COLUMBIA UNIVERSITY Department of Electrical Engineering EE E4703:
Wireless Communications

Solution for Homework Assignment No. 2

Problem 1

Rappaport, p. 168, Problem 4.1
$P_{t}=10 w$
$G_{t}=0 d B=1$
$G_{r}=0 d B=1$
$f_{c}=900 \mathrm{MHz}$
$r=1 \mathrm{~km}=1000 \mathrm{~m}$
$\lambda=\frac{c}{f_{c}}=\frac{3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}}{900 \mathrm{MHz}}=0.333 \mathrm{~m}$
$P_{r e c}=P_{t r} \frac{G_{t} G_{r} \lambda^{2}}{(4 \pi r)^{2}}=7.02 \cdot 10^{-9} \mathrm{w}$
The received power is $7.02 \cdot 10^{-9}$ watts.

Problem 2

Find the directivity $D=D(n)$ of an antenna pattern described by $d P / d \Omega=\cos ^{n} \theta$, forward only (i.e., for $0 \leq \theta \leq \pi / 2$ but for all azimuths $0 \leq \varphi<2 \pi$). The answer should be given as a function of the integer n.
$\frac{d P}{d \Omega}=\cos ^{n} \theta$
We'll find the directivity function $D(\theta, \varphi)$ and then maximize it to find the directivity D.
$D(\theta, \varphi)=\frac{4 \pi}{P} \frac{d P}{d \Omega}$
$P=\iint\left(\frac{d P}{d \Omega}\right) d \Omega=\int_{\theta=0}^{\pi / 2} \int_{\varphi=0}^{2 \pi} \cos ^{n} \theta \sin \theta d \theta d \varphi=2 \pi \int_{\theta=0}^{\pi / 2} \cos ^{n} \theta \sin \theta d \theta$
$u=\cos \theta$
$d u=-\sin \theta d \theta$
$P=2 \pi \int_{u=0}^{1} u^{n} d u=\left.2 \pi \frac{u^{n+1}}{n+1}\right|_{u=0} ^{1}=\frac{2 \pi}{n+1}$
$D(\theta, \varphi)=\frac{4 \pi}{P} \frac{d P}{d \Omega}=2(n+1) \cos ^{n} \theta$
$D(n)=\max D(\theta, \varphi)=2(n+1)$
The directivity of the antenna is $D(n)=2(n+1)$.

Problem 3

Suppose we succeeded in generating a sectoral radiation pattern for a wireless cell that were described as follows. It is uniform (i.e., a constant) in all directions within both the horizontal sector $0^{\circ}<\varphi<120^{\circ}$ and in the range $80^{\circ}<\theta<90^{\circ}$ of elevation from the vertical; it is zero for all directions outside these intervals. What is the directivity (in $d B$) of this pattern?

Let's assume we have R w/rad ${ }^{2}$ radiation in the given sector.
We shall integrate it over the sector to find the emitted power.
First, convert the angles to radians:

$$
\begin{aligned}
& 0<\varphi<2 \pi / 3 \\
& 4 \pi / 9<\theta<\pi / 2 \\
& \frac{d P}{d \Omega},_{\text {max }}=R \\
& D(\theta, \varphi)=\frac{4 \pi}{P} \frac{d P}{d \Omega} \\
& P=\iint\left(\frac{d P}{d \Omega}\right) d \Omega=\int_{\theta=\frac{4 \pi}{9}}^{4 / 2} \int_{\varphi=0}^{\frac{2 \pi}{3}} R \sin \theta d \theta d \varphi=\left.R \cdot \frac{2 \pi}{3} \cdot \cos \theta\right|_{\frac{\pi}{2}} ^{\frac{4 \pi}{9}}=0.3637 R \\
& D=D(\theta, \varphi)_{\text {max }}=\frac{4 \pi}{P} \frac{d P}{d \Omega},_{\text {max }}=\frac{4 \pi}{0.3637 R} R=34.55=15.38 d B
\end{aligned}
$$

The directivity of this radiation pattern is $\mathbf{1 5 . 3 8} \mathbf{~ d B}$.

Problem 4

The CTS satellite has an 11.7 GHz transmitter on board, which provides 200 mW to its 19.3 dB gain antenna. What power (in watts) can be received by a ground station antenna (a 3.66 m diameter parabolic reflector) with 50.4 dB gain? The satellite is in synchronous orbit $36,941 \mathrm{~km}$ above the ground station.
$f=11.7 G h z$
$\therefore \lambda=c / f=0.0256 m$
$P_{t}=0.2 w$
$G_{t}=19.3 \mathrm{~dB}=85.11$
$G_{r}=50.4 d B=109648$
$r=36,941 \mathrm{~km}=36.941 \cdot 10^{6} \mathrm{~m}$
For a satellite-to-ground problem we can apply the free space communications model

$$
P_{r e c}=P_{t r} \frac{G_{t} G_{r} \lambda^{2}}{(4 \pi r)^{2}}=5.676 \cdot 10^{-15} \mathrm{w}
$$

The received power is $5.676 \cdot 10^{-15}$ watts.

Problem 5
Rappaport, p. 168, Problem 4.10

$$
\begin{aligned}
& h_{r}=2 \mathrm{~m} \\
& \theta_{\Delta, \min }=6.261 \mathrm{rad} \\
& \theta_{i, \max }=5^{\circ} \\
& f=900 \mathrm{Mhz} \\
& \therefore \lambda=c / f=0.333 \mathrm{~m} \\
& \theta_{\Delta}=\frac{2 \pi \Delta}{\lambda}=\frac{2 \pi}{\lambda} \frac{2 h_{t} h_{r}}{d}=\frac{4 \pi h_{t} h_{r}}{\lambda d}=75.473 \frac{h_{t}}{d} \\
& \theta_{\Delta, \min }=75.473 \frac{h_{t, \min }}{d_{\min }}=6.261
\end{aligned}
$$

In order to use the $?_{i}$ constraint, we must consider the geometry of the model:

$\frac{h_{r}}{d_{r}}=\tan \theta_{i}=\tan 5^{\circ}$
$d_{r}=\frac{h_{r}}{\tan 5^{\circ}}=22.86 \mathrm{~m}$
$\frac{h_{t}}{d_{t}}=\frac{h_{t}}{d-d_{r}}=\frac{h_{t, \text { min }}}{d_{\text {min }}-22.86}=\tan 5^{\circ}=0.0875$
$75.473 \frac{h_{t, \text { min }}}{d_{\text {min }}}=6.261$
$\frac{h_{t, \text { min }}}{d_{\text {min }}-22.86}=0.0875$
Solve the 2 equations for $\mathrm{d}_{\text {nin }}$ and $\mathrm{h}_{\mathrm{t}, \text { min }}$
$d_{\text {min }}=443.5 m$
$h_{t, \text { min }}=36.8 m$

Problem 6

Rappaport, p. 168, Problem 4.11
To completely cancel each other, the signals must have a 2 p phase difference (or an integral multiple of 2 p).
$\theta_{\Delta}=\frac{2 \pi}{\lambda} s=\frac{2 \pi}{\lambda} \frac{2 h_{r} h_{t}}{d}=2 \pi n$
$n=1,2,3 \ldots$
$\therefore d_{0}=\frac{2 h_{r} h_{t}}{\lambda n}$
The signal nulls will occur when $d=d_{0}$, above.

