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Course Structure

Final Project Presentation 1412/20/10

Social Influence and Info Diffusion in Networks -- II1312/13/10

Social Influence and Info Diffusion in Networks -- I1212/06/10

Dynamic Networks -- II1111/29/10

Dynamic Networks -- I1011/22/10

Network Topology Inference -- II911/15/10

Network Topology Inference  -- I811/08/10

Network Models -- II710/25/10

Network Models -- I610/18/10

Network Sampling and Estimation510/11/10

Network Visualization410/04/10

Network Partitioning and Clustering309/27/10

Network Representations and Characteristics209/20/10

Overview – Social, Information, and Cognitive Network Analysis109/13/10

Topics Covered
Class

Number

Class 

Date



2

© 2010 Columbia University3 E6885 Network Science – Lecture 6: Network Models -- I

What is a complex network?

� Most real-world networks have complex topological features:
– Heavy-tail in the degree distribution
– High clustering coefficient
– Community structure at many scales
– Self-similar hierarchical structure

� Simple networks:
– Typically represented by graphs such as a lattice or a random graph.
– Topology structure roughly the same in any part of network.
– Does not posses the above features

� Examples:
– Social Networks – studied in sociology, public health, commerce, 

communication.
– Computer Networks – WWW, security,…
– Biological Networks – neurons, genes, protein, animals,…
– Others: sensor network, river network, power lines, …
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Measurement of Complexity (I)

� The basic goal of data mining is prediction

� Complexity can be defined as the amount of information required for optimal 

prediction. (Grassberger, J of Theoretical Physics,1986)

� f is any predictor that translates the past of the time sequence x- (or, in other 

occasions, training set) into an effective state, s=f(x-), and then make its 

prediction on the basis of s.

min [ ( )]
f M

C H f X −

∈
=
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Measurement of Complexity (II)

� Grassberger-Crutchfield-Yong Statistical Complexity (J. of Statistical Physica, 
2001)

� An effective procedure for finding the minimal maximally predictive model and 
its states.

� Definition: causal states of a process:
– Two histories      and       are equivalent if
– Write the set of all histories equivalent as  
– A function which maps each history into its equivalent class:

– Crutchfield and Young proposed to forget particular history and retain only 
its equivalent class. They call the equivalent classes as the causal states 
of a process. These are the optimal states.

– The statistical complexity of a processes is thus the information content of 
its causal states. 

– It is equal to the shortest description of the past which is relevant to the 
actual dynamics of the system> E.g., IID: 0, periodic sequences: log p.

Pr[ | ( )] Pr[ | ]X x X xε+ − + −=

1 2Pr( | ) Pr( | )X x X x+ − + −=
1x
−

2x−

[ ]x−

( ) [ ]x xε − −=
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Group and Roles

Marketing

Finance

Manufacturing

Andy

Bob

Carl

Darren

Earl

Frank Indojit

Gerry Harry Jeff

Sam

Karen

Leo

Ming

Neo

Central people

– Sam.  Could be bottleneck or 

holding group together

Peripheral people

– Earl.  Goes to others but no-

one goes to him for 

information.  At risk for 

leaving. Potentially unrealized 

expertise

Sub-groups

– Group split by function.  Very 

little information shared 

across groups

This slide is excerpted from SNA Theory, Concepts and Practice 

by Dr. T. Mobbs, BCS and Dr. K. Ehrlick, Research
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Some Roles are especially critical

Bob

What happens if Sam leaves the 

group through layoffs, job 

reassignment, attrition, merger, 

retirement?

This slide is excerpted from SNA Theory, Concepts and Practice 

by Dr. T. Mobbs, BCS and Dr. K. Ehrlick, Research

Marketing

Finance

Manufacturing

Andy

Carl

Darren

Earl

Frank Indojit

Gerry Harry Jeff

Karen

Leo

Ming

Neo
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Relationships are multi-dimensional and (traditionally) uncovered 
through network questions

Communication

How often do you 

communicate with this 

person? 

Innovation

How often do you turn 

to this person for new 

ideas

Advice

How often do you seek advice 

from this person before making 

an important decision?

Awareness

I am aware of this 

person’s knowledge and 

skills

Learning

How likely are you to 

rely on this person for 

advice on new methods 

and processes

Valued Expertise

How likely are you to 

turn to this person for 

specialized expertise

Trust

I believe there is a high 

personal cost in seeking 

advice or support from 

this person

Access

I believe this person will 
respond to my request in a 
reasonable and timely 
manner

Energy

I generally feel 
energized when I 
interact with this person

Actions Awareness Emotional

Provided by Drs. Tony Mobbs and Kate Ehrlich, IBM
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Complex Network in Brain

� Diffusion Tensor Imaging (DTI) provides an 
important complement to functional magnetic 
resonance imaging (fMRI).

� fMRI reveals gray matter areas that are 
metabolically active during performance of a 
particular behavior or cognitive task. 

� It can be considered “modern-day phrenology,”
assigning functional roles to parcels of brain tissue 
with a limited view of the brain’s powerful capacity 
to function as an interactive network, integrating 
information across several anatomical sites to 
produce behavior. 

� The combination of fMRI and DTI will provide 
important insights into these types of 
neurobehavioral networks by simultaneously 
revealing active gray matter areas and the white 
matter pathways that connect them.
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Complex Network in Brain

� DTI has been successfully 

used to describe white matter 

development in pediatric 

samples. 

� Changes in white matter 

diffusion properties are 

consistent across studies, 

with anisotropy increasing 

and overall diffusion 

decreasing with age. 

� Diffusion measures in 

relevant white matter regions 

correlate with behavioral 

measures in healthy children 

and in clinical pediatric 

samples. 
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Complex Network in Brain
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Social Network of Switchboard-2 Subset
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Social Network of Switchboard-2 Dataset
� 679 nodes � edges = 4472
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Some examples of Degree Distribution

� (a) scientist collaboration: biologists (circle) physicists (square), (b) 

collaboration of move actors, (d) network of directors of Fortune 1000 

companies
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Switchboard-2 Network Degree Distribution

� 679 nodes (actors)

� Out degrees � Normal. In degrees � Abnormal.

SWB-2

1

10

100

1000

1 10 100

degrees

c
o
u
n
ts

Outdegrees

Indegrees

NodeDegrees
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Two Types of Random Graphs

� Directed/Undirected Graphs

� Intrinsic Bipartite or multi-partite graphs � Unipartite Graphs (One-Mode 

Graphs)

– Existence of Groups/Communities
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Bipartite Graphs � One-Mode Network

� There exists intrinsic structures:

– Example: M boards, N directors
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One of our goals in social network analysis

� Find the intrinsic structures:
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Simulated Intrinsic Bipartite 679 Nodes Social Network
� Nodes 679, cluster coefficient = 0.233
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Simulated Social Network based on Bipartite Graphs

SWB-2
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o
u
n
ts

tau0.6
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tau2.4

tau0.3
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Our Insight on the Complex Network Topology

� There exists many intrinsic multipartite properties in the real world.

� Complex network is usually the *outermost* layer of observation.

� To effective synthesize complex networks, it is important to assume the 

underlying multipartite structure as well as its parameters.

� It may not easy to reconstruct the intrinsic multipartite structure only based on 

the network topology. Need more information may be needed: e.g., node/user 

behavior on the effects of different types of data.
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Outline

� Complex Network: Characteristics and Examples

� Dynamic Probabilistic Complex Network

� Information Flow in Dynamic Probabilistic Complex Network

� Summary and Conclusion
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The Most Difficult Challenge: State-of-the-Arts?

� Social Networks in sociological and statistic fields: focus on (1) overall network 
characteristics, (2) dynamic random graphs, (3) binary edges, etc. � Not consider 
probabilistic nodes/edges or individual nodes/edges.

� Epidemic Networks & Computer Virus Network: focus on (1) overall network 
characteristics – when will an outbreak occurs, (2) regular / random graphs. � Not 
focus on individual nodes/edges.

� (Computer) Communication Networks: focus on (1) packet transmission – information 
is not duplicated, or (2) broadcasting – not considering individual nodes/edges or 
complex network topology.

� WWW: focus on (1) topology description, (2) binary edges and ranked nodes (e.g., 
Google PageRank) � Not consider probabilistic edges

���� Our Objectives: Find important people, community structures, or

information flow in a network, which is dynamic, probabilistic and 

complex, in order allocate resources in a large-scale mining system.
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What is a Dynamic Probabilistic Complex Network?

� Example: http://smallblue.research.ibm.com

http://smallblue.research.ibm.com/publications/netsci2007.pdf
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Modeling a Dynamic Probabilistic Complex Network

� [Assumption] A DPCN can be represented by a Dynamic Transition Matrix P(t), a Dynamic Vertex 

Status Random Vector Q(t), and two dependency functions fM and gM.

, 1

, 2

,

Pr( ( ) )

Pr( ( ) )
( ) ,

Pr( ( ) )
E

i j

i j

i j

y t SE

y t SE
t

y t SEΩ

= 
 = 
 
 =  

i,jp ≜
⋮

where

( )ix t : the status value of vertex i at time t. and

1

2

Pr( ( ) )

Pr( ( ) )
( ) ,

Pr( ( ) )
V

i

i

i
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t
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= 
 = 
 
 =  
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⋮
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V
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ω∈Ω

= =∑

, ( )i jy t : the status value of edge i →j at time t. 

,Pr( ( ) ) 1,

E

i jy t SEω
ω∈Ω

= =∑
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( ) ( ) ( )

( ) ( ) ( )

( ) ,

( ) ( ) ( )

t t t
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t
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 
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Modeling a Dynamic Probabilistic Complex Network – cont’d

� Also the Network Topology should follow the characteristics of complex network:

Network topology follows power-law:

,
,

1, ,Pr( ( ) ) 0
u( )

0,

i j
i j

if t y t null
p

else

∃ ≠ >
= 


,Pr( u( ) ) d
i j

i
p l S l−= ⋅∑ ∼

and the clustering coefficient C is typically > 0.2. 

where

d is typically in the range of 2 ~ 2.5. 

, , ,Pr(u( ) 1 | u( ) 1,u( ) 1)j k i j i kC p p p= = = =
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Modeling a Binary DPCN of binary nodes and edges

� A Binary DPCN can be represented by a Dynamic Transition Matrix P(t), a Dynamic Vertex 

Status Random Vector Q(t), and two dependency functions fM and gM.

, ( ) Pr( ( ) 1),i j i jp t edge t−> =≜where

( )ix t : the status value of 

vertex i at time t. 

and

1,1 2,1 ,1
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N N N N
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 
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 
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P
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 
 
 
  

Q ≜ ⋮

⋮
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+

Q
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Markov Model is a special case of Binary DPCN

� Markov Model

where

( )ix t : the status value of vertex i at time t. 
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Many Prior Researches are based on Markov Models

� Random Walks:

(2) ( )lim ( ) 1 (1 (0)).*(1 (0)).* .*(1 (0))V E V E V E V
t

Q t P Q P Q P Q∞

→∞
= − − − −⋯
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Markov Model is not appropriate to model information flow

� Random Walks assume the existence of a token � unique existence.

� However, information can be duplicated at nodes.

� New models are needed.
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Outline

� Complex Network: Characteristics and Examples

� Dynamic Probabilistic Complex Network

� Information Flow in Dynamic Probabilistic Complex Network

� Summary and Conclusion
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Information Flow in Dynamic Probabilistic Complex Network (Let’s call it:
Behavioral Information Flow (BIF) Model)

� [Assumption] Edge can be represented by a four-state S-D-A-R (Susceptible-Dormant-Active-

Removed) Markov Model. Nodes can be represented by three states S-A-I (Susceptible-Active-

Informed) Model. 
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Major Difference between BIF and Prior Modeling Methods in Epidemic 
Research and Computer Virus Fields

� Model Human Nodes as S-I-R (Susceptible, Infected, and Removed).

� Did not consider individual node’s behavior distinctly in network 

structure/topology � did not consider edge status.

� We propose to model edge status as (autonomous) S-D-A-R Markov Model 

(Susceptible, Dormant, Active, Removed)

� We propose to model human node behavior as S-A-I (Susceptible, Active, 

and Informed). 
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Edges are Markov State Machines, Nodes are not

� State transitions of edges: S-D-A-R model. (Susceptible, Dormant, Active, 

and Removed) This indicates the time-aspect changes of the state of edges.

S A RD

1 α−

trigger

α β γ

1 β− 1 γ−
1

� States of nodes: S-A-I model. (Susceptible, Active, and Informed) Trigger 

occurs when the start node of the edge changes from state S to state I : 

Node view Network view

Edge view

S I
trigger

A
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Edge State Probability and Network Configuration Model

� Nodes and Edges

( ) ( , ( ), ( )),t t f t tδ+ =P M Q P

1,1 1,1 1,1 2,1 2,1 2,1 ,1 ,1 ,1

1,2 1,2 1,2 2,2 2,2 2,2 ,2 ,2 ,2

1, 1, 1, 2, 2, 2, , , ,

( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , )

,

( , , ) ( , , ) ( , , )

N N N

N N N

N N N N N N N N N N N N

α β γ α β γ α β γ
α β γ α β γ α β γ

α β γ α β γ α β γ

 
 
 
 
 
 
  

M

⋯ ⋯

⋮ ⋮ ⋱ ⋮≜

⋮ ⋮ ⋱ ⋮

⋯ ⋯

� αi,j = 0 � No Edge between i and j

� Our KDD 2005 paper is a special case that αi,j =1 or 0, and did not model (βi,j ,γi,j )

� Network Configuration Model (which is learned by training). It includes the network 

topology information, long-term edge probability, and delay parameter).
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Define Edge State Probability Update Function

� Given three different cases:

1. On trigger:

2. No trigger – node not informed yet:

3. No trigger – node has been informed:

( ) ( , ( ), ( ))t t f t tδ+ =P M Q P

, ,

, , , ,

, , , ,

, , , ,
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( ) , ( )i ix t t I x t Iδ− = =

( ) ( ),t t tδ+ = ⋅i,j i,jp F p

S A RD

trigger α β γ

1 β−

� Therefore, consider the probabilities of node states, then we get f(.):

( ) ( ) (1 ) ( )i it t t tδ ν ν+ = ⋅ ⋅ + − ⋅i,j i,j i,jp F p p

Edge State Probability Update function f(.) s.t.:

1 γ−
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Nodes: State Transitions Determined by Incoming Edges

� Node State Probability Update Function g(.): S I
trigger

A

( ) ( ( ), ( ), ( )),t t g t t t tδ δ+ = +Q P Q P

Network view
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n i n i
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n

n N y t t R y t Aδ

γ µ
∈Ω

∃ ∈ + = =

= − −∏
…

and ΩV,i is the set of all source nodes of the 

incoming edges of Node i:  , ,{ | {1 }, 0}V i n in n N αΩ = ∀ ∈ >…
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Two special considerations for information propagation behavior

� No Reverse Propagation:

– Add an update criteria to f(.):

– This constraint does not affect Q(t).

– It makes the probabilities change to:

and                        

� No Simultaneously Communication from one person (e.g., phone calls):

– Add a constraint criteria to f(.):

– And, also:

– The probabilities should be:

, , ,( ( ) , ( ) )) ( )i j i j j iif y t t R y t A y t t Rδ δ+ = = ⇒ + =

, , ,( ( ) )) , ( )i j U i i mif y t A m j y t A= ⇒ ∀ ∈ Ω ≠ ≠

where ΩU,i is the set of all end nodes of the outgoing edges of Node i:  

, ,{ | {1 }, 0}U i i mm m N αΩ = ∀ ∈ >…

, , 0j i j iψ µ′ ′= =ɶ ɶ

, , , ,j i j i j i j iρ ρ ψ µ′ ′ ′ ′= + +ɶ

, ,( ) ( )i m i mt t tδ+ =p p

, , ,( ( ) )) , ( )k i V i n iif y t A n k y t A= ⇒ ∀ ∈ Ω ≠ ≠

, ,( ) ( )n i n it t tδ+ =p pand  



20

© 2010 Columbia University39 E6885 Network Science – Lecture 6: Network Models -- I

An Application of Information Flow Prediction – find important people

� Who are the most likely people to talk about this information at a specific time 

given the current observation?

� For a given concrete observation, the values in the given priors

are either 0 or 1.

� For speaker recognition results, the priors can be confidence values between 

0 ~ 1. 

,
, {1 }

( , ) arg max( ( ))m n
m n N

m n tµ τ
∈

= +
…

given  ( ( ), ( ))t tP Qor ( )tQ

( ), ( )t tP Q
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Predicting behavioral information flow – Algorithm I

� Monte Carlo Method: Simulate each DPCN information flow for 1000 times. 

� It takes 12 seconds to use MC simulation to predict the process. (For a given 

model and test 679 nodes, it takes a PC 130 mins for calculate the probabilities if 

the information flow starts from different 679 seeds).

The Probabilities of the Nodes Receives Information
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Outline

� Complex Network

� Dynamic Probabilistic Complex Network

� Information Flow in Dynamic Probabilistic Complex Network

– Who should we monitor? Where to put the sniffers?

– Training, Effect of Noises, and Dynamic Model Updates in Dynamic Probabilistic 

Complex Network

� Demo

� Next Steps

– Communities in Dynamic Probabilistic Complex Network
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Training the Network Configuration

� Train the Network Configuration Model M using the observation data in Time 

0 – T:

,i j

L

K
α =

,

1

[ ]
i j

E w
β =

,

1

[ ]
i j

E d
γ =

where K is the number of times that node xi becomes active during time 

period 0-T. L is the count of the number of times that edge yi,j becomes active.

In the Markov Model of SDAR, the duration of the information staying in the D 

state is a Poisson distribution with mean value = 1/βi,j.  We can then estimate 

the parameter βi,j based on the mean waiting time E[w] of training data. 

Similarly, we can get γi,j based on the mean active duration E[d] of training data. 
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Impact of Classification Error on BIF Model

� Consider two types of errors:

–Speaker Recognition Error

• E.g. DIG scenario � nodes may have miss and false 

alarm. This types of error would cause edge error.

–Topic Detection Error

• E.g. classification of email content � nodes are correct. 

Edges may have miss and false alarm.

–Combination of both errors

• E.g., if we are doing both topic detection and speaker 

recognition in DIG, then the above two types of error will 

be combined.
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An Application of Information Flow Prediction – enhance speaker 
recognition accuracy

� The probability that a given pair talks about this information at a specific time 

given the current observation?

� These probabilities can serve as prior confidence for speaker recognition.

, ,Pr( ( ) ) ( )i j i jy t A tτ µ τ+ = = + given  ( ( ), ( ))t tP Qor ( )tQ



23

© 2010 Columbia University45 E6885 Network Science – Lecture 6: Network Models -- I

Noise Factor I – Impact of Classification Error from Speaker Recognition

� Assume the classification precision rate on the speaker (node) i is φi, and the 
false alarm rate on the speaker i is φi.

� Then the expected number of times that the node is counted is:

� And the link is counted is:

� Therefore,

� If we assume a universal precision and false alarm rate at all speakers, 
then: 

Assume the average waiting time of links and the average transmission 
duration of links are the same regardless of the links observed, then:

� If we assume the false alarm rate is small and can be neglected when the 
number of nodes is large, then

2i iK K Zφ ϕ= + ⋅ɶ

i j i jL L Zφ φ ϕ ϕ= +ɶ

,
2

i j i j
i j

i i

L ZL

K ZK

φ φ ϕ ϕ
α

φ ϕ

+
= =

+ ⋅

ɶ
ɶ

ɶ

2 2

,
2

i j
i i

L L Z

K ZK

φ ϕ
α

φ ϕ
+

= =
+ ⋅

ɶ
ɶ

ɶ

, ,i j i jβ β=ɶ
, ,i j i jγ γ=ɶ

and

, ,i j i jα φ α≈ ⋅ɶ

K

Z

φi K φi 2Z

truth detected
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Speaker Recognition Accuracy can be Improved by Fusion of Original 
Speaker Recognition and Predicted Node Probability

� We can use this fusion method to combine both speaker recognition result 

and the estimated node probability:

,

i i
i

i i i k k

k

φ ν
φ

φ ν φ ν

⋅
′ =

⋅ + ⋅∑
which is guaranteed to be increasing when  i kν ν> ∀

Before Fusion

After Fusion with 

BIF Prediction

Speaker i

Recognizer

iφ , 1i kφ , 2i kφ , 3i kφ

Speaker i

Recognizer

BIF 

Prediction

iφ ′
iν

iφ
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Dynamic Updates on Speaker Recognition Result and the BIF Model

� Assume a special case that a speaker is usually mistakenly classified as the 
other speaker. E.g., given a true Speaker i speaking, her voice is sometimes 
classified as Speaker k. (but not the reverse direction)

� Let (n) represents the n-th dynamic update of the model. Each time the model 
is updated based on Slide ‘Impact of Classification Error on Model’

� Based on the previous slide, we shall get:

� Based on the previous two slides, we can get:

� This value can be calculated as:

which quickly converges to zero. �

( )
( )

( ) ( ) ( )(1 ) (1 )

i n
n

i n k n n

φ ν φ
φ

φ ν φ ν φ φ κ

⋅
=

⋅ + − ⋅ + − ⋅
≜ where  

( 1)
( ) ( 1)

( 1)

1 n
n n

n

φ
κ κ

φ
−

−
−

−
= ⋅

2
( ) (0)

1
n

n
n

φ
κ κ

φ
 −

= ⋅ 
 

( )

( )
( )

k n

i n
n

ν
νκ ≜

( )lim 1n nφ→∞ =
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Dynamic Updates on Speaker Recognition Result and the Model – cont’d

� Assume another special case that a speaker is usually mistakenly

classified as the other speaker. E.g., given a true Speaker i speaking, her 

voice is sometimes classified as Speaker k. And, also, Speaker k’s voice 

can be confused as Speaker i.

� Following similar steps as in the previous slide, we shall get:

� If we assume the confusion error is not uniformly the same, i.e., 

asymmetric error between speakers, then:

( )
( )

( ) ( )(1 ) (1 )

i n
n

i n k n

φ ν φ
φ

φ ν φ ν φ φ κ

⋅
=

⋅ + − ⋅ + − ⋅
≜ where  ( )nκ κ=

( )
,( )

( ) ( ) ( )(1 ) (1 )

i i n i
i n

i i n i k n i i n

φ ν φ
φ

φ ν φ ν φ φ κ

⋅
=

⋅ + − ⋅ + − ⋅
≜

where  
( )

( )
( )

k n
n

i n

ν
κ

ν
≜ which depends on the network topology and 

does not have a closed-form solution.  
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Noise Factor II – Impact of Classification Error from Topic Classification

� Assume the classification precision rate on the edge i→j is θi,j, and the false 

alarm rate on the edge is ωi,j.

� Then the expected number of times that the edge is counted is:

� And the link is counted is:

� Therefore,

� If the false alarm rate can be neglected:

, ,
ˆ

i i j i jK K Zθ ω= +

, ,
ˆ

i j i jL L Zθ ω= +

, ,
,

, ,

ˆ
ˆ

ˆ

i j i j
i j

i j i j

L ZL

K ZK

θ ω
α

θ ω

+
= =

+

,
, ,

,

ˆ
i j

i j i j
i j

L

K

θ
α α

θ
= =

K

Z

θi,j K
ωi,j Z

truth detected
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Noise Factor II – Impact of Classification Error from Topic Classification –
cont’d

� If the false alarm rate can be neglected � The probability that a classification 

error occurs at an conversation record is equal to the probability that the 

nodes are detected. 

� Therefore, since the propagation coefficient α’s are the same, there will be no 

effects on the information flow prediction. 

� If we consider both the topic classification error and the speaker recognition 

error together, the information flow prediction will be the same as the case 

when there is only speaker recognition error.



26

© 2010 Columbia University51 E6885 Network Science – Lecture 6: Network Models -- I

Multiple Topics

� Each topic is one information flow model. Multiple Topics can be considered as a 

combination of these models.
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Example: Social Network of Enron Managers

� If we try to build social networks based on communications regardless expertise or 

topics, it is difficult.
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We can first find the experts and then see how this community works (II)

� Rosalee Fleming played an important role at “Market Opportunities.” She received info from Actor 119 (Mike 

Carson) and Actor 23 (James Steffes – VP of Gov. Affairs of Enron.)

� Actor 68 (Rod Hayslett -- CFO) is also a major information spreader.
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We can estimate the parameters in the DPCN model

� Example: a histogram of the alpha values by applying the DPCN model on Enron Dataset.
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Questions?


