples at one time
and query for their labels before putting them into the training set. As shown in
[7], the redundancy among the selected unlabeled samples at each query round
needs to be reduced to maximally utilize the human labeler’s labor. Thus the
sample set, which comprises multiple unlabeled samples, with little inter simi-
larity will be preferred to be selected together for labeling. The diversity among
the sample set can be estimated by averaging similarities among the samples.
Given a set of n selected unlabeled samples U = {x1, x2, · · · , xn} that contains
either bags or instances, the redundancy of the (n+1)th sample xn+1 with them
can be formulated as

(8)r(xn+1) = 1 −
n∑

i=1

knset(xn+1, xi)/n

MI Informativeness. Now we propose a MI sample selection criterion called
MI informativeness based on the above three criteria. According to the theoreti-
cal analysis [8], it’s more rational to use the diversity measure as a weight of the
novelty measure than linearly combine them. Thus we weight the novelty with
the diversity, and then linearly combine it with the uncertainty as

(9)MI Informativeness(ui) = λ × u(ui) + (1 − λ) × d(ui) × r(ui)

where λ is the trade-off parameter to adjust the individual importance of each
criterion, ui is the unlabeled sample. With the proposed MI informativeness sam-
ple selection criterion as defined in Equation (9), the most informative samples
which are deemed to maximally benefit the classification learning are selected
for labeling and then added to the training set.

2.3 A MI Active Learning Framework

Based on the MI set kernel and the MI informativeness sample selection criterion
presented above, a MI active learning framework is proposed and summarized
in algorithm 1. Three variant sample selection strategies can be applied in our
MI active learning framework based on the type of query sample pool, including
bags, instances, and bags & instances.
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Algorithm 1. A MI Active Learning Framework
Require: L,initial training data;

U = {u1, u2, · · · , uN},initial pool of samples to be selected for labeling;
n, the number of samples to be queried at each round;
m, the number of rounds.

Ensure: f ,the trained classifier.
1. Initialization. Train the initial SVM classifier using the initial training data L,
f = SV M Train(L). The kernel is defined as Equation (2), (3), and (4).
2. Active Learning.
Repeat m rounds:

a. S = Φ.
b. Repeat until |S| = n

• x = argmaxui∈UMI Informative(ui).
• S = S

⋃
{x}

• U = U − {x}

c. L = L
⋃

S
d. Retrain the SVM classifier using the new training set L. f = SV M Train(L).

• Bags. Only the images in the test data set are selected for labeling, i.e.
u = {Bi},i = 1, 2, · · · , N .

• Instances. Only regions in positive training images are selected for labeling,
i.e. u = {bi},i = 1, · · · , N where bi is a singleton bag that contains only a
region in a positive training image.

• Bags & Instances. The pool u is composed of both testing images and regions
of positive training images.

Our MI active learning framework mainly consists of two steps. The first step is
to learn a MI normalized set kernel matrix using the initial training data L and
train the initial SVM classifier. The second step is the active learning iterative
procedure, in which we apply the proposed sample selection criterion to select
the samples with maximum MI informativeness for labeling.

3 Experiments

In this section, we will evaluate three different sample selection strategies for MI
active learning on Corel image data set. For convenience, we will name the bag
and instance selecting strategy as mixed selecting strategy and the other two
selecting strategies as bag only and instance only strategy, respectively. Firstly,
we compare our active sample selection strategy with random sample selection
strategy to confirm the effectiveness of MI active learning. Then we conduct
experiments to evaluate the performances of three different sample selection
strategies for MI active learning. We use libSVM [9] as kernel learner and RBF
as basic kernel for normalized set kernel. The parameters γ and C for RBF



Multiple-Instance Active Learning for Image Categorization 245

407028.jpg

Fig. 1. Sample images from Corel

and SVM are determined through 10-fold cross validation. The parameter λ in
Equation (9) is fixed to 0.7.

3.1 Experimental Testbed and Setup

We adopt the image data set with region labels in [10] as our test bed. This data
set consists of 11 classes with 4002 natural scene images from Corel. These images
are segmented using JSEG [11] into average 26 regions. Then 9-dimensional color
moment in HSV color space and 20-dimensional Pyramid-structured wavelet
texture are combined into a 29-dimensional region-level feature vector. The detail
information of this data set is shown in Table 1. Some sample images form Corel
are shown in Figure 1.

In the active learning experiments, the learner begins with 20 randomly drawn
positive images and 20 random negative images as the initial training data while
the remaining images are used as unlabeled test data. The samples are selected at
each round from the unlabeled test images for labeling bag label, from the regions
in the positive training images for labeling instance label, or both. The remaining
samples in the test data are used for performance evaluation. The query batch size
n is set to 10 and the query round m to 18 respectively.

The measure used to evaluate the performance of the active learning methods
is AUROC [12], which is the area under the ROC curve. Five independent runs
are conducted for each image class in the Corel data set and the results are
averaged as the performance evaluation.

Following previous work on SVM active learning [13], we operate SVM using
a kernel correction method which guarantees that the training set is linearly
separable in kernel space [14]. This is done by modifying the kernel matrix K so
that each diagonal element is added by a constant ξ and the all other elements
remain the same. In all experiments in this paper, we fix ξ = 4 empirically.

3.2 Performance Evaluation

We firstly compare the average performance of MI active learning with that
of random sample selection strategy on Corel dataset. From Figure 2, it can
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Table 1. Detail Information For Corel Dataset

Concept Image Num Region Num Concept Image Num Region Num
Water 1690 9257 Sky 3382 13540
Flower 251 1701 Mountain 1215 9809

Building 1852 19422 Rock 580 6573
Grass 1660 12820 Earth 953 7598

Animal 477 2699 Tree 2234 19454
Ground 553 1753 ALL 4002 104626
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Fig. 2. The Performance of Different Querying Strategies

be observed that MI active learning methods perform significantly better than
random sampling on all of the three sample selection strategies, including bags
only, instances only, and the mixed bags & instances. This experimental result
demonstrates that the proposed MI active learning framework is effective and
helps to learn the classifier quickly.

We further conduct experiments to compare the bag & instance mixed select-
ing strategy with bag only and instance only selecting strategies. The average
performances of the mixed selecting strategy, the bag only selecting strategy, and
the instance only selecting strategy for MI active learning are shown in Figure 2.
It’s clear that the performance of the mixed selecting strategy is better than
that of the bag only and instance only selecting strategies. We can also observe
that instance selecting strategy performs better than bag selecting at the early
query rounds. However, as the query rounds proceed as well as more and more
samples are added into the training set, the bag selecting strategy shows better
performance than instance selecting strategy.
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Table 2. Average AUROC Improvement On Corel

Query Round Random Bag Instance Mixed
1 -0.019 +0.021 +0.033 +0.034
2 -0.021 -0.026 +0.030 +0.028
3 +0.015 +0.029 +0.018 +0.050
4 -0.001 +0.058 +0.072 +0.075
5 -0.001 +0.064 +0.044 +0.055
6 +0.036 +0.052 +0.055 +0.082
7 +0.031 +0.062 +0.074 +0.086
8 +0.042 +0.093 +0.085 +0.092
9 +0.050 +0.080 +0.066 +0.089
10 +0.031 +0.092 +0.081 +0.097
11 +0.046 +0.099 +0.080 +0.104
12 +0.052 +0.087 +0.084 +0.099
13 +0.047 +0.103 +0.083 +0.100
14 +0.052 +0.094 +0.084 +0.104
15 +0.086 +0.100 +0.090 +0.103
16 +0.069 +0.106 +0.085 +0.113
17 +0.082 +0.093 +0.082 +0.109
18 +0.075 +0.100 +0.082 +0.119

In Table 2 we summarize the learning curves in Figure 2 by reporting the
average AUROC improvement over the initial MI classifier for each querying
strategy. The values are averaged across all concepts in Corel dataset at each
round. The winning strategy at each point is indicated with bold font. It’s clear
that the mixed selecting strategy improves leaner’s performance mostly after a
few query rounds, and the instance selecting strategy outperforms bag selecting
at early rounds and then lose as query rounds increase.

3.3 Discussion

We can draw some conclusions from our experimental results.

• MI learner’s performance can be improved if we select to label certain regions
in positive training images. This may owe to the reduction of MI ambiguity in
the training images when labels of some regions are provided to MI learner.
However, the performance tends to improve gently as more and more regions
are selected for labeling. This is reasonable since MI ambiguity cannot be
further reduced with only limited training bags after MI learner reaches a
certain performance. To further improve learner, more unlabeled bags are
needed.

• Bag-only selecting strategy shows terrible performance at the early stage
of active samples selection, which may imputes to the MI ambiguity in the
training set. As MI ambiguity is solved at some extent after several querying
rounds, adding more informative bags into the training set further helps to
improve MI learner’s generalization performance.
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• Bag and instance mixed selecting strategy appears to be the most effective
sample selection strategy. It integrates the advantages of both bag select-
ing and instance selecting strategies. At each query round, both informative
instances and bags are selected for labeling. The selected instances help to
reduce ambiguity and the selected bags help to improve learner’s generaliza-
tion ability.

4 Conclusion

In this paper, we study multiple-instance active learning with application to
image categorization. A MI active learning framework that can query bags, in-
stances or their combination is proposed. Within this framework, a comparative
study is conducted on three MI active learning sample selection strategies for
image categorization: selecting bags only, selecting instances only, selecting the
mixture of bags and instances. Experimental results demonstrate that the mixed
sample selection strategy outperforms the other two and appears to be the most
effective sample selection strategy for MI active learning in image categoriza-
tion.The main contribution of this work can be summarized as following:

• By proposing a set kernel based classifier, we build a unified bag and/or
instance instance sample selection strategy and an integrated learning algo-
rithm,which make learning with mixed granularities operable.

• We conduct comparative study for MI active learning on image categoriza-
tion task and prove that the bag and instance mixed sample selection strat-
egy would be the best suitable strategy for MI active learning in image
categorization applications.

• We explore the integration of two widely successful learning methods in
image categorization,based on which, a reasonable strategy to improve the
performance of MI based image categorization is built.

In the future, we plan to test our multiple-instance active learning strategy
on other data collections with region labels and also conduct further research
to reveal in principle why bag and instance mixture sample selection strategy
benefits the multiple-instance classifier most.
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