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1 Introduction

Matrix calculation plays an essential role in many machine learning algorithms, among which ma-
trix calculus is the most commonly used tool. In this note, based on the properties from the dif-
ferential calculus, we show that they are all adaptable to the matrix calculus1. And in the end, an
example on least-square linear regression is presented.

2 Notation

A matrix is represented as a bold upper letter, e.g. X, where Xm,n indicates the numbers of rows
and columns are m and n, respectively. A vector is represented as a bold lower letter, e.g. x, where
it is a n× 1 column vector in this note. An important concept for a n× n matrix An,n is the trace
Tr(A), which is defined as the sum of the diagonal:

Tr(A) =

n∑
i=1

Aii (1)

where Aii index the element at the ith row and ith column.

3 Properties

The derivative of a matrix is usually referred as the gradient, denoted as ∇. Consider a function
f : Rm×n → Rp×q, the gradient for f(A) w.r.t. Am,n is:

∇Af(A) =
∂f(A)

∂A
=


∂f
∂A11

∂f
∂A12

· · · ∂f
∂A1n

∂f
∂A21

∂f
∂A22

· · · ∂f
∂A2n

...
...

. . .
...

∂f
∂Am1

∂f
∂Am2

· · · ∂f
∂Amn


This definition is very similar to the differential derivative, thus a few simple properties hold

(the matrix A below is square matrix and has the same dimension with the vectors):

∇xb
TAx = bTA (2)

1Some of the detailed derivations which are omitted in this note can be found at http://www.cs.berkeley.
edu/˜jduchi/projects/matrix_prop.pdf
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∇AXAY = YTXT (3)

∇xx
TAx = Ax+ATx (4)

∇ATf(A) = (∇Af(A))T (5)

where superscript T denotes the transpose of a matrix or a vector.
Now let us turn to the properties for the derivative of the trace. First of all, a few useful properties

for trace:
Tr(A) = Tr(AT) (6)

Tr(ABC) = Tr(BCA) = Tr(CAB) (7)

Tr(A+B) = Tr(A) + Tr(B) (8)

which are all easily derived. Note that the second one be extended to more general case with
arbitrary number of matrices.

Thus, for the derivatives,
∇ATr(AB) = BT (9)

Proof :
Just extend Tr(AB) according to the trace definition (Eq. 1).

∇ATr(ABATC) = CAB+CTABT (10)

Proof :

∇ATr(ABATC)

=∇ATr((AB)︸ ︷︷ ︸
u(A)

(ATC)︸ ︷︷ ︸
v(AT)

)

=∇A:u(A)Tr(u(A)v(AT)) +∇A:v(AT)Tr(u(A)v(AT))

=(v(AT))T∇Au(A) + (∇AT:v(AT)Tr(u(A)v(AT))T

=CTABT + ((u(A))T∇ATv(AT))T

=CTABT + (BTATCT)T

=CAB+CTABT

Here we make use of the property of the derivative of product: (u(x)v(x))′ = u′(x)v(x) +
u(x)v′(x). The notation∇A:u(A) means to calculate the derivative w.r.t. A only on u(A). Same ap-
plies to∇AT:v(AT). Here chain rule is used. Note that the conversion from∇A:v(AT) to∇AT:v(AT)

is based on Eq. 5.

4 An Example on Least-square Linear Regression

Now we will derive the solution for least-square linear regression in matrix form, using the proper-
ties shown above. We know that the least-square linear regression has a closed-form solution (often
referred as normal equation).
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Assume we have N data points {x(i), y(i)}1:N , and the linear regression function hθ(x) is
parametrized by θ. We can rearrange the data to matrix form:

X =


(x(1))T

(x(2))T

...
(x(N))T

 y =


y(1)

y(2)

...
y(N)


Thus the error can be represented as:

Xθ − y =


hθ(x

(1))− y(1)

hθ(x
(2))− y(2)

...
hθ(x

(N))− y(N)


The squared error E(θ), according to the numerical definition:

E(θ) =
1

2

N∑
i=1

(hθ(x
(i))− y(i))2

which is equivalent to the matrix form:

E(θ) =
1

2
(Xθ − y)T(Xθ − y)

Take the derivative:

∇θE(θ) = ∇1

2
(Xθ − y)T(Xθ − y)︸ ︷︷ ︸
1×1 matrix, thus Tr(·)=(·)

=
1

2
∇Tr(θTXTXθ − yTXθ − θTXTy + yTy)

=
1

2
∇Tr(θTXTXθ)−∇Tr(yTXθ)−∇Tr(θTXTy)

=
1

2
∇Tr(θ I θTXTX)− (yTX)T −XTy

The first term can be computed using Eq. 10, where A = θ, B = I, and C = XTX (Note that
in this case, C = CT). Plug back to the derivation:

∇θE(θ) =
1

2
(XTXθ +XTXθ − 2XTy)

=
1

2
(2XTXθ − 2XTy)

Set to 0
====⇒ XTXθ = XTy

θLS = (XTX)−1XTy

The normal equation is obtained in matrix form.
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