EE E4703 Wireless Communications Spring
 Professor Diament

Solution to Homework Assignment \#5

Problem 6.1

Given $f_{m}=\frac{5}{2 \pi}=0.796 \mathrm{~Hz}, \quad \beta_{f}=10 \Rightarrow$ bandwidth of the FM signal $B_{t}=2\left(\beta_{f}+1\right) f_{m} \Rightarrow B_{T}=17.5 \mathrm{~Hz}$.

For $f_{c}=\frac{\omega_{c}}{2 \pi}=796.18 \mathrm{~Hz}$, the upper sideband frequency is f_{c} to $f_{c}+\frac{B_{T}}{2}=$ 796.18 to 804.93 Hz .

The lower sideband frequency is $f_{c}-\frac{B_{T}}{2}$ to $f_{c}=787.43$ to 796.18 Hz .

Problem 6.2

For $m(t)=\sin (1000 \pi t), \Delta F=1 \mathrm{KHz}, A_{m}=2 \mathrm{~V}, f_{m}=\frac{1000 \pi}{2 \pi}=500 \mathrm{~Hz}$, we have $k_{f}=\frac{\Delta f}{A_{m}}=\frac{1000}{2}=500 \mathrm{~Hz} / \mathrm{V}$.

Thus, for $A_{m}=8 V, f_{m}=2000 \mathrm{~Hz}, f_{c}=2 \times 10^{6} \mathrm{~Hz}, A_{c}=4 V$ we have

$$
\begin{align*}
S_{F M}(t) & =A_{c} \cos \left[2 \pi f_{c} t+2 \pi k_{f} \int_{-\infty}^{t} m(\eta) d(\eta)\right] \\
& =4 \cos \left[2 \pi \times 2 \times 10^{6} t-2 \pi \times 500 \frac{8}{2 \pi 2000} \cos (2 \pi \times 2000 t)\right] \tag{1}\\
& =4 \cos \left[4 \times 10^{6} \pi t-2 \cos (4000 \pi t)\right] .
\end{align*}
$$

Problem 6.3

Maximum Doppler Spread: $f_{m}=\frac{v}{\lambda}=\frac{80 \times 1.6 \times 10^{3} / 3600}{300 / 440}=52.1 \mathrm{~Hz}$.
And the notch width is $2 f_{m}=104.2 \mathrm{~Hz}$.

Problem 6.4

Interpreting W as f_{m} (max audio frequency) and f_{d} as Δ_{f} (frequency deviation) we get:

$$
\beta_{f}=\frac{f_{d}}{w}=\frac{12}{4}=3 .
$$

Problem 6.13

For $\mathrm{SNR}=30 \mathrm{~dB}=1000, \mathrm{~B}=200 \mathrm{KHz}$, the maximum possible data rate, $C=$ $B \log _{2}\left(1+\frac{S}{N}\right)=1.99 \mathrm{Mbps}$.

The GSM data rate us 270.833 kbps , which is only about 0.136 C .

Problem 6

By applying the operator $\mathcal{F}(B) \triangleq \frac{\partial^{2} B}{\partial x^{2}}+\frac{1}{x} \frac{\partial B}{\partial x}+B+\frac{1}{x^{2}} \frac{\partial^{2} B}{\partial \theta^{2}}$ to the function $B(x, \theta)=e^{j x \sin (\theta)}$ we get

$$
\begin{align*}
\mathcal{F}(B) & =-\sin ^{2}(\theta) e^{j x \sin (\theta)}+j \frac{\sin (\theta)}{x} e^{j x \sin (\theta)}+e^{j x \sin (\theta)}+\frac{1}{x^{2}}\left(-j x \sin (\theta)-x^{2} \cos (\theta)\right) e^{j x \sin (\theta)} \\
& =\left[-\sin ^{2}(\theta)+j \frac{\sin (\theta)}{x}+1-j \frac{\sin (\theta)}{x}-\cos ^{2}(\theta)\right] e^{j x \sin (\theta)}=0 \tag{2}
\end{align*}
$$

By applying the same operator to $B(x, \theta)=\sum_{n} J_{n}(x) e^{j n \theta}$ we should get the same result:

$$
\begin{align*}
\mathcal{F}(B) & =\sum_{n} \frac{\partial^{2} J_{n}(x)}{\partial x^{2}} e^{j x \theta}+\frac{1}{x} \sum_{n} \frac{\partial J_{n}(x)}{\partial x} e^{j n \theta}+\sum_{n} J_{n}(x) e^{j n \theta}-\frac{1}{x^{2}} \sum_{n} n^{2} J_{n}(x) e^{j n \theta} \\
& =\sum_{n}\left[\frac{\partial^{2} J_{n}(x)}{\partial x^{2}}+\frac{1}{x} \frac{\partial J_{n}(x)}{\partial x}+J_{n}(x)-\frac{n^{2}}{x^{2}} J_{n}(x)\right] e^{j n \theta}=0 \tag{3}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\frac{\partial^{2} J_{n}(x)}{\partial x^{2}}+\frac{1}{x} \frac{\partial J_{n}(x)}{\partial x}+J_{n}(x)-\frac{n^{2}}{x^{2}} J_{n}(x)=0 \tag{4}
\end{equation*}
$$

