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1 Introduction

Matrix calculation plays an essential role in many machine learning algorithms, among which ma-
trix calculus is the most commonly used tool. In this note, based on the properties from the dif-
ferential calculus, we show that they are all adaptable to the matrix calculus!. And in the end, an
example on least-square linear regression is presented.

2 Notation

A matrix is represented as a bold upper letter, e.g. X, where X,, ,, indicates the numbers of rows
and columns are m and n, respectively. A vector is represented as a bold lower letter, e.g. x, where
itis an x 1 column vector in this note. An important concept for a n X n matrix A,, ,, is the trace
Tr(A), which is defined as the sum of the diagonal:

n
Tr(A) =) Ai (1)
i=1
where A;; index the element at the ith row and 7th column.

3 Properties

The derivative of a matrix is usually referred as the gradient, denoted as V. Consider a function
f:R™™ — RPX4_ the gradient for f(A) w.r.t. A,y ,, is:
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This definition is very similar to the differential derivative, thus a few simple properties hold
(the matrix A below is square matrix and has the same dimension with the vectors):

VibTAx =bTA 2)

'Some of the detailed derivations which are omitted in this note can be found at http://www.cs.berkeley.
edu/~jduchi/projects/matrix_prop.pdf


http://www.cs.berkeley.edu/~jduchi/projects/matrix_prop.pdf
http://www.cs.berkeley.edu/~jduchi/projects/matrix_prop.pdf

VAXAY = YTXT (3)
VXXTAX = Ax+ ATx 4)
Varf(A) = (Vaf(A)T" (5)

where superscript T denotes the transpose of a matrix or a vector.
Now let us turn to the properties for the derivative of the trace. First of all, a few useful properties
for trace:

Tr(A) = Tr(AT) (6)
Tr(ABC) = Tr(BCA) = Tr(CAB) (7)
Tr(A + B) = Tr(A) + Tr(B) (8)

which are all easily derived. Note that the second one be extended to more general case with
arbitrary number of matrices.
Thus, for the derivatives,

VaTr(AB) = BT )

Proof:
Just extend Tr(AB) according to the trace definition (Eq. 1).

VaTr(ABATC) = CAB + CTABT (10)
Proof:

VaTr(ABATC)
=VaTr((AB) (ATC))
——

——
u(A)  v(AT)
=V au(a) Tr(u(A)o(AT)) + V o am) Tr(u(A)o(AT))
=(0(A")TVAu(A) + (Var,am Tr(u(A)u(AT)T
=CTABT + (u(A)T'Varv(AT)T
:CTABT + (BTATCT)T
=CAB + CTAB"
Here we make use of the property of the derivative of product: (u(z)v(z))" = o/ (x)v(x) +
u(2)v'(2). The notation V ., (o) means to calculate the derivative w.r.t. A only onu(A). Same ap-

plies to V o7, aT). Here chain rule is used. Note that the conversion from V 5., (a7) to Vo1, (aT)
is based on Eq. 5.

4 An Example on Least-square Linear Regression

Now we will derive the solution for least-square linear regression in matrix form, using the proper-
ties shown above. We know that the least-square linear regression has a closed-form solution (often
referred as normal equation).



Assume we have N data points {x("), 3N and the linear regression function hg(x) is
parametrized by 6. We can rearrange the data to matrix form:

(X(l))T y

(X(2))T y2
X= : y= :

(X(N))T y @)

Thus the error can be represented as:

ho(x()) — y(¥)

The squared error F(f), according to the numerical definition:

1 . 4
B(0) = 5 Y (ho(x) = y )2

i=1

which is equivalent to the matrix form:
1 T
E(f) = 5(X0 —y) (X0 ~y)
Take the derivative:

VoE(6) = V5 (X0~ y) (X0~ y)

1x 1 matrix, thus Tr(-)=(+)
= %VTr(GTXTXG —y'X0- 60" X"y +y'y)
— %VTr(QTXTXH) — VTr(yTX6) — vIr(#TXTy)
= %VTr(G 10TXTX) — (yTX)T — XTy

The first term can be computed using Eq. 10, where A = §, B = I, and C = XTX (Note that
in this case, C = C™). Plug back to the derivation:

VoE () = =(XTX0 + XTX0 — 2XTy)

1
2
= %(ZXTXH —2X1y)
S0l XTX) = XTy
Ors = (XTX)" !XTy

The normal equation is obtained in matrix form.
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