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Outline -- Introduction

�Multimedia Security :

� Multimedia Standards – Ubiquitous MM

� Encryption – Confidential MM

� Watermarking – Uninfringible MM

� Authentication – Trustworthy MM

�Security Applications of Multimedia:

� Audio-Visual Person Identification – Access Control, Identifying Suspects

� Surveillance Applications – Abnormality Detection

� Media Sensor Networks – Event Understanding, Information Aggregation
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Multimedia Forensics

�Video Tape Enhancement

�Audio Tape Enhancement

�Facial Recognition

�Handwriting Comparison

�Speaker Recognition / Identification

� Image / Art Authentication
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DNA Technologies for Forensic Investigations

� Restriction Fragment Length Polymorphism (RFLP)

� Analyzing the variable lengths of DNA fragments that result from digesting a DNA 
sample with a special kind of enzyme.

� Polymerase Chain Reaction (PCR)

� Used to make millions of exact copies of DNA.

� Allows DNA analysis on biological samples as small as a few skin cells.

� Short Tandem Repeat (STR)

� Evaluate specific regions within nuclear DNA.

� CODIS: An FBI standard set of 13 specific STR regions

� The probability that two individuals will have the same profile: 1 in 1 billion.

�Mitochondrial DNA Analysis (mtDNA)

� Extract DNA from another cellular organelle – mitochondrion.

� Can extract from hair, bones, and teeth.

� Y-Chromosome Analysis
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Art Authentication

� Perugino (1446-1523):

�Great Renaissance painters may 

only painted a portion of the work 

and apprentices did the rest.

�Experiment: “Madonna with Child” –

at the Hood Museum of Art, 

Dartmouth College � color 

16852x18204 pixel image.

�Face Region of each of the six 

characters was manually localized.

�Each face was partitioned into 

nonoverlapping 256 x 256 regions. 

� 189, 171, 189, 43, 81, and 144 

regions).

This work was done by S. Lyu, D. Rockmore and H. Farid, Dartmouth College 

“A digital technique for art authentication,” PNAS, Dec. 2004. 
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Wavelet Transform

�Multi-scale transformation

� In each scale, images are 

decomposed into 4 bands – LL, 

LH, HL, and HH.

� Example: 5-level wavelet 

decomposition.
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Feature Extraction of an 256x256 block

� Use 72-dimensional Feature Vector for each 

256x256 block.

Compute the mean, variance, 

skewness and kurtosis of the 

coefficients of each subband

Predict the Green coefficient 

from Red coefficients, and 

compute the prediction error

Compute the mean, variance, 

skewness and kurtosis of the 

prediction errors
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Authentication of Perugino’s Painting

� Calculate the distance faces in the feature space:

� For each face subimage -> partition to 256x256 blocks � 189, 

171, 189, 43, 81, and 144 regions).

� For each region, calculate 72 dimensional feature vector.

� Calculate the Hausdorff distance of two subimages.

� Use Multidimensional Scaling (MDS) algorithm to visualize 

clusters.

MDS representation of Hausdorff Distance of 

these 6 face subimages
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Hausdorff Distance

� Calculate the distance of two sets.

� Hausdorff Distance: H (A, B) = max { h (A, B), h (B, A) }
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Authentication – Distinguish the author and imitator

� 13 art works from MOMA
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Authentication – Distinguish the author and imitator

� Clustering Result

Passive-blind Image Forensics: 
A Review

Tian-Tsong Ng, Shih-Fu Chang

Department of Electrical Engineering

Columbia University, New York, USA

Mao-Pei Tsui

Department of Mathematics

University of Toledo, Ohio, USA
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Background
Passive-blind Image Forensics

� Digital images is pliable to manipulation.

� [WSJ 89] 10% of color images published in US were altered.

� Image forensic: to find out the condition of an image without 
any prior information.

� Two main functions of image forensics:

� Image Forgery Detection 

� Image Source Identification

LA Times ‘03 Internet ‘04
Nat. Geo. 

‘92 Times ‘96

Image Forgery Hall of Fame

Problem I
Image Forgery Detection

� Image forgery: Photomontage, images with removed 
objects, retouched images, etc.

� Adobe Photoshop – 5 million registered users (2004)

� Photoshop altered images are common – 178,582 
images on www.worth1000.com (2005)

www.worth1000.com (scandal category)
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Problem II
Image Source Identification
� Identify image production devices: camera, 

computer graphics, printer and scanner, etc.

� Identify nature of the image scene: 2D photo or 3D 
scene
� A face recognition system should not be fooled when 

being shown a 2D face photo of someone.

CG Or Photo?
From which camera?

From which printer?

Image Authenticity
� The idea of image authenticity is at the core of image forensics.

� The role of image authenticity

� Define an authentic image for image forgery detection.

� Define images of a specific source for image source identification.

� In image forensics, image authenticity can be defined through:

� Imaging device characteristics.

� Natural-scene characteristics.

Computer Graphics

Photomontage

scene-authenticcamera-authentic
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Camera Authenticity

� A result of the camera operation pipeline.

� Local effect: optical low-pass, color filter array 
interpolation, CCD sensor noise, white-balancing and non-
linear gamma correction.

� Global effect: lens distortion 

Natural-scene Authenticity
� A physical constraint from the light transport in a real 

world scene.
� Global effect: the orientation of a shadow is related to the 

lighting direction.

� Local effect: the complex reflectance properties of real-
world objects.

Global Illumination Equation

Scene

Radiance

Emitted

Radiance Incident

Radiance

Bidirectional Reflectance 

Distribution Function (BRDF)
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Prior Work in Image Forgery Detection –
by Camera Authentic Characteristics

� Optical Low-pass property [Ng et al. 04] 

� Image splicing (simple cut-&-paste) introduces abrupt 

discontinuities – violates the optical low-pass property.

� Use bicoherence (a third order moment spectrum). 

� Propose a model for image splicing and show why bicoherence is 
sensitive to image splicing.

� Demosaicing [Popescu et al. 05]

� Demosaicing introduces an interpolation pattern, image compositing 

may disrupt the pattern.

� Propose an EM algorithm to estimate the interpolation pattern.

� Experiment shows the capability of distinguishing image regions 
with demosaicing and without demosaicing.

Color Filter:

Bayer Pattern

Prior Work in Image Forgery Detection –
by Camera Authentic Characteristics

� Camera Response Function (CRF)

� The CRF estimated from an authentic image should be 
similar over all spatial location.

� The challenge is to estimate CRF from a single image.

� [Popescu et al. 04] estimate CRF using bicoherence. 

� [Lin et al. 05] estimate CRF by the linear pixel blending 
property, assumed to be uniform over the RGB channel. 

Typical CRF

Image

Irradiance

Image

Intensity
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Prior Work in Image Forgery 
Detection – by Natural-scene 
Authentic Characteristics

� 2D Lighting Consistency [Johnson et al. 05]

� It is difficult to estimate 3D point light source direction with
unknown object geometry (i.e., surface normal). 

� The surface normal on the occlusion contours can be easily 
estimated from image appearance (i.e., z-component = 0,      
x-y component = occlusion contour normal). 

� Assuming Lambertian surface, constant reflectance (albedo), 
single distant point light source, scene radiance can be 
estimated by a least square method.

Scene

Radiance

Surface 

Normal

Lighting 

Direction

Ambient

Lighting

Reflectance

Prior Work in Image Forgery 
Detection – by Natural-scene 
Authentic Characteristics

� Implicit Lighting Consistency Checking 

� [Dhruv et al. (in review)] Checking lighting consistency 
without explicitly estimating lighting.

� Propose a theory of spherical harmonics invariants.

� Work for complex lighting but assume known object 
geometry.
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Prior Work in Image Forgery Detection –
by Image Forgery Artifacts

� Resampling [Popescu et al. 05] 

� Image fragments may be rescaled, before being pasted onto 
another image. Rescaling may result in resampling of some 
image pixels.

� Resampling (interpolation) pattern can be estimated by an 
EM algorithm (as in the case of demosaicing).

� Imaging noise, Double JPEG compression, Duplicate 
image regions [Popescu et al. 04] 

� Brightness, contrast adjustment [Avcibas et al. 04]

Prior Work in Image Source Identification
� CG vs. Photo

� Will be described later…

� Identify Models of Camera [Mehdi et al. 04]
� Exploit the differences in color processing (e.g., white balancing, etc.).
� Achieve 88% of classification accuracy for 4 models of camera.

� Identify Printer Models from Scanned Documents [Mikkilineni et al. 04]
� Exploit the banding artifact of laser printers as intrinsic printer signature.
� Banding artifact non-uniform light and dark lines in the print-process 

direction.
� Capture the banding artifact using co-occurrence matrix on characters.
� Experiments show that 9 out of 10 printer models can be separated.

Non-uniform 

movement 

introduces 

banding artifact
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Passive-blind Image Forensics Work 
in Columbia University

� (1) Image forgery detection 

� Address image splicing detection using bicoherence.

� Theoretical explanations for why bicoherence is sensitive to 
image splicing.

� (2) Image source identification

� Address Photo/CG classification by analyzing the physical 
image generative process.

(1) Image Splicing Detection
Motivation & Problem

� Photomontage is an important and common type of image 
forgery.

� Two major steps in photomontage creation:

� Cut-and-paste (i.e., image splicing)

� Post-processing (e.g., blending, matting, smoothing, etc.)

� From image operation perspective, the effects of the above 
operations are the tell-tale signs of photomontage.

� In this work, we focus on the most basic operation – image 
splicing.

� Spliced images can be visually convincing if carefully done.

spliced
spliced
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(1) Image Splicing Detection
Related Work

� Detecting other image operations related to 
photomontage:

� Double JPEG compression, region duplicating, resampling
[Popescu et al. 04/05] 

� Brightness, contrast adjustment [Avcibas et al. 04]

� Detecting inconsistent image authenticity properties 
among image regions:

� Demosaicing [Popescu et al. 05]

� Camera Transfer Function [Popescu et al. 04] [Lin et al. 05] 

� Lighting [Johnson et al. 05] [Dhruv et al.]

(1) Image Splicing Detection
Our Approach
� Detect image splicing using bicoherence, a third-order 

moment spectrum:

� Properties of bicoherence:
� It is complex-valued.

� Unlike power spectrum, it captures the phase information of 
a Fourier spectrum.

� When there exists (ω1,θ1), (ω2, θ2) and (ω1+ω2, θ1+ θ2) 
� The phase of b(ω1,ω2) is 0 

� |b(ω1,ω2)| is large, due to the expectation of a constant-phase 
random variable.

Quadratic 

Phase 

Coupling

bicoherence
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(1) Image Splicing Detection
Why Bicoherence? – Previous Theory

� [Farid 99] Image splicing can be considered as a 
point-wise non-linear function, f(r).

� By Taylor expansion of f(r), we obtain a linear-
quadratic term.

� Linear-quadratic operation on a signal introduces 
quadratic phase coupling. Quadratic 

Phase 

Coupling

Linear-

quadratic 

operation

(1) Image Splicing Detection
Why Bicoherence? – Our Proposed Theory

� Image splicing can be modeled as the adding of a 
bipolar signal.

� Theoretical results:
� Bicoherence of a bipolar signal has a constant ±90° phase.

� Addition of a bipolar signal induces an increase in ±90° phase 
in bicoherence (different from the QPC case!).

� Addition of a bipolar signal increases |b(ω1,ω2)| 

� The theoretical results are validated experimentally.

difference
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(1) Image Splicing Detection
Improving Bicoherence Method

� Using the basic bicoherence magnitude and phase features, the 
classification rate is only 62%.

� [Krieger et al. 97] Natural images originally have a certain 
amount of bicoherence energy – making detection difficult.

� We introduce the idea of “authentic reference image” – improve 
the classification to 72%.

Splicing
Spliced 
Image

Authentic
Reference

(1) Image Splicing Detection
Functional Texture Decomposition

� [Vese et al. 02] Functional texture decomposition separates an 
image f into:

� u, gross structure component (homogenous regions with sharp 
boundaries).

� v, fine texture component (small-scale repeated details) .

original Structure Fine-texture

A bipolar signal 

can be 

considered a 

local oscillating 

function.
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(2) CG vs. Photo
Motivation & Prior Work

� CG nowadays can produce convincing fake photos.

� [Ianeva et al. 03] Classify photo and general CG (including 
drawing and cartoon).

� For the purpose of improving video key-frame retrieval.

� [Lyu et al. 05] Classify photo and photorealistic CG.

� Using wavelet statistics.

� 67% photo detection rate (1% false alarm). 

� provides little insight into the physical differences between 
photo and CG.

CG Or Photo?

(2) CG vs. Photo
Our Approach & Outcome

� We analyze the differences in the image generative 
process for Photo and CG

� Capture the differences with features derived from fractal 
geometry, differential geometry and local patch statistics.

� The geometry features provide a classification model

� Outperforms the methods in prior work.

� An open dataset

� Avoids repeated data collection effort.

� As a benchmark dataset.

� An online evaluation system.

� Allows users to test the system.
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(2) CG vs. Photo
Photo Generative Process

� Photographic Images

Light source

(2) Complex object geometry

- Human skin texture follows 

biological system.

- Building surface formed by air 

erosion.

(3) Non-linear camera

Transfer function

- Not an arbitrary transform.(1) Complex surface model

- Subsurface scattering of 

human skin.

- Color dependency.

(2) CG vs. Photo
CG Generative Process

� Computer Graphics

Post-processing

(2) Polygonal object geometry

- Reduced mesh resolution for 

computational efficiency.

- Without care, it introduces sharp 

structures in rendered images.

(1) Simplified surface model

- Assume color independence.

(3) Non-standard Post-processing

- Subject to the artist’s taste.

- May different from camera transform.
Light source

3 Differences for Photo and CG

(1) Surface Model Difference.

(2) Object Model Difference.

(3) Acquisition Difference.
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(2) CG vs. Photo
Geometry Features

Acquisition Difference Object Model Difference Surface Model Difference

Differential

Geometry

Image

Gradient
Quadratic

Form

Surface

Laplacian

Distribution of the Local

Fractal Dimension
Fractal

Geometry

Local 

Patch

Statistics

Distribution of the 3x3-pixels Local patches

Differential Geometry I
Image Gradient

dR

dx

dr

dx

Low Irradiance High Irradiance

r 

image irradiance

R

image Intensity

R=f(r) 

Camera Transfer

Function
Slope of the

curve

Camera Model Chain Rule

r

� Non-linear camera transform has effects on image Gradient!

CompressExpand

dR df dr

dx dr dx
=

dr

dx

df

dr
df

dr

dr

dx
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Differential Geometry II
Quadratic Form

� Polygonal Model leads to sharp structures

� At the junctures, the polygon is always sharper than the 
smooth curve.

A smooth is approximated by a polygon
Unusually sharp transition

Differential Geometry II
Quadratic Form

� A graph submanifold can be locally approximated by 
a quadratic form.

� Quadratic form can be characterized by 2 eigenvalues

� The large eigenvalue implies sharp structures

Cross-section of the 

quadratic form at z=1.

(1,1) (2,1) (3,1)

3D plot of elliptic

Quadratic form.

eigenvalues
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Differential Geometry III
Surface Laplacian

� Rendering of CG often assumes color independence in 
the object surface model (generally, not true for real-
world object):

� We capture the difference in the RGB correlation for Photo 
and CG using the surface Laplacian.

x

(R,G,B)

y

5D Euclidean

Space

(∆gI) = (∆gIR, ∆gIG, ∆gIB)� Laplacian operator (∆g)
on a graph surface 

� A vector pointing to the 
decreasing surface area 
direction.

� For a submanifold in the 
5D space, it measures the 
correlation between R, G 
and B.

Dataset
Columbia Open Dataset

� A publicly available Photo/CG dataset.

� Consists of 4 subsets, 800 images for each subset.

Downloaded from 

Google Image Search

From a few 

personal 

collections 

of photo

Downloaded from the 

3D artist websites

Recaptured from 

a LCD screen by 

a Canon G3 

camera
Available at http://www.ee.columbia.edu/trustfoto

Personal 

Photo

Google 

Photo

Internet 

CG

Recaptured 

CG
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Experimental Results I
SVM Classification

� SVM classification with radial basis function (RBF) kernel.

� Cartoon feature is the conventional feature for modeling the 
general computer graphics (includes cartoon or drawing)

Accuracy

Features

71.0%80.3%83.5%

CartoonWaveletsGeometry

Receiver 

operating 

characteristic 

(ROC) curve

Photo

Vs

Internet CG

Online Demo I
User Interface

URL: http://www.ee.columbia.edu/trustfoto/demo-photovscg.htm

The Online CG-Photo Classification System 

Select 

classifiers
Enter image 

URL

(any images 

from the web)

Enter 

image 

Information 

for survey
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Thank you!

Online demo: http://www.ee.columbia.edu/trustfoto/demo-photovscg.htm

3/1/06: Lecture 7 – Multimedia Forensics © 2006 Ching-Yung Lin, Dept. of Electrical Engineering, 

Columbia Univ. 
46

E 6886 Topics in Signal Processing: Multimedia Security Systems

References

� S. Lyu, D. Rockmore and H. Farid, “A digital technique for art authentication,”
PNAS, Dec. 2004. 

� S. Lyu and H. Farid, “How Realistic is Photorealistic?”, IEEE Trans. on Signal 
Processing, 2005

� S.-S. Kim et al., Interactive Visualization of Hierarchical Clusters Using MDS 
and MST, 1998

� T.-T. Ng and S.-F. Chang, “A Model for Image Splicing,” ICIP 2004.

� T.-T Ng, S.-F. Chang, Q. Sun, “Blind Detection of Photomontage Using 
Higher Order Statistics, “ ISCAS 2004.

� T.-T Ng, S.-F. Chang, C.-Y. Lin, Q. Sun, “Passive-blind Image Forensics,” in 
Multimedia Security for Digital Rights Management, June 2006.



24

3/1/06: Lecture 7 – Multimedia Forensics © 2006 Ching-Yung Lin, Dept. of Electrical Engineering, 

Columbia Univ. 
47

E 6886 Topics in Signal Processing: Multimedia Security Systems

Final Project

�Team work is encouraged (1 – 3 students)

� Implement components of multimedia security systems or surveys of 

emerging technologies

�Oral presentations at the mid-term project proposal (4/5) and the 

final presentation (5/3).

�Final project report due at 5/12.
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Possible Projects 

�Paper study on an emerging field (1-person only):

� Digital Rights Management in Mobile Environment

� Steganography and steganoanalysis

� Multimedia Forensics

� Biometric Authentication

• Face Recognition

• Behavior Authentication

� Audio/Visual Sensor Network



25

3/1/06: Lecture 7 – Multimedia Forensics © 2006 Ching-Yung Lin, Dept. of Electrical Engineering, 

Columbia Univ. 
49

E 6886 Topics in Signal Processing: Multimedia Security Systems

Possible Projects

�System Implementation (2 – 3 people):

� Software / Hardware

� Any topic in these fields:

• Digital Rights Management

• Watermarking

• Media Authentication

• Human Authentication / Recognition

• Audio-Visual Sensor Network
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Possible Project Topics

� Human Vision Systems – implementations and experiments

� Art authentication 
� style change through time

� Types of paintings: modern, abstract, impression, etc.

� Tampering detection, Natural / CG detection

� Video Forensics

� Face recognition in videos

� Fingerprint recognition

� Human behavior authentication:
� Keyboard

� Email records

� Event detection from camera(s)

� Etc.


