COLUMBIA UNIVERSITY Department of Electrical Engineering EE EE4703: Wireless Communications

Solution for Homework Assignment No. 3

Problem 1 Rappaport, p. 169, Problem 4.15

Let df be the physical T-R separation.
d_{1} is the free space propagation path length.
d 2 is the ground-reflected path length.
The first Fresnel zone is defined by a df that satisfies $d_{2}=d_{1}+\lambda / 2$.

Note that d_{2} is drawn using the reflection of h_{t} to make the calculation easier. Also note that in this drawing $h_{t}>h_{r}$, but the same calculation applies for $h_{t}<h_{r}$.

$$
\begin{aligned}
& d_{1}=\sqrt{d_{f}{ }^{2}+\left(h_{t}-h_{r}\right)^{2}} \\
& d_{2}=\sqrt{d_{f}{ }^{2}+\left(h_{t}+h_{r}\right)^{2}} \\
& \sqrt{d_{f}{ }^{2}+\left(h_{t}+h_{r}\right)^{2}}=\sqrt{d_{f}{ }^{2}+\left(h_{t}-h_{r}\right)^{2}}+\frac{\lambda}{2} \\
& d_{f}{ }^{2}+\left(h_{t}+h_{r}\right)^{2}=d_{f}{ }^{2}+\left(h_{t}-h_{r}\right)^{2}+\frac{\lambda^{2}}{4}+\lambda \sqrt{d_{f}{ }^{2}+\left(h_{t}-h_{r}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 h_{t} h_{r}=-2 h_{t} h_{r}+\frac{\lambda^{2}}{4}+\lambda \sqrt{d_{f}^{2}+\left(h_{t}-h_{r}\right)^{2}} \\
& d_{f}{ }^{2}+\left(h_{t}-h_{r}\right)^{2}=\frac{1}{\lambda^{2}}\left(4 h_{t} h_{r}-\frac{\lambda^{2}}{4}\right)^{2} \\
& d_{f}{ }^{2}=\frac{1}{\lambda^{2}}\left(16 h_{t}^{2} h_{r}^{2}-2 h_{t} h_{r} \lambda^{2}+\frac{\lambda^{4}}{16}\right)-\left(h_{t}^{2}-2 h_{t} h_{r}+h_{r}^{2}\right) \\
& d_{f}^{2}=\frac{1}{\lambda^{2}}\left(16 h_{t}^{2} h_{r}^{2}+\frac{\lambda^{4}}{16}-h_{t}^{2} \lambda^{2}-h_{r}^{2} \lambda^{2}\right)=\frac{1}{\lambda^{2}}\left(\frac{\lambda^{2}}{4}-4 h_{t}{ }^{2}\right)\left(\frac{\lambda^{2}}{4}-4 h_{r}^{2}\right) \\
& d_{f}=\frac{\sqrt{\left(\lambda^{2}-16 h_{t}^{2}\right)\left(\lambda^{2}-16 h_{r}^{2}\right)}}{4 \lambda}
\end{aligned}
$$

Had we used the parallel ray approximation, we would have received:
$S=d_{2}-d_{1}=\frac{2 h_{t} h_{r}}{d_{f}}=\frac{\lambda}{2}$
$d_{f}=\frac{4 h_{t} h_{r}}{\lambda}$
Whichis correct only if the carrier wavelength is very small in comparison with the receiver and transmitter heights.

Problem 2
Rappaport, p. 170, Problem 4.19

$$
\begin{aligned}
& P_{t}=10 \mathrm{w}=40 \mathrm{dBm} \\
& G_{t}=10 d B \\
& G_{r}=3 d B \\
& L=1 d B @ 900 \mathrm{MHz} \\
& f=900 \mathrm{Mhz} \\
& \therefore \lambda=c / f=\frac{1}{3} m
\end{aligned}
$$

First, let's compute the free-space model:

$$
\begin{aligned}
& P L=\frac{\lambda^{2}}{\left[4 \pi\left(d_{t}+d_{r}\right)\right]^{2}}=2.81 \cdot 10^{-11}=-105.5 d B \\
& P_{r e c, d B m}=P_{t r, d B m}+P L+G_{t, d B}+G_{r, d B}-L_{d B}=40-105.5+10+3-1=-53.5 d B m=4.47 \cdot 10^{-9} \mathrm{w}
\end{aligned}
$$

We should extract h from the geometry of the problem

$$
\begin{aligned}
& d_{1}=\sqrt{d_{t}^{2}+\left(h_{\text {obs }}-h_{t}\right)^{2}}=3019 \mathrm{~m} \\
& x=\arctan \left(\frac{h_{\text {obs }}-h_{t}}{d_{t}}\right)=6.47^{\circ} \\
& y=\arctan \left(\frac{h_{t}-h_{r}}{d_{t}+d_{r}}\right)=0.63^{\circ} \\
& h=d_{1} \cdot \sin (x+y)=373.15 m \\
& v=h \cdot \sqrt{\frac{2}{\lambda}\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right)}=26.39 \\
& G_{d, d B}=20 \log \left(\frac{0.225}{v}\right)=-41.39 d B
\end{aligned}
$$

And then, the received power is:

$$
P_{r e c}=P_{t r, d B m}+P L+G_{t, d B}+G_{r, d B}-L_{d B}+G_{d, d B}=-94.89 \mathrm{dBm}=3.24 \cdot 10^{-13} \mathrm{w}
$$

The received power is $3.24 \cdot 10^{-13}$ watts.
Without the obstacle, it would have been $4.47 \cdot 10^{-9}$ watts.

The path loss caused by diffraction is 41.39 dB .

Problem 3

Rappaport, p. 170, Problem 4.20

(a)

$$
\begin{aligned}
& f=50 \mathrm{Mhz} \\
& \therefore \lambda=c / f=6 \mathrm{~m} \\
& P L=\frac{\lambda^{2}}{\left[4 \pi\left(d_{t}+d_{r}\right)\right]^{2}}=9.12 \cdot 10^{-9}=-80.4 d B
\end{aligned}
$$

Without diffraction:

$$
P_{r e c, d B m}=P_{t r, d B m}+P L+G_{t, d B}+G_{r, d B}-L_{d B}=-28.4 d B m=1.45 \cdot 10^{-6} \mathrm{w}
$$

And with diffraction:

$$
\begin{aligned}
& v=h \cdot \sqrt{\frac{2}{\lambda}\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right)}=6.22 \\
& G_{d, d B}=20 \log \left(\frac{0.225}{v}\right)=-28.83 d B \\
& P_{r e c, d B m}=P_{t r, d B m}+P L+G_{t, d B}+G_{r, d B}-L_{d B}+G_{d, d B}=-57.23 \mathrm{dBm}=1.89 \cdot 10^{-9} \mathrm{w}
\end{aligned}
$$

The received power is $1.89 \cdot 10^{-9}$ watts.
Without the obstacle, it would have been $1.45 \cdot 10^{-6}$ watts.

The path loss caused by diffraction is 28.83 dB .
(b)

$$
\begin{aligned}
& f=1900 \mathrm{Mhz} \\
& \therefore \lambda=c / f=0.158 \mathrm{~m} \\
& P L=\frac{\lambda^{2}}{\left[4 \pi\left(d_{t}+d_{r}\right)\right]^{2}}=6.24 \cdot 10^{-12}=-112.05 \mathrm{~dB}
\end{aligned}
$$

Without diffraction:

$$
P_{r e c, d B m}=P_{t r, d B m}+P L+G_{t, d B}+G_{r, d B}-L_{d B}=-60.05 d B m=9.89^{-10} \mathrm{w}
$$

And with diffraction:

$$
\begin{aligned}
& v=h \cdot \sqrt{\frac{2}{\lambda}\left(\frac{1}{d_{1}}+\frac{1}{d_{2}}\right)}=38.32 \\
& G_{d, d B}=20 \log \left(\frac{0.225}{v}\right)=-44.62 d B \\
& P_{r e c, d B m}=P_{t r, d B m}+P L+G_{t, d B}+G_{r, d B}-L_{d B}+G_{d, d B}=-104.67 \mathrm{dBm}=3.41 \cdot 10^{-14} \mathrm{w}
\end{aligned}
$$

The received power is $3.41 \cdot 10^{-14}$ watts.
Without the obstacle, it would have been $9.89 \cdot 10^{-10}$ watts.

The path loss caused by diffraction is 44.62 dB .

Problem 4

Rappaport, p. 170, Problem 4.22

$P_{0}=1 \mathrm{mw}=0 \mathrm{dBm}$
$d_{0}=1 m$
$d=10 m$
$\bar{n}=3.5$
We require 10% of the measurements to be stronger than -25 dBm .
i.e. $\operatorname{Pr}\left\{P_{\text {rec }}>-25 d B m\right\}=0.9$

We should first find the mean path loss and then look it up in the Q-function table.

$$
\begin{aligned}
& \overline{P_{\text {rec }}}=P_{0}-10 \cdot \bar{n} \cdot \log \left(\frac{d}{d_{0}}\right)=-35 d B \\
& Q\left(\frac{X-\mu}{\sigma}\right)=Q\left(\frac{(-35)-(-25)}{\sigma}\right)=Q\left(\frac{-10}{\sigma}\right)=0.9 \\
& Q\left(\frac{10}{\sigma}\right)=0.1 \rightarrow \frac{10}{\sigma}=1.28 \\
& \sigma=7.81 d B
\end{aligned}
$$

The standard deviation would be 7.81 dB

Problem 5

Rappaport, p. 172, Problem 4.27

$P_{t r}=15 \mathrm{w}=41.76 \mathrm{dBm}$
$G_{t}=12 \mathrm{~dB}=15.84$
$G_{r}=3 d b=2$
$B W_{r}=30 \mathrm{kHz}$
$F_{\text {rec }}=8 d B$
$f_{c}=1800 \mathrm{MHz}$
$\therefore \lambda=0.167 \mathrm{~m}$
$n=4$
$\sigma=8 d B$
$d_{0}=1000 \mathrm{~m}$
We require 20 dB SNR 95\% percent of the time
i.e. $\operatorname{Pr}\{S N R>20 d B\}=0.95$

What is the maximum T-R separation that will ensure that SNR?

We first compute the noise threshold, and then the required received power.
Thermal noise spectral density at room temperature:

$$
K T=-204 d B \frac{w}{H z}=3.98 \cdot 10^{-21} \frac{w}{H z}
$$

So the thermal noise at the receives is

$$
K T \cdot B W_{r}=1.194 \cdot 10^{-16}=-129.2 \mathrm{dBm}
$$

And the noise floor is:

$$
F_{r e c}+K T \cdot B W_{r}=-121.2 d B m
$$

Regarding the SNR:

$$
\operatorname{Pr}\{S N R>20 d B\}=Q\left(\frac{20-\overline{S N R}}{8}\right)=0.95
$$

$Q\left(\frac{\overline{S N R}-20}{8}\right)=1-0.95=0.05$
$\frac{\overline{S N R}-20}{8}=1.645$
$\overline{S N R}=33.16 d B$

The required received power will be:

$$
P_{r e c, \min }=-121.2+33.16=-88.04 \mathrm{dBm}
$$

The Power at d_{0} :
$P_{0}=\frac{P_{t r} G_{t} G_{r} \lambda^{2}}{\left(4 \pi d_{0}\right)^{2}}=8.39 \cdot 10^{-8} w=-40.76 \mathrm{dBm}$
$P_{\text {rec, } \text { min }}=P_{0}-10 n \cdot \log \left(\frac{d_{\text {max }}}{d_{0}}\right)$
$\therefore d_{\text {max }}=d_{0} \cdot 10^{\frac{P_{\rho, d B_{m} n}-P_{\text {rec. . } i n n}}{10 n}}=15.2 \mathrm{~km}$

Problem 6

Rappaport, p. 172, Problem 4.28

$S N R_{\text {req }}=25 d B$
$f_{c}=900 \mathrm{MHz}$
$\therefore \lambda=0.333 \mathrm{~m}$
$E I R P=P_{t r} G_{t}=100 \mathrm{~W}=50 \mathrm{dBm}$
$G_{r}=0 d B=1$
$A M P S \rightarrow B W=30 \mathrm{KHz}$
$F=10 d B$
$d=10 \mathrm{~km}$
$\bar{n}=4$
$\sigma=8 d B$
$d_{0}=1 \mathrm{~km}$

We will find P_{0}, and then the average received power.

$$
\begin{aligned}
& P_{0}=\frac{P_{t r} G_{t} G_{r} \lambda^{2}}{\left(4 \pi d_{0}\right)^{2}}=\frac{E I R P \cdot G_{r} \lambda^{2}}{\left(4 \pi d_{0}\right)^{2}}=7.02 \cdot 10^{-8} \mathrm{w}=-41.54 \mathrm{dBm} \\
& \overline{P_{\text {rec }}}=P_{0}-10 \overline{\mathrm{n}} \cdot \log \left(\frac{d}{d_{0}}\right)=-81.54 \mathrm{dBm}
\end{aligned}
$$

The thermal noise, just like in problem 4.27, is:
$K T \cdot B W_{r}=1.194 \cdot 10^{-16}=-129.2 \mathrm{dBm}$
And the noise floor
$N F=F_{\text {rec }}+K T \cdot B W_{r}=-119.2 d B m$

The mean SNR:
$\overline{S N R}=\overline{P_{\text {rec }}}-N F=37.66 \mathrm{~dB}$
$\operatorname{Pr}\{S N R>25 d B\}=Q\left(\frac{25 d B-\overline{S N R}}{\sigma}\right)=Q(-1.58)=1-Q(1.58)=0.943$
The required SNR will be achieved $\mathbf{9 4 . 3 \%}$ of the time.

