- 1. Weakest in-cell power level is P(R), while the co-channel interference level is P(D), where $D/R = (3N)^{1/2}$ and N = 13. So P(D)/P(R) = $(D/R)^{-n} = (3N)^{-n/2} = (39)^{-n/2}$ is -28 dB or $(n/2)10\log(39) = 28$ and $n = 5.6/\log(39) = 3.52$
- 2. For l.o.s. : $G_1G_2\lambda^2/(4\pi d)^2$ For l.o.s. + ground reflection: $G_1G_2h_1^2h_2^2/d^4$ so we need the ratio $P_{los}/P_{gnd} = [G_1G_2\lambda^2/(4\pi d)^2]/[G_1G_2h_1^2h_2^2/d^4] = \lambda^2 d^2/h_1^2h_2^2(4\pi)^2$ expressed in dB or $20 \log [\lambda d/4\pi h_1h_2]$. At 1.1 GHz, $\lambda = (3/11)$ m, so P_{los}/P_{gnd} in dB = $20 \log [(3/11)(8800)/4\pi(2.2)(13)] = 16.5$ dB
- 3. The GOS spec is met if erlb(12, 7.5) < 0.02.
- 4. $D = (4\pi/P)(dP/d\Omega)_{max}$

If the northerly radiation intensity is $(dP/d\Omega)_N$, the southern one is then $0.5(dP/d\Omega)_N$ and the total radiated power is $P = 0.45 (dP/d\Omega)_N + (0.75)(0.5)(dP/d\Omega)_N = 0.825 (dP/d\Omega)_N$, while $(dP/d\Omega)_{max} = (dP/d\Omega)_N$, so $D = 4\pi/0.825 = 15.23$

5. The noise threshold = kTBF + SNR = -80.0 dBm + SNR = γ needs to be at most at the level such that $z = (\gamma - \mu) / \sigma = [\gamma - (-45 \text{ dBm})] / (5.5 \text{ dB})$ is such that Q(z) = 0.98. From the given data, z = -2.054 so that max SNR = -(2.054)(5.5) + 80 - 45 = 23.7 dB