## COLUMBIA UNIVERSITY

Department of Electrical Engineering
EE E4703: Wireless Communications

## Solution for Homework Assignment No. 1

## Problem 1.7, p 22

A pager has the longest battery life (lowest power consumption) as it is only used as a receiver and does not transmit at all.

Problem 1.8, p 22
A cellular phone has the shortest battery life (highest power consumption) as it transmits to a much bigger range than a cordless phone.

## Problem 1.9, p 22

One 3-minute call, every day. The total charge consumption for one day:
$Q_{\text {daily }}=I_{\text {idle }} \cdot t_{\text {idle }}+I_{\text {call }} \cdot t_{\text {call }}=\left(24 h-\frac{1}{20} h\right) \cdot 35 m A+\frac{1}{20} h \cdot 250 m A=850.75 \mathrm{~mA} \cdot h$
Given a $1 A \cdot h$ battery,
$\frac{1 \mathrm{~A} \cdot \mathrm{~h}}{850.75 \frac{\mathrm{~mA} \cdot \mathrm{~h}}{\mathrm{day}}}=1.175$ days $=28.2 \mathrm{~h}$
The battery will last for $\mathbf{2 8}$ hours and $\mathbf{1 2}$ minutes.
Every 6 hours (4 calls per day):
$Q_{\text {daily }}=I_{\text {idle }} \cdot t_{\text {idie }}+I_{\text {call }} \cdot t_{\text {call }}=\left(24 h-\frac{4}{20} h\right) \cdot 35 m A+\frac{4}{20} h \cdot 250 m A=883 m A \cdot h$
$\frac{1 A \cdot h}{883 \frac{m A \cdot h}{d a y}}=1.133$ days $=27.18 \mathrm{~h}$
The battery will last for $\mathbf{2 7}$ hours and $\mathbf{1 1}$ minutes.
Every hour (24 calls per day):
$Q_{\text {daily }}=I_{\text {idde }} \cdot t_{\text {idde }}+I_{\text {call }} \cdot t_{\text {call }}=\left(24 h-\frac{24}{20} h\right) \cdot 35 m A+\frac{24}{20} h \cdot 250 m A=1098 m A \cdot h$
$\frac{1 \mathrm{~A} \cdot \mathrm{~h}}{1098 \frac{\mathrm{~mA} \cdot \mathrm{~h}}{\mathrm{day}}}=0.911$ days $=21.86 \mathrm{~h}$
The battery will last for $\mathbf{2 1}$ hours and 52 minutes.

Maximum talk time ?
$I_{\text {call }}=250 \mathrm{~mA}$
$\frac{1 A \cdot h}{250 \mathrm{~mA}}=4 \mathrm{~h}$
The maximum talk time would be $\mathbf{4}$ hours:

## Problem 3.4, p 97

(a) Two simplex channels make one duplex channel. Therefore, each duplex channel has a $2 \cdot 25=50 \mathrm{kHz}$ RF Bandwidth.

20 MHz can be divided into $20 \mathrm{MHz} / 50 \mathrm{kHz}=400$ duplex channels.
(b) Frequency reuse factor of $4(\mathrm{~N}=4)$, means that the 400 hundred channels will be divided among the 4 cells of every cluster (and then reused in every cluster). Therefore $\mathbf{1 0 0}$ channels per cell site will be used.

## Problem 3.16, p 100

Given:
$\mathrm{P}_{0}=1 \mathrm{~mW}=0 \mathrm{dBm}$
$\mathrm{d}_{0}=1 \mathrm{~m}$
$\mathrm{n}=3$
Required:
$\mathrm{P}_{\mathrm{r}}<-100 \mathrm{dBm}$
$P_{r}=P_{0}\left(\frac{D}{d_{0}}\right)^{-n}$
$P_{r}(d B m)=P_{r}(d B m)-10 n \log \left(\frac{d}{d_{0}}\right)<-100 d B m$
Rearrange:
$D>10^{\frac{-100 d B m-0 d B m}{-10 n}} \cdot d_{0}=10^{\frac{10}{3}} \cdot 1 m=2154 m$

For $\mathrm{N}=7$ :
$R=\frac{D}{\sqrt{3 N}}>470 m$

For $N=4$ :
$R=\frac{D}{\sqrt{3 N}}>622 m$

## Problem 3.26, p 101-102

$$
\lambda=3 \mathrm{calls} / h r
$$

$$
\frac{1}{\mu}=5 \mathrm{~min} / \text { call }=\frac{1}{12} \mathrm{hr} / \text { call }
$$

(a) $A_{u}=\lambda / \mu=\frac{1}{4}$ erlang
(b) $\mathrm{C}=1$.

$$
\begin{aligned}
& \operatorname{erlb}(A, 1)=\frac{A}{1+A}=0.01 \\
& \therefore A=0.0101
\end{aligned}
$$

Using the Eralng B formula it seems as if the maximum traffic intensity that will achieve the required blocking probability is 0.0101 , well below the traffic intensity of a single user. However, if there is only one user, he will never be blocked.

Therefore the answer is one user.
(c) $\mathrm{C}=5$.

$$
\begin{aligned}
& \operatorname{erlb}(A, 5)=0.01 \\
& \therefore A=1.361 \\
& U=\left\lfloor A / A_{u}\right\rfloor=5 \text { users }
\end{aligned}
$$

Note: the symbol $\lfloor x\rfloor$ denotes "the greatest integer value less or equal to $x$ ".
(d) Now, $\mathrm{U}=10$ users.
$A=U \cdot A_{u}=10 \cdot 0.25=2.5$ erlang
$G O S=\operatorname{Pr}\{b l o c k\}=\operatorname{erlb}(2.5,5)=0.0697 \approx 7 \%$
This GOS means that $\mathbf{7 \%}$ of the calls will be blocked. Such performance is unacceptable in cellular systems. Usually the GOS is kept below $2 \%$.

Problem 3.15, p 100
(a) $G O S=\operatorname{Pr}\{$ block $\}=0.02$

| Channels | Maximum System <br> Capacity | Maximum Capacity <br> per User |
| :--- | :--- | :--- |
| $\mathrm{C}=4$ | $\operatorname{erlb}(\mathrm{A}, 4)=0.02$ <br> $\mathrm{~A}=1.09$ | $\mathrm{~A}_{\mathrm{C}}=\mathrm{A} / 4=0.273$ |
| $\mathrm{C}=20$ | $\mathrm{erlb}(\mathrm{A}, 20)=0.02$ <br> $\mathrm{~A}=13.18$ | $\mathrm{~A}_{\mathrm{C}}=\mathrm{A} / 20=0.659$ |
| $\mathrm{C}=40$ | $\operatorname{erlb}(\mathrm{A}, 40)=0.02$ <br> $\mathrm{~A}=31$ | $\mathrm{~A}_{\mathrm{C}}=\mathrm{A} / 40=0.775$ |

(b)

$$
\begin{aligned}
& C=40 \\
& \lambda=1 \text { cals } / \mathrm{hr} \\
& \frac{1}{\mu}=105 \mathrm{sec} / \text { call }=0.0292 \mathrm{hr} / \mathrm{call}
\end{aligned}
$$

From (a), $\mathrm{A}=31$.
$\lambda=1$ calls $/ \mathrm{hr}$
$\frac{1}{\mu}=105$ sec/call $=0.0292 \mathrm{hr} /$ call
$A_{u}=\lambda / \mu=0.0292$ erlang
$U=\left\lfloor A / A_{u}\right\rfloor=1061$ users
1061 users can be supported.

Note: the symbol $\lfloor x\rfloor$ denotes "the greatest integer value less or equal to $x$ ".
(c) For an LCD (lost call delayed) system:
$\operatorname{Pr}\{$ delay $>t\}=\operatorname{erlc}(A, C) \cdot e^{-\mu(C-A) t}$
$t=20 \mathrm{sec}$
$\frac{1}{\mu}=105$ sec/call
$C=4$
$A=1.09$ erlang
$\operatorname{Pr}\{$ delay $>20\}=\operatorname{erlc}(1.09,4) \cdot e^{-0.554}=0.0156=1.56 \%$
$C=20$
$A=13.18$ erlang
$\operatorname{Pr}\{$ delay $>20\}=\operatorname{erlc}(13.18,20) \cdot e^{-1.29}=0.0154=1.54 \%$
$C=40$
$A=31$ erlang
$\operatorname{Pr}\{$ delay $>20\}=\operatorname{erlc}(31,40) \cdot e^{-1.71}=0.01499=1.499 \%$
(d) Comparing (a) and (c), we can see that the LCD system, with a 20 second queue performs better than the LCC system. We can see that while the LCC system assures a $2 \%$ GOS, the LCD system gives a lower (and thus better) GOS of $1.5 \%$.

## Problem 3.17, p 101

From 3.16, we know that for $\mathrm{N}=7, \mathrm{R}=470 \mathrm{~m}$.
The area of a (hexagonal) cell is therefore:
$R_{\text {cell }}=0.47 \mathrm{~km}$
$U_{\text {per }-k m^{2}}=9000$
$\lambda=1 \mathrm{call} / \mathrm{hr}$
$\frac{1}{\mu}=1 \frac{\mathrm{~min} / \mathrm{call}}{}=\frac{1}{60} \mathrm{hr} / \mathrm{call}$
$C=90$
$A R E A_{\text {cell }}=\frac{3 \sqrt{3}}{2} R_{\text {cell }}{ }^{2}=0.574 \mathrm{~km}^{2}$
$U_{\text {cell }}=U_{\text {per-km }}{ }^{2} \cdot A R E A_{\text {cell }}=5166$ users
$A_{u}=\lambda / \mu=\frac{1}{60}$ erlang
$A=U A_{u}=86.1$ erlang
$G O S=\operatorname{Pr}\{$ delay $>20\}=\operatorname{erlc}(A, C) e^{-\mu(C-A) t}=\operatorname{erlc}(86.1,90) e^{-\frac{(90-86.1) 20}{60}}=0.1575=15.75 \%$

