1. Weakest in-cell power level is P(R), while the co-channel interference level is P(D), where \(D/R = (3N)^{1/2} \) and \(N = 13 \). So \(P(D)/P(R) = (D/R)^{-n} = (3N)^{-n/2} = (39)^{-n/2} \) is \(-28 \text{ dB}\) or \((n/2)10\log(39) = 28\) and \(n = 5.6/\log(39) = 3.52\)

2. For l.o.s.: \(G_1G_2\lambda^2/(4\pi d)^2 \) For l.o.s. + ground reflection: \(G_1G_2h_1^2h_2^2/d^4 \) so we need the ratio \(P_{lv}/P_{end} = [G_1G_2\lambda^2/(4\pi d)^2] / [G_1G_2h_1^2h_2^2/d^4] = \lambda^2 d^2 / h_1^2h_2^2(4\pi)^2 \) expressed in dB or \(20 \log \left[\lambda d / 4\pi h_1h_2 \right] \). At 1.1 GHz, \(\lambda = (3/11) \text{ m} \), so

\[
P_{lv}/P_{end} \text{ in dB} = 20 \log \left[\frac{(3/11)(8800)}{4\pi(2.2)(13)} \right] = 16.5 \text{ dB}
\]

3. The GOS spec is met if \(\text{erlb}(12, 7.5) < 0.02 \).

4. \(D = (4\pi/P)(dP/d\Omega)_{\text{max}} \)

If the northerly radiation intensity is \((dP/d\Omega)_N \), the southern one is then \(0.5(dP/d\Omega)_N \) and the total radiated power is \(P = 0.45 \text{ (dP/d\Omega)}_N + (0.75)(0.5)(dP/d\Omega)_N = 0.825 \text{ (dP/d\Omega)}_N \), while \((dP/d\Omega)_{\text{max}} = (dP/d\Omega)_N \), so \(D = 4\pi/0.825 = 15.23 \)

5. The noise threshold = \(kTBF + \text{SNR} = -80.0 \text{ dBm} + \text{SNR} = \gamma \) needs to be at most at the level such that \(z = (\gamma - \mu)/\sigma = [\gamma - (-45 \text{ dBm})]/(5.5 \text{ dB}) \) is such that \(Q(z) = 0.98 \). From the given data, \(z = -2.054 \) so that \(\text{max SNR} = -(2.054)(5.5) + 80 - 45 = 23.7 \text{ dB} \)