

	E 6886 Topics in Signal Processing: Multimedia Security Systems
Course Outline	
Multimedia Security :	
 Multimedia Standards – L 	Jbiquitous MM
 Encryption and Key Mana 	igement – Confidential MM
 Watermarking – Uninfring 	ible MM
 Authentication – Trustwor 	thy MM
Cogurity Applications of Mul	timedia
Audio-Visual Person Iden	umedia. tification – Access Control, Identifying Suspects
Surveillance Applications	- Abnormality Detection
 Media Sensor Networks - 	- Event Understanding, Information Aggregation
2 1/25/06 1 ecture 2 – Multimedia Compression	n Techniques and Standards © 2006 Chino-Yung Lin. Dept. of Electrical Engineering.
	Columbia Univ.

	E 6886 Topics in Signal Processing: Multimedia Security Systems
Common Digital Image Fo	rmats
0 0	
JPEG	
GIF	
BMP	
PPM, PGM, PBM	
□ JPEG-2000	
12 1/25/06: Lecture 2 – Multimedia Compression Tech	niques and Standards © 2006 Ching-Yung Lin, Dept. of Electrical Engineering,

E 6886 Topics in Signal Processing: Multimedia Security Systems
BMP Format
Internal image format in Windows system.
Number of colors: 2, 16, 256, 16777216 (or extended versions: 16- bits and 32-bit colors)
Raw (uncompressed) or lossless compressed (Run Length Encoding)
Germat:
 Bitmap-file header: type, size, layout of a device-independent bitmap file
 Bitmap-information header: dimensions, compression type, color format
 Color Table: mapping table from RGB to color indices
 Image data: row by row
• Each pixel or color table is represented by B, G, R.
 Each row has to be the multiple of 4 bytes.
Reference: http://netghost.narod.ru/gff/graphics/summary/micbmp.htm
13 1/25/06: Lecture 2 – Multimedia Compression Techniques and Standards © 2006 Ching-Yung Lin, Dept. of Electrical Engineering,

Quui	1120		Tubh												
16	11	10	16	24	40	51	61	17	18	24	47	99	99	99	99
12	12	14	19	26	58	60	55	18	21	26	66	99	99	99	99
14	13	16	24	40	57	69	56	24	26	56	99	99	99	99	99
14	17	22	29	51	87	80	62	47	66	99	99	99	99	99	99
18	22	37	56	68	109	103	77	99	99	99	99	99	99	99	99
24	35	55	64	81	104	113	92	99	99	99	99	99	99	99	99
49	64	78	87	103	121	120	101	99	99	99	99	99	99	99	99
72	92	95	98	112	100	103	99	99	99	99	99	99	99	99	99
(a) (b)															
Table $tor(Q)$ other and q 1 to 2	$F) = G$ $Qual$ $= \frac{5}{Q}$ $255.$	The 5θ lity I $\frac{0}{F}$, if	e qua : (a Facto QF	antiza) lum or are . < 50.	tion t inanc Integ In th	ables, e,(b) e <i>r Ro</i> se e base	$\mathbf{Q_{50}}$, o chromn $und(\mathbf{Q_{50}})$ eline JP	of JPE ance. $(0 \cdot q), w^{\dagger}$ EG, Q	G co The here <i>QF</i> W	$\begin{array}{l} \text{mpro} \\ \text{quar} \\ q = 1 \\ \text{vill b} \end{array}$	ession ntiza 2-0. e tru	n wit tion 02· <i>Q</i> ncat	table Q (F, i) ed to	ualit es, C f <i>QF</i> o be	$y \; Fac- \mathbf{Q}_{QF} \; \text{of} \\ \geq 50, \\ \text{within} \\$

				E	6886	Topic	s in S	ignal	Processing: Multimedia Security Systems
Run-Level Grouping (on AC coefficients)									
 Convert 2D quantized DPCM+VLC is used 	d D(ed fo	CT c or D(coeff C coe	ficie effici	nts f ent d	to (F codii	Run ng: /	, Le	vel) pairs = DC - P
	96	12	∕-5	2	0	0	0-	0	
	8	0	0	0	0	0	0	0	
	0	-1	2	0	Ó	0	0	0	
	1	0	1	Ó	Ó	0	0	0	
	5	0	-1	Ó	0	0	0	Ø	
	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	
	04	0	0	→ 0	Ó	0	0	0	
(Run, Level):									'
(0,12), (0,8), (2,-5), (0,2), (1,-1), (0,1), (0,5), (1,2), (5,1), (4,-1), EOB									
24 1/25/06: Lecture 2 – Multimed	ia Con	npressi	on Tecł	nniques	and S	tandar	ds (2006	Ching-Yung Lin, Dept. of Electrical Engineering, Columbia Univ
									Solumba Chitt

		E 6886 Topi	cs in Sign	al Processing:	Multimedia Security	Systems	
Variable Length Co	odino						
Vallable Longal et	Jamig						
Usually, JPEG carries a VLC			_	🗻 only for N	IPEG nonintra co	ding	
Table MPEG uses a stand	run/level	VLC	bits				
tablo	0/1	1s (first)	2				
lable.	0/1	11s (next)	3				
	0/2	0100 5	6	2/1 0	101 s	5	
VIC: (Run Level)	0/4	0000 110s	8	2/2 0	000 1005	11	
(0.12):0000000110100	0/5	0010 0110 s	9	2/4 0	000 0001 0100 s	13	
(0,12).0000000110100	0/6	0010 0001 s	9	2/5 0	000 0000 1010 Os	14	
(0,8):0000000111010	0/7	0000 0010 10s	11	3/1 0	011 1s	6	
(25): 00000000101001	0/8	0000 0001 1101 s	13	3/2 0	010 0100 s	13	
(0,2): 01000	0/10	0000 0001 0011 s	13	3/4 0	000 0000 1001 1s	14	
(0,2). 01000	0/11	0000 0001 0000 s	13	4/1 0	011 Os	6	
(1,-1): 0111	0/12	0000 0000 1101 Os	14	4/2 0	000 0011 11s	11	
(0.1): 110	0/13	0000 0000 1100 1s	14	4/3 0	0000 0001 0010 s	13	
$(0.5) \cdot 0.01001100$	0/14	0000 0000 1100 0s	14	5/1 0	001 115	1	
	0/15	0000 0000 1011 115	14				
(1,2):0001100	0/10	0000 0000 0111 110	10				
(5,1): 0001110							
$(4, -1) \cdot 001101$	run/level	VLC	bits				
	1/1	011s	4	06/1	0000 0000 1101 1-	1 44	
EOB: 10	1/2	0001 10s	4	20/1	0000 0000 1101 15	1 e 17	
	1/4	0000 0011 00s	11	28/1	0000 0000 0001 111	0 s 17	
→Total 84 bits	1/5	0000 0001 1011 s	13	29/1	0000 0000 0001 110	1 s 17	
	1/6	0000 0000 1011 Os	14	30/1	0000 0000 0001 110	0 s 17	
	1/7	0000 0000 1010 1s	14	31/1 End of block	0000 0000 0001 101	1 s 17	
If assume 6 bits for DC, then	1/8	0000 0000 0011 1115	16	Escape	0000 01	6	
Compression ratio =	X/ J	0000 0000 0011 1105					
(9×64) bits $(00 \text{ bits} = 5.00)$		s' '0' for n	ositive	'1' for ne	native		
(0x04) DILS / 90 DILS = 5.69		5. 0 101 p	Control		guiro		
25 1/25/06: Lecture 2 – Multimedia Compression Techniques and Standards © 2006 Ching-Yung Lin, Dept. of Electrical Engineering,							

	E 6886 Topics in Signal Processing: Multimedia Security Systems
JPEG Examples	
Demo using MS Photo Editor	
Personit Photo Editor The Edit Ver Jange Effects Tools Window Help D = Help → The Service Help ⊂ C = C = C = C = C 450052 Jange	Image: Contempose Image: Contempose Image: Contempose Image: Contempose
Rody	JPEG valuaty teory (* 1-10); 66 Smaller Nu/teory quality Larger Nu/good quality
26 1/25/06: Lecture 2 – Multimedia Compress	sion Techniques and Standards © 2006 Ching-Yung Lin, Dept. of Electrical Engineering,

