E6893 Big Data Analytics Project Proposal

Politics & Analytics

Sanjana Gopisetty - ssg2147
Saad Ahmed - sa3205
Jayni Chopda - jjc2253
Jivtesh Singh - jsc2226

November 19th, 2015
Motivation

Election season is coming around and our candidates are the hottest topics on social media. So, why not, use Big Data Technology to analyze election trends?

- Which candidate is being talked about the most?
- What are the sentiments for the candidates and the major parties?
- Where geographically are they being most talked about?
- Compare popularity and ranking in social media to polling data.
- Observe the change in trends over time.
Dataset, Algorithms and Tools

Dataset: Twitter API

Tracking certain keywords and collecting data like user information, geolocation and the text.

Algorithms:

1) Stream live tweets based on keywords using Twitter API and Node.js. We can also use Flume, Hive and HDFS if the data set is very large.

1) Determine the popularity of candidate/party based on the number of tweets.

1) Heat-Map based query based on keywords to display geolocation of candidates/partisan popularity in a particular area.

1) Apply sentiment analysis on each tweet by computing the average sentiment score of each tweet and then compute the average sentiment score of all the tweets collected. Also do sentiment analysis on Internet data by using Alchemy API.

Tools: Alchemy API, Twitter API, Google Maps API, Node.js
Current Progress, Schedule and Expected Contributions

Progress:

- Framework discussion related to our proposed project
- Have Successfully used Twitter API to stream data

<table>
<thead>
<tr>
<th>To-Do List</th>
<th>Expected Contributions</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collect Tweet Data</td>
<td>Sanjana and Saad</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Sentiment Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Map Display</td>
<td>Jivtesh and Jayni</td>
<td>2 weeks</td>
</tr>
<tr>
<td>Trend Analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

1. https://dev.twitter.com/rest/public

THANK YOU
No questions Please ! :)
E6893 Big Data Analytics Project Proposal:

Uber Max!

Team: Munan Cheng, Lingqiu Jin, Chuwen Xu
UNI: mc4081, lj2379, cx2178

November 19th, 2015
Motivation

Tom has just finished school at 5 p.m. and has to pick his friend up at airport at 9 p.m. In this period of 4 hours, he plans to make some money as an Uber driver. But now, whom should he offer the ride to?

- **Trip time**
- **Fares**
- **Demands**
Dataset, Algorithms and Tools

Dataset:
- NYC Taxi Data
 - Dataset of taxi trips during last 7 years

Algorithms:
- (Pick-up & Drop-off) Estimation of
 - Demand, Fares, Trip Time
 - Time sensitive
- Route planning
 - Dynamic Programming

Tools:
- AWS
- Hadoop + Hive + Mahout
- Neo4J

Input
- Time constraints
- Start, end location

Big Data
- Fares
- Trip time
- Demand

Output
- Preferred next destination
 - that maximizes the total profit!

Current Progress, Schedule and Expected Contributions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi data collection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data quality study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Infrastructure Setup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithm Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Algorithm Implementation, Verification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data aggregation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backend system implementation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Interface design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web-based mobile frontend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debug</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E6893 Big Data Analytics Project Proposal:

Waste Management using Big Data

Hadeel Albahar, Shreya Yathish Kumar, Harnoor Singh Powar

November 19th, 2015
Motivation

• **Help New Yorkers achieve zero waste.**
 The average New Yorker throws out nearly 24 pounds of waste at home, at work, and at commercial establishments every week. [BigApps.NYC]

• **Provide an incentive to residents and businesses to audit their waste to green their home, neighborhood or workplace.**
 Provide a heat map of green neighborhoods.

• **Help New York City Department of Sanitation (DSNY) understand which parts of the city are saturated with recycling/compost bins, and which are underserved.**

• **Enable New Yorkers to find the “people’s” route to bins locations as suggested by recommendation, using PeopleMaps which was implemented last year. (future work)**
Zero Waste Goal

(a) Mixed Waste

(b) Electronic Waste

(c) Bulky Waste

(d) Fat Waste
Dataset, Algorithms and Tools

- **Datasets:** (obtained from https://data.cityofnewyork.us)
 1. Locations of public recycling bins throughout NYC.
 2. DSNY's Refuse(waste) and Recycling Disposal Networks.
 3. Special Waste Drop-off Sites (batteries, motor oil, oil filters, car tires, …etc).
 4. Recycling Diversion and Capture Rates.

- **Algorithms:**
 1. Filter the datasets as per the type of waste.
 2. Suggest appropriate recommendations for the nearest drop-off location (Euclidean Distance recommendation).
 3. Apply k-means clustering to visualize the capture rate data and recycling diversion rate on heat maps.
 4. Enable the user to trace the route for the address suggested by recommendation using *PeopleMaps* (Implemented last year).

- **Tools:**
 1. Apache Mahout
 2. Apache Spark
 3. Apache Hadoop(Pig)
Current Progress, Schedule and Expected Contributions

- Collected and understood the datasets that will be used
- Prepared a flowchart for project implementation

<table>
<thead>
<tr>
<th>Expected Contribution</th>
<th>Task name</th>
<th>Task Description (+issues, feasibility, …)</th>
<th>Target dates (start-finish)</th>
<th>S: started I: in progress, C: completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Literature review</td>
<td></td>
<td>Nov 4 - Nov 17</td>
<td>C</td>
</tr>
<tr>
<td>All</td>
<td>Collecting datasets</td>
<td></td>
<td>Nov 17 – Nov 20</td>
<td>S</td>
</tr>
<tr>
<td>Shreya, Harnoor</td>
<td>Starting Task 1</td>
<td>Recommendation: all types of waste</td>
<td>Nov 20-Dec 5</td>
<td></td>
</tr>
<tr>
<td>Hadeel</td>
<td>Starting Task 2</td>
<td>Clustering: for the capture rate and recycling rate division</td>
<td>Nov 27 - Dec 5</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>Integrate PeopleMaps</td>
<td></td>
<td>Dec 5 – Dec 10</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>Write project report</td>
<td></td>
<td>Dec 7 - Dec 10</td>
<td></td>
</tr>
</tbody>
</table>
Reverse-Recommendation on Yelp!
• find out what user really cares about from their low rating reviews.

• Send them a message to recommend local restaurants.
Dataset and Tools

Dataset
Yelp Dataset Challenge
• 1.6M reviews and 500K tips by 366K users for 61K businesses
• 481K business attributes, e.g., hours, parking availability, ambience.
• Social network of 366K users for a total of 2.9M social edges.
• Aggregated check-ins over time for each of the 61K businesses

Algorithms
Recommendation/Clustering:
• SVM
• Sentiment Analysis
• Latent Dirichlet Allocation (LDA)

Tools
• Server: AWS EC2, S3, Heroko
• Backend: Python-Flask
• Frontend: JS
• Yelp API
• NLP: Python NLTK
• Analysis tool: Spark - Milb-Cluster, Recommendation, MapReduce

Tools
• Server: AWS EC2, S3, Heroko
• Backend: Python-Flask
• Frontend: JS
• Yelp API
• NLP: Python NLTK
• Analysis tool: Spark - Milb-Cluster, Recommendation, MapReduce
Project Timeline

Week-1
11/20-11/26
Categorize negative reviews

Week-2
11/27-12/03
Build Recommendation Model

Week-3
12/04-12/10
Web Application Buildup

Week-4
12/11-12/17
Optimization
E6893 Big Data Analytics Project Proposal:

<MYOU : Music for You Recommender System>

<Yingtao Xu>

November 19th, 2015
Motivation

• Music fan

• Make what I have learned into practice
Dataset, Algorithms and Tools

Dataset: Yahoo music dataset

Algorithms:
- collaborative filtering algorithms (all included in Mahout)
- customized similarity metric (TF-IDF on lyrics)

Tools: Java, Mahout, Tomcat, Maven, Bootstrap
Current Progress, Schedule and Expected Contributions

Current Progress:
• Preparation of the dataset
• Analysis of the project procedure

Schedule:
• Establish a server (GUI) for users to type in the songs they are interested in and return the recommendation results back to the users. (Java, Tomcat, Bootstrap)
• Build the recommender (Mahout)
• Do the recommendation testing

Expected Contributions:
• Users put the name of the songs they are interested in, the recommender will find the corresponding songs that match their interests.
Find your fit: University Edition

By
Ashwin Raghupathi ar3390
Senthil Krishna Mani sm3906
Motivation

- Wanted to work on a topic which was relevant to students
- Searched for a topic where we could have a lot of intuition on and see if the data proves or disproves our intuition
- Decided to work on UG colleges and student performance
- Goals:
 - Draw interesting relationships between available parameters
 - Build recommendation engine for students to identify best-fit UG institution
Dataset, Algorithm & Tools

- **Dataset**
 - Rich US gov dataset on UG colleges and future student performance
 - Exhaustive data for over 20 years
- **Implementation**
 - Spark SQL
 - Apache Mahout
- **Algorithms**
 - Recommendation algorithm
 - Clustering analysis
Data Metrics

Key considerations in trying to interpret data involves understanding importance of factors to identify best fit school (School of your dreams!)

- Earnings 10 years after Matriculation.
- SAT Score: Math, Written, Verbal
- Admission Rates: Highest, Lowest
- Percentage by Major: Engineering, Sciences, arts etc.
- School Type: Non Profit, For Profit, Public/ State, Private.
- Enrollment by number: Absolute and demographic split
- Price of Tuition and Overall Fees.
Current Progress & Schedule

- **Current Progress**
 - Data cleaning
 - Find relationships between different parameters
 - Identifying influencing factors for decision making
 - Plotting these relationships

- **Schedule**
 - Have to build the recommendation algorithm
 - Set to complete the project in the next 4 weeks
Appendix

- Query databases and libraries will be essential in this process of selection.
- Each query and search result will be an amalgamation of factors important to a specific user, i.e. some may find tuition as a limiter while others might find demographics (both racial/cultural and gender based) more important, this leads to different results being outputted.
- Plots of overall displays and outputs reflect best on the list of “top” universities that help rank and guide users better and reflects better matches via the results.
E6893 Big Data Analytics Project Proposal:

Sports Fandom

Mayank Mahajan - mm4399
Sheng Qian - sq2168
Brian Slakter - bjs2135

November 19th, 2015
Motivation

- The NBA is the world’s fourth largest sports league by revenue, and popularity is on the rise both in America and around the world.

<table>
<thead>
<tr>
<th>League</th>
<th>Sport</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRL</td>
<td>American football</td>
<td>$9 billion</td>
</tr>
<tr>
<td>MLB</td>
<td>baseball</td>
<td>$8 billion</td>
</tr>
<tr>
<td>English Premier League</td>
<td>soccer</td>
<td>$5 billion</td>
</tr>
<tr>
<td>NBA</td>
<td>basketball</td>
<td>$4.75 billion</td>
</tr>
</tbody>
</table>

- The league has an estimated 840 million fans on social media, including 17.9 million twitter followers.

- Although fans often choose to root for teams they are closest to in geography, there are many others who will choose to focus on other teams in different parts of the country.

- We would like to understand what teams people in different parts of the country root for and against, and help provide recommendations of what teams to follow for those interested in the sport.
Dataset

- ~60k Tweets from users who follow @NBA
- Information collected for each tweet:
 - Tweet Text
 - Time of Tweet
 - User Location (Latitude, Longitude)

Algorithms and Tools

1. Gather NBA fan Tweets via Twitter API
2. Identify team mentions and perform sentiment analysis
3. Perform geographic clustering and provide team recommendations for each cluster
Current Progress
- Currently mining data from Twitter API
- Rate limit of 300 requests per 15 minutes

Schedule
- November 23: All Twitter data gathered
- December 4: Sentiment analysis finished
- December 11: Mahout clustering and recommendations complete

Expected Contributions
- Recommendations for teams to root for and against, by geographic cluster
- Heat maps that provide visualizations of clusters of fans who root for and against different teams
E6893 Big Data Analytics Project Proposal:

Regional Mood Assessment Application based on Tweets

Wenyu Zhang

November 19th, 2015
Motivation

Proposal:

Use big data collected by Twitter to generate useful regional mood map

Motivation:

Help the government to get a sense of regional mood

Help people to decide where to move

Template application
Dataset, Algorithms and Tools

++Dataset:
++Twitter Streaming API (Using locations: -74,40,-73,41 to get NYC Tweets)

++Methods:
++Tokenizer: TextBlob (library for processing textual data)
++Known lexical words: “Happy”, “Sad”, “Relaxed” …
++Discover lexical words (big data): Compute the relative frequency of each term among all messages from within each area
++(Optional) Score Mapping based on Dictionary
++Map Mood (Score) on Application: Map Kit

++Tools and Languages:
++Xcode: Objective-C, Bash
++PyCharm (Vim) : Python / Rstudio : R
Current Progress, Schedule and Expected Contributions

Progress:
- Collected corresponding Twitter dataset
- Tested and analyzed Tweets sentiment

Schedule:
- Week 12: Compute the relative frequency of each term among all messages from within each area
- Week 13: Mobile Application Implementation
- Week 14: System Integration and Analysis, Debug.
- Week 15: Tests and Final Presentation

Contributions:
- Hope get some amazing data visualized maps!
E6893 Big Data Analytics Project Proposal:

Job Recommendation System

Ke Shen

November 19th, 2015
Motivation

- Most job search websites are using keyword searching to help find desired job
- Users are becoming more and more impatient when they visit websites and cannot find the desired jobs in an immediate way
Dataset, Algorithms and Tools

- **Dataset:** a million of resumes and job descriptions scarped from job searching website
- **Algorithms:** CRF, HMM, DP, LDA
- **Model:** Combination of Collaborate filtering and content based filtering
- **Tools:** Python, Spark, MongoDB
Current Progress, Schedule and Expected Contributions

Part I: web scraping (done)
Part II: NLP for JD (done)
Part III: Parsing for resume
Part IV: Find topic words for each categories
Part V: Build model
E6893 Big Data Analytics Project Proposal:

Visual Analysis of Scholar Data

Michelle Tadmor, Miguel A. Yanez, YuHsuan Shih

November 19th, 2015
Motivation

Organize, Visualize, and Analyze Scholar Publications

Automatic identification of trends
Highlight interdisciplinary publications
Visualize focus shifts as a function of time
Dataset, Algorithms and Tools

- **Dataset:** Newly released Microsoft Academic Graph. Part of an ongoing research project at Microsoft. Huge Dataset (29GB compressed). http://research.microsoft.com/en-us/projects/mag/

- **Tools:** IBM SystemG gShell Python API, D3js, Python Flask

- Topic grouping by Graph Based Clustering algorithm.

- Because of the scale of the data we will use a Cloud Instance on DigitalOcean to run our service.
Expected Contributions

Project

- Novel visualization of the Human Knowledge base.
- Analysis of trends and interdisciplinary relationships.

Individual

- **Miguel**: Cloud Infrastructure and Dataset preparation.
- **YuHsuan**: Visualization of the Dataset.
- **Michelle**: Computational identification of topics and interdisciplinary publications.
E6893 Big Data Analytics Project Proposal:

Product recommendation using customers’ search or click behavior

By: Neha Gupta

November 19th, 2015
Describe the motivation of your project:

• Before buying any product online, one must do intensive research on the product’s reviews, ratings, number of people who rated them, ratings from recent users.
• Users’ rating and reviews are very important factors that increase the chances of a product being sold online.

This leads to the question: Can we leverage on the users’ buying behavior to recommend them more products that they would like to buy?
Dataset: The dataset is downloaded from Kaggle website. Click here or enter https://www.kaggle.com/c/acm-sf-chapter-hackathon-small to download the dataset. `train.csv` and `test.csv` contain information on what items users clicked on after making a search. Each line of `train.csv` describes a user’s click on a single item. It contains the following fields: (user, sku, category, query, click_time, query_time). `small_product_data.xml` contains information about products like name, sku, release time, price and description. Only the description will be used in our content based filtering method.

Language: Python

Analytics: Recommendation System, TF-IDF, Multiclassification, SVC, Spell Check, Content Based Filtering, Collaborative Filtering
Current Progress, Schedule and Expected Contributions

Stage -1:
- Data pre-processing - In order to evaluate our algorithms, we randomly split train.csv into two parts: training part and test part. The proportion of training data and testing data is 9:1

Stage -2:
- Apply the recommendation algorithms

Stage -3:
- Evaluate correctness

Schedule:
Total time frame: 3 weeks
Current stage: Stage -1
E6893 Big Data Analytics Project Proposal

Clustering of Electricity Customers by Load Curves for Integration of Solar and Wind Energy Resources into the Grid

Akhilesh Ramakrishnan (ar3539)
Ankita Deshmukh (ad3293)
Kaustubh Upadhyay (ku2151)

November 19th, 2015
Motivation

- In the present energy market, energy vendors must commit to supplying a specific amount of energy in the next hour/day.
- Utilities must be able to accurately predict the variation of the load and ensure that the supply matches the demand.
- These factors make load pattern recognition and load forecasting essential to a reliable and efficient power grid.
- Clustering and classification of electricity customers based on their hourly demand allows both utilities and energy providers to accurately predict the load they will have to meet.
- Matching the daily demand patterns to renewable energy supply patterns will allow us to determine the optimal combination of solar and wind resources needed to meet the load for each type of customer throughout the day.
- This will take into account the variation of supply and demand:
 - Hourly
 - Diurnally
 - Seasonally
Dataset, Algorithms and Tools

Data:

- Demand data for customers
 - Electricity hourly demand data by zones - New York Independent System Operator website
 - http://nyiso.com/

Algorithms & Tools:

- Cluster customers based on the similarity of their demand curves throughout a typical day by using cross correlation based kNN clustering
- For a particular cluster/group of customers determine whether this group is best served by a solar energy source or a wind energy source or a combination of both
- Apache Spark for clustering and python for data pre-processing and general purpose scripting
Current progress:
- Data preparation in progress
 - Research the different types of datasets available for the purpose
 - Preparing the data in usable formats
- Exploring the appropriate algorithms to be used

Schedule:
Week1: Finalize the data and algorithms
Week2: Run the clustering and demand/supply matching
Week3: Comparing the clustering results as available in literature
Week4: Refinements & documentation

Expected deliverables:
For each cluster of electricity customers based on demand curves obtain a combination of solar and wind supply to best serve the demand
E6893 Big Data Analytics Project Proposal:

Image recognition with a huge dataset on iOS devices

Team members: Chang Chen (cc3757), Liang Wu (lw2589), Changchang Wang (cw2826), Jialu Zhong (jz2612)

Supervisor: Larry Lai (IBM Watson Research Center)

November 19th, 2015
Motivation

• **Description**: Most companies do not allow their employees or visitors to take photos of any confidential materials, such as documents, white board, or screen shots, using their personal devices. So, the challenge here is how to help the companies immediately detect that the photo just taken contains confidential information.

• **Goal**: Design an APP and cloud service to detect if the user takes a picture containing confidential information.
Dataset, Algorithms and Tools

- **Dataset**: A relatively large image dataset containing different content of confidential materials.

- **Algorithms**:
 - Text recognition to recognize the image content
 - Analysis on the image similarities

- **Tools**:
 - iOS developing (Swift)
 - OpenCV to calculate image features
 - CoreData on iOS to reduce the computation
 - Spark as the framework for big data processing
Current Progress, Schedule and Expected Contributions

• **Current Progress:**
 - Skype meetings with Larry
 - Developed a small prototype of capture image using Swift and CoreData
 - Explored OpenCV with image recognition.

• **Schedule:**
 - Set up cloud server that allows our app to send images
 - Implement text recognition to detect the image content
 - Optimize our service to enable multi-processing at a time

• **Expected Results:**
 - An app with cloud service that has the functionality of camera, and the capability to immediately detect if the photo taken has confidential information
E6893 Big Data Analytics Project Proposal:

Social/Business network analysis for charitable fundraising

Janet Prumachuk, Sam Guleff, John Correa

November 19th, 2015
Describe the motivation of your project

Analyze social networks to identify potential donors for charity causes

- Identify individuals with common interests with charity (college alma mater, political affiliation, previous donations, etc.)

- Use social/business network of those individuals to expand potential pool of donors
Examples of datasets to be considered for use:

- Angel List: https://angel.co/
- LinkedIn: http://www.linkedin.com
- News article text mining for names and companies
- Board members for nonprofits and startups

Tools:

- Neo4J, Cypher, Java, Python
- Apache Hadoop, Spark, Nutch
- JavaScript, D3

Algorithms:

- Entity extraction
- Term-document relevance
- Building a knowledge graph
- Shortest path (to find referrals)
- Clustering (to identify donor groups for different causes)
Current Progress, Schedule and Expected Contributions

Current Progress: Analysis phase.
• We have identified data sources and agreed on the concept.

Schedule:
Week 0: Learn Neo4J and Cypher
Week 0: Define graph node and edge model and properties
Week 1: Build web crawler, clean and transform data, load affiliations and properties.
Week 2: Inspect graphs and optimize data extraction and graph model
Week 3: Define queries, clusters, metrics and develop sample analysis results
Week 4: Build Web Interface, visualizations
Week 4: Develop presentation and assess lessons learned

Expected Contributions:
• Janet Prumachuk: data sources, Sam Guleff: graph model, John Correa: software prototype
• Data Sources to be divided among team members for web crawling, data load
• Query/analysis/visualization to be divided among team members
• Develop presentation (team effort)
E6893 Big Data Analytics Project Proposal:

Predicting Dota2 game outcome

Li Qi(lq2156) Jiaqi Guo(jg3639) Xinyuan Hu(xh2251)

November 19th, 2015
Motivation

Dota2 is a free-to-play multiplayer online battle arena video game developed by Valve Corporation. Game is played in matches between two five-player teams, each of which occupies a stronghold in a corner of the playing field. A team wins by destroying the other side's “ancient” building, located within the opposing stronghold.

The largest of the professional tournament in dota2 is known as The International. The 2015 edition of The International had the largest prize pool in eSports history, totaling over $18 million.

There are total 110 playable “Hero” characters in Dota2. So for each team, the hero selection can significantly influence the game outcome. Profession teams recognize the importance of this and in matches it usually takes up to 10 minutes for hero selections by both teams.

Our project’s goal is to predict the game outcome based on the hero selection.
Dataset, Algorithms and Tools

Dataset We use the Steam Web API for collecting dataset about public Dota2 matches. We will use Python script to record Dota2 matches periodically. And we use Mongo database to backup and restore our data.

Algorithms The prediction can be abstracted as a non-linear classification problem with an ten dimensional input vector, namely the 10 selected heros, and a binary output.

 ADABoosting is a kind of ensamble methods using independed dataset to train several weak learners to make majority vote. The key idea is the weak learner we choose and the algorithm to reweight the training dataset.

Tools Python Machine Learning Flask Web Develop
Current Progress: Writing Python script and setting it up to record data from the 500 most recent public matches every 30 minutes.

Schedule:
- 11.20-11.25 Finishing python script and downloading dataset
- 11.26-12.10 Data analyzing. Compare the project result with the actual result.
- 12.11-12.15 Algorithm fixing up. Improve the accuracy.

Expected Contributions:
We will try to achieve about 70% accuracy for predicting match outcomes based on hero selection.
E6893 Big Data Analytics Project Proposal:

Item-based Event Recommendation Based on User’s Preference

Shiwei Ren, MS EE
Yeran Zhang, MS EE
Yiqing Cui, MS CS

November 19th, 2015
Motivation

• Events provided by Eventbrite can be overwhelming for users to make a choice.

• Even when users select some fields that they are interested in, there are still too much information for them.

• We are going to build a recommendation system which can predict suitable events for some specific users.
Dataset, Algorithms and Tools

• Dataset: Evenbrite

• Algorithms: Item-based Recommendation, KNN, MapReduce

• Tools: Python, Java, Spark, Hadoop
Current Progress, Schedule and Expected Contributions

• Current Progress: Data Fetching

• Schedule:
 11.20 - 11.23
 finish data fetching
 11.24 - 12.5
 implement and optimize the algorithms for recommendation
 12.5 - 12.10
 implement the front end to show the results
 12.10 - 12.12
 finish the technique report and presentation slides

• Expected Contributions:
 data fetching: mainly Cui, Ren&Zhang assist
 algorithms: mainly Ren&Zhang, Cui assist
 front end: altogether
E6893 Big Data Analytics Project Proposal:

Reliable Reviews Recommendation

Chen Qian (cq2171)
Jiaqi Chen (jc4260)
Tianhe Shen (ts2957)

November 19th, 2015
Motivation

Opinionated social media are now widely for our decision making.

- Fake Reviews
- Spam Reviews
- Reviews not helpful

In our project, we would like to give each user the ‘best’ reviews based on different tastes and interests.
Dataset, Algorithms and Tools

Dataset: Yelp Dataset Challenge in 2016, including users, businesses, and reviews

- Spam reviews filtering: MapReduce, Sentiment Analysis;
- Reviews from similar taste users recommendation: Collaborative filtering, User Similarity Measurements;
- Reviews clustering: Naive Bayesian classification, TF-IDF.
Current Progress and Expected Contributions

Current Progress: Algorithms research and design

Expected Contributions:
1. Getting rid of spam reviews from the total review.
2. Recommend useful reviews to the user according to user’s interest and taste.
3. Make reviews clustering by features such as environment, dishes, waiting time, service etc.
E6893 Big Data Analytics Project Proposal:

Plankton classification by Convolution neural network with Spark

Pan Li. pl2556
Ziheng Huang zh2220
Yifang Song ys2824

November 19th, 2015
Motivation

• Deep learning methods have shown their power in recent years. Convolutional neural network is powerful deep network for image recognition. However, all deep networks suffer from extraordinary training time. In our project, we want to use the methods learned in this course to reduce that training time, and gain experience in both deep learning and big data.
Dataset, Algorithms and Tools

Dataset:
- We will use Plankton data set for this project. The data set contains more than 30000 labeled, 130000 unlabeled images of plankton. Our task is to classify them into 121 different kinds.

Tools:
- We will build this deep network in python, more specifically, by the python Theano package. After that, we will try to parallelize the training and prediction process in Spark.
Current Progress, Schedule and Expected Contributions

Current Progress and Schedule:
• By now, we have finished background reading and the preprocessing of data. By next week, we will finish the coding of first version model. We will use the time left to test our model and adjust the network architecture.

Expected Contribution:
• Ziheng and I will construct the neural network and adjust it. Yifang will see to how to parallelize the training process.
E6893 Big Data Analytics Project Proposal:

Movie Recommendation and Analytics

Tiancheng Jia
Xu Cao
Yanjing Chen

November 19th, 2015
Motivation

Why:

Many people love watching movies

Somewhat difficult to find new interesting movies after watching enough large number of them

What we will do:

Design a recommendation process to give people advice to watch new movies according to their taste

Analyze features among different genders and ages
Dataset, Algorithms and Tools

- Yahoo! WEBSCOPE datasets
- MovieLens datasets
- Recommendation, Classification, Filtering
- Mahout, Hadoop, JAVA
Current Progress, Schedule and Expected Contributions

Current
Dataset downloaded
Pick up suitable algorithms

Schedule
This week: Analyze data tentatively
Next week: Apply different algorithms to the dataset

Expected Contributions
Recommend movies to individuals according to their rating records
Compare characteristics in different groups of people
Optimize the recommendation algorithm by groups features
E6893 Big Data Analytics Project Proposal:

Restaurant recommendation based on Yelp data

Qianbo Wang, Yi Wu, Zuyi Wu

November 19th, 2015
Motivation

Many people rely on Yelp to explore new restaurants.

But Yelp always ‘surprises’ us with bad recommendations.

We found out that the traditional rating and recommendation has following limits:
1. No personalization.
2. Dummy users and fake review.
3. Extreme opinions affects too much.

We decide to come up with a new rating and recommendation system that solves the problems above and gives more accurate advice.
 Dataset, Algorithms and Tools

 Dataset: Yelp dataset of users, reviews, and restaurants from 10 different cities.

 Tools: MySQL, Python, Spark, Objective C
Current Progress, Schedule and Expected Contributions

Current Progress:
Cleaned dataset.
Adjusting key features in algorithms

Expected Contribution:
Come up with a new rating and recommendation system that solves the problems above and gives more accurate advice.
E6893 Big Data Analytics Project Proposal:

Map-based Restaurant Recommendation

Siyu Wang (sw3024)
Ruoqi Wang (rw2612)
Yuyang Liu (yl3399)

November 19th, 2015
Motivation

- Traditional recommendation system in Yelp is based on the rating simply, which is not aimed at specific customers. Our project is designed to give recommendations based on customers’ own preferences.

- Our project visualizes the recommendation results in a map, using some map APIs to make it more clear and fascinating.
Dataset, Algorithms and Tools

- **Dataset**
 Apply the dataset from Yelp Dataset Challenge

- **Algorithms**
 Recommendation (user-based recommendation, etc.)
 Clustering
 Classification

- **Tools**
 Mahout, Hadoop, Eclipse, Google Map
Current Progress, Schedule and Expected Contributions

- **Current Progress**
 - Collect the dataset
 - Analyze the data which can be used in the future work

- **Schedule**
 - By Nov. 26th: finish analyzing data and recommendation
 - By Dec. 6th: apply the result in Google Map
 - By Dec. 16th: accomplish the whole project

- **Expected Contributions**
 - Obtain and preprocess the dataset
 - Analyze the data using mahout and Hadoop
 - Visualize the result in the map
• Nowadays studying abroad is a global phenomenon.
• It has huge impact on the economy of a country.
• In 2013/2014, international students contributed over 27 billion dollars to the US economy.

There is more for analysis ...
Goals

Initial Goal:
• Relationship between national economic growth and the number of students studying abroad.

Final Goal:
• Predict national economic growth in upcoming years using the data of students studying abroad from previous years.
Sources - dataset

Data:

• http://data.un.org/Data.aspx?q=GDP&d=SNAAMA&f=grlD%3a101%3bcurrID%3aNCU%3bpcFlag%3a0

Sources – algorithm & tools

Algorithm:
• Filtering
• Clustering
• Classification
• Linear regression

Tools:
• Hadoop
• Pig
• Spark
• System G
• Excel
Schedule & Contribution

Week 11.20 – 11.26

• Weipeng: Analyzing economy data for various countries at some specific times (5-year period).
• Chuan: Analyzing student studying abroad data for various countries at corresponding times.

Week 11.27 - 12.3

• Weipeng: Track economy data trend for some specific countries in 15 years.
• Chuan: Track student studying abroad data for some specific countries in 15 years.

Week 12.4 – 12.10

• Computing and analyzing the relationship between economy growth and the number of students studying abroad.

Week 12.11 – 12.16

• Generating graphs and making presentation slides.
Thank you!
E6893 Big Data Analytics Project Proposal:

Cross-source Event Detection Through Social Media

Team Members: Cai, Zhuxi, Wang, Sitian, Shi, Yi

November 19th, 2015
Motivation

Huge Time Difference

CNN Breaking News: Report: Several people killed, injured in Paris shooting. [cnn.it/1MsFhuz]

Reuters Top News: BREAKING: Deadly shooting in restaurant in central Paris: [BSM TV]
Dataset:
2010-2015 target events local twitter data and major new service report data

Data sample:

Algorithm:
Generalized Linear Model, NLP(majorly Sentiment Analysis)

Tools:
PySpark, D3, Twitter API
Current Progress, Schedule and Expected Contributions

Current Progress:
• Post comparison between twitter and famous global news service focused on Paris Terror Attack
• Sample twitter data extracted by Twitter API
• Hands-on experience in tools: PySpark, D3, Twitter API

Schedule:
• Until 11/19: Topic Selection, Data Collecting (part) and Presentation Slides
• 11/20 – 11/26: Finish Twitter data collecting and news data collecting on target events in year 2010-2015
• 11/27 – 12/03: Visualization of twitter data and news data on target events based on timeline and distribution in world map
• 12/04 – 12/10: Implement sentiment analysis in PySpark and build prediction model
• 12/11 – 12/17: Test model on Paris Terror Attack data

Expected Contributions:
• Discover the news value hidden in twitter comparing to official news agencies
• Build a model to predict the time, topic and content of coming global news based on earlier related twitter
• (Optional) Develop user interface to share news value of twitter
E6893 Big Data Analytics Project Proposal:

Face Detection

Justine Morgan
Stamatios Paterakis
Lauren Valdivia

November 19th, 2015
Motivation

Goal:
Implement facial detection algorithms that are robust to lighting, angle, scale and background.

https://www.youtube.com/watch?v=aTErTq0lkss

Use Cases:
• Biometrics, often paired with facial recognition, for use in video surveillance, human computer interface, and image database management.
• Photography and Videography (autofocus, social media “tagging”)

https://www.youtube.com/watch?v=aTErTq0lkss
Dataset, Algorithms and Tools

Datasets

- CMU/Vasc image database
- FaceScrub celebrity photos
- Feret image database
- BioID face database

Algorithms

Preprocessing Phase

- Edge Detection – Sobel Operator
- Scaling / Window Extraction
- Rotation Correction

Detection Phase

- Neural Networks
- PCA – Eigenface Decomposition
- Viola-Jones (Adaboost with Cascades)

Tools

- Apache Spark
- Python
Current Progress, Schedule and Expected Contributions

1. Research and choose topic -- Complete
2. Find datasets -- Complete
3. Compile research and choose algorithms to implement -- Complete
4. Clean and compile data -- Deadline: 11/23/15
5. Implement Algorithms – Deadline: 12/07/15
 • Neural Networks (Lead: Stamatios Paterakis)
 • PCA (Lead: Justine Morgan)
 • Viola-Jones (Lead: Lauren Valdivia)
6. Train and test algorithms -- Deadline: 12/14/15
7. Prepare Presentation -- Deadline: 12/17/15

Note: Each team member is expected to contribute equally in each step and fully understand each algorithm. Leads were assigned to the algorithms for organizational purposes.
E6893 Big Data Analytics Project Proposal:

Large Scale Video Search and Retrieval via CNN

Zheng Shou, Hongyi Liu, Weiye Hu

November 19th, 2015
Motivation

• **Motivation:**
 - benefit a lot of applications

 ![YouTube Logo]

 Companies
 Ads recommendation

• **Current Trends**
 - CNN features: great success in many areas

 ![Diagram of CNN features]

 SIFT LBP MFCC
 Trajectories Gist
Dataset, Algorithms and Tools

- **Dataset:**
 - **UCF101:**
 1. collected from YouTube
 2. 13320 videos from 101 action categories
 3. challenging: large variations in camera motion, object appearance and pose, object scale, viewpoint, illumination conditions, etc.
 - **EventNet ?**: a large scale structured concept library

- **Algorithms:**
 1. Extracting deep learning features. CNN model trained on ImageNet.
 2. Encode video into binary hash code.

- **Tools:**
 - Caffe: a deep learning framework
 - Matlab
 - Tomcat Apache, D3.js
Current Progress, Schedule and Expected Contributions

• Current progress:
 • Downloaded dataset
 • On-going: extracting CNNs features

• Schedule:
 • Nov. 19 – Nov. 30. Feature Extraction, Generating Hashing Codes
 • Dec. 01 – Dec. 10. Development of Online Demo

• Expected contributions:
 • Fast retrieval of relevant videos
 • Demo: web interface
 • Technical Report
E6893 Big Data Analytics Project Proposal:

Product Review Helpfulness Prediction on Amazon Dataset

Chengcheng Du (cd2789), Qiu Rui Jin (qj2131), Jianhao Li (jl4350)

November 19th, 2015
Motivation

Amazon is the largest internet-based retailer in the United States. High quality reviews are very important to help customer to make decisions when shopping at Amazon. However, some helpful reviews may be buried in overwhelming useless reviews. It would be helpful if we can dig them out.

Our project aims at predicting the helpfulness of reviews. So that we can know whether a review is helpful or not, even not many people see it. Then we can put helpful reviews in positions where customers can easily see and vote.

Most helpful positive review
See all 104 positive reviews

173 of 177 people found the following review helpful

★★★★★ SONY 4K ULTRA HD CLARITY!!!
By JoeRod on May 20, 2015

So after having the X850C for about a week now I have to say we are very pleased. Out of the box the Sharpness needed to be dialed down some, I ended up between 45-50. I use VIVID and tweaked some of the picture settings. There is also another key setting to keep a lookout for after you hit the HOME button. It's under Picture and Display after you tap Settings. Go to Dynamic Range. Pause your image and toggle between LIMITED and FULL. Depending on your source one will blow the other out of the water. Image looked a little cloudy but after changing it blacks looked great and the image was full of POP! Also for best results turn the Light a Sensor off.

SETTINGS:
Read more
Dataset

Product reviews and metadata from Amazon since May 1996 to July 2014. They include ratings, text helpfulness and votes
Number of reviews: 34,686,770
Number of products: 2,441,053

Algorithms

Logistic Regression, SVM, Naive Bayes, Gradient Boosted Decision Trees and Random Forest

Tools

NLTK: Tokenization, stemming, stop words removal, ngram generation
Pandas: Statistics and visualization of data
Scikit-learn: Machine Learning algorithms
Mahout: Distributed machine learning algorithms
Current Progress, Schedule and Expected Contributions

Current Progress:
- Found interesting dataset
- Finalized the goal of this project

Schedule:
- 11.16 - 11.24 Find proper data preprocessing tools and machine learning algorithms.
- 11.25 - 12.02 Prototype the whole pipeline
- 12.03 - 12.10 Iterate and adjust each components of the pipeline to get better performance
- 12.11 - 12.15 Summarize experiment results and prepare final project slides.
- 12.17 Final presentation.

Expected Contributions:
- A system which can accept input of review data and output whether this review is helpful or not.
San Francisco Crime Rate

Chong Zhou
Chen Zheng
Objective

1. Where is the most high crime rate areas in SF?

2. The relationship between crime rate, crime type and location in SF.

3. The relationship between crime and time.

4. Which crimes and where are easy to solve?

5. How to distribute police manpower?
Data Source

- Date: time
- Category: crime type
- Descript: description of crime
- Resolution: resolve the crime or not
- Location
- Axis
Software and Algorithm

• Software: Python, Hive, Pig-Latin, D3.js, R.
• Platforms: Mac OSX
• Algorithm: Kmeans
 • Recommendation
 Time Series
 Analysis
E6893 Big Data Analytics Project Proposal:

Visualization of Spatial Temporal Patterns of User Tweeting Behavior on Information Diffusion Process

Palash Sushil Matey (pm2824)
Sarat Chandra Vysyaraju (scv2114)
Shivam Choudhary (sc3973)

November 19th, 2015
Motivation

- Lots of data is available on social media websites like Twitter and Facebook which can provide valuable insight to researchers and practitioners in many application domains such as marketing.
- However, an important challenge is to discern the anomalous information behaviours leading to misinformation and rumours from the conventional patterns.
- These anomalous information trends may have a considerable impact and thus, it is very important to model and measure information diffusion patterns in social media.
- The complicated and highly dynamic nature of the data makes it important to involve human supervision in the analysis of anomalous information spreading.
- Thus we propose to develop an interactive visualisation platform to observe the spatio-temporal patterns on Twitter data.
Dataset, Algorithms and Tools

- We plan to use the Target Vue visualisation model, which is somewhat similar and improved version of the FluxFlow tool and then integrate it with the Whisper technique to incorporate the spatio-information of the tweets and re-tweets in the diffusion process.
- Target Vue uses machine learning algorithm based on the OCCRF (One-class conditional random fields) model because of the one-class nature of data (i.e., little knowledge about true anomalies) and highly time-dependent structures.
- Time-adaptive Local Outlier Factor (TLOF) Model - an unsupervised machine learning algorithm to score the users for ranking is used in the Target Vue system.
- The dataset we are going to use will be in the gnip format, with a probable size of 7GB.
 http://support.gnip.com/sources/twitter/data_format.html
- We are planning to implement the back-end analysis on Spark and Hadoop HDFS and then integrate the back-end analysis over to a visual interface.
Current Progress, Schedule and Expected Contributions

<table>
<thead>
<tr>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16<sup>th</sup> Nov - 22<sup>nd</sup> Nov</td>
<td>Background Research and Literature Review</td>
</tr>
<tr>
<td>22<sup>nd</sup> Nov - 30<sup>th</sup> Nov</td>
<td>Implement the pre-processing steps</td>
</tr>
<tr>
<td>30<sup>th</sup> Nov - 10<sup>th</sup> Dec</td>
<td>Implement Data Analysis Tasks (OCCRF and TLOF)</td>
</tr>
<tr>
<td>10<sup>th</sup> Dec - 20<sup>th</sup> Dec</td>
<td>Integrate the processed data with Visual Interface</td>
</tr>
</tbody>
</table>
E6893 Big Data Analytics Project Proposal:

Structural Health Monitoring Of Bridges

Cihat Cagin Yakar cy2364
Karl Bayer ksb2153
Ziyue Jin zj2187

November 19th, 2015
Motivation

Describe the motivation of your project
- Approximately 30% of bridges in the US are beyond their design lifetime.
- Given the aging infrastructure, how can we predict failure or know what to prioritize?

Andy Herrmann: “One of these arch bridges actually has a structure built under it to catch falling deck. See that structure underneath it? They actually built that to catch any of the falling concrete so it wouldn't hit traffic underneath it.”
Dataset, Algorithms and Tools

- Dataset:
 - Simulation Results - Acceleration Response of a Bridge

- Algorithms:
 - Recommendation Algorithms
 - Finite Element Algorithms

- TOOLS:
 - LARSA 4D Finite Element Software
 - OPENBrIM
 - Mahout
Current Progress, Schedule and Expected Contributions

- Build finite element models to define different damaged state of the bridge
- Develop and train recommender to capture current state of bridge
- Damage location detection algorithm

Finite Element Model Generation From Different OpenBrIM SHM Parameters

Specialized Recommendation Engine & Statistical & Bayesian Approaches

Dataset Generation Using Finite Element Simulation Method
E6893 Big Data Analytics Project Proposal:

Cost and Return of College Education in the US

Lian Liu
II2698

November 19th, 2015
Motivation

College Scoreboard Project

US department of Education

https://collegescorecard.ed.gov/data/

Goal: To provide more data than ever before to help students and families compare college costs and outcomes as they weigh the trade offs of different colleges, accounting for their own needs and educational goals.

Data Source: These data are provided through federal reporting from institutions, data on federal financial aid, and tax information.
Dataset

College Scorecard data from 1996 to 2013 for around 8000 schools

<table>
<thead>
<tr>
<th>Category</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>Unique school ID, Location, etc.</td>
</tr>
<tr>
<td>School</td>
<td>Name, Type, Degree type, Religious Affiliation, etc.</td>
</tr>
<tr>
<td>Academics</td>
<td>Programs, etc.</td>
</tr>
<tr>
<td>Admission</td>
<td>Rate, SAT scores, etc.</td>
</tr>
<tr>
<td>Student</td>
<td>Number, Ethnicity, etc</td>
</tr>
<tr>
<td>Cost</td>
<td>Tuition and Fees, etc</td>
</tr>
<tr>
<td>Aid</td>
<td>Loans, etc.</td>
</tr>
<tr>
<td>Repayment</td>
<td>Cohort default rate, etc.</td>
</tr>
<tr>
<td>Completion</td>
<td>Completion rates, retention rates, etc.</td>
</tr>
<tr>
<td>Earnings</td>
<td>Average and median earnings, etc.</td>
</tr>
</tbody>
</table>
Tools: Spark, Python, MongoDB, D3.js

Three main objectives:
1. Summary Statistics and interactive visualization (Spark, MongoDB, python, D3.js)
2. Prediction for a better decision: earnings, cost, completion rate, admission rate, debt? (Spark, Python)
3. School groups: How do schools compare with each other? (Spark, Python)
Automated Ticket Price Drop Reporting

Jake Dosoudil (JD3225)
Jake Wood (JGW2128)
Weiyi Zhou (WZ2333)
Job Automator

Problems with Oozie

- Environment dependent
- Can only run Hadoop jobs
- Compatibility issues
- Very complex

A Better Job Automator

- Environment independent
- Can run any job
- Easy to install/run

New Job Automator Features

- Asynchronous
- Time-based (cron)
- Dependency based
- Simple interface
Applying the Job Automator

Goal:
● Create StubHub ticket price-drop reporter

Implementation:
● Display largest price drops in tickets (~5%)
 ○ using Job Automator on set time intervals
 ○ Organize data based on venue location, event
Block Diagram

User

Jake W.

Front End Interface (node.js) → Database (MongoDB) → Job Automator (Python)

Jake D.

1. Request to StubHub API for ticket prices
2. Write results to file/database
3. Display tickets whose price dropped >5% from previous run

Anne

Runs job every few minutes → Deal Finder (Java/C++)

123

Jake W.

Jake D.

Anne
E6893 Big Data Analytics Project Proposal:

Decentralized Indoor Positioning Based on WLAN Fingerprints

Li Niu
Bin Wang
Chang Liu

November 19th, 2015
Motivation

Location Based Service:
Indoor vs Outdoor

Outdoor: GPS, Galileo satellite navigation system, BDS
Indoor: ZigBee, Bluetooth (iBeacon), WLAN

Building RSS Dataset
AP Selection/ Cluster
Collecting Position Fingerprints
Location Process
Output
Dataset: RSS Position Fingerprints
- Training RSS is collected in advance
- Testing RSS is collected and applied

Data Source:
WLAN RSS is obtained by self-made App
- On-the-spot collecting
- Detected by the sensors of device
- Storing data in txt format

Algorithms:
WLAN Positioning Algorithm
- Fingerprint Indoor Positioning Algorithm
Clustering Algorithm
- k-Means Clustering
Classification Algorithm
- Naïve Bayes
MapReduce

Toolset:
- Java, Hadoop/Mahout, Android API
- Linux based Environment
- Google Nexus 7 Series Pad
Current progress: We did as following:

1. Investigated in current indoor positioning algorithms (e.g. fingerprint positioning algorithm) and compared them;
2. Came up with the project idea using big data to solve the positioning problem;

Schedule:

1. First week(11/19-11/25): collecting and training data, refining our algorithms;
2. Second week(11/26-12/2): analyzing data using proper clustering and classification algorithms, and completing the first version of our project;
3. Third week(12/3-12/9): refining our user interface;
4. Final week(12/10-12/16): refining other part of our project and preparing for the presentation.

Expected contributions:

1. Developing an Android application to collect offline fingerprint dataset;
2. Processing the dataset with clustering and classification algorithms;
3. Developing an application to locate with the advanced offline fingerprints dataset.
E6893 Big Data Analytics Project Proposal:
Target your next READING: Book recommender

Shiyu Dong sd2810
Zewei Jiang zj2173
Zixuan Lu zl2348

November 19th, 2015
Motivation

A system that knows your reading habit even better than yourself

We all like reading. Nowadays, there are just too many books and it might take a while to find a good one. Try a book for couple of days and then realize it is not really good for you is sad. We want to build a system that can recommend right books for the right person like you.

We want to build a book recommendation application. After login, user can see their top rated books based on their personal reading taste. If they don’t like any of these books, they can remove the book from recommendation. Our system will actively learn users’ preferences and keeps updating by time.

The system will support many more features beside the above basic one. It could recommend both on user-based and item-based algorithms. The final goal is a system that knows your reading habit better than yourself!
Dataset, Algorithms and Tools

Dataset: Book-crossing

from http://www2.informatik.uni-freiburg.de/~cziegler/BX/

It contains 278,858 users (anonymized but with demographic information) providing 1,149,780 ratings (explicit / implicit) about 271,379 books.

Algorithms:

User based recommendation and Item based recommendation

Tools:

- Java, Spark, Hadoop and Mahout for the analytics
- Javascript, Python, and R for data gathering, web server, and visualization
Current Progress, Schedule and Expected Contributions

Current Progress:

Data Collection
Preprocess and Analyse dataset
Come up with and select appropriate algorithms
Build user interface and software architecture

Expected contributions:

Enter a book you like and the site will analyse our huge database of all users’ information to recommend books for you as your next suggested read.
Keep updating a reading list for each user.
User can specify reading category, author information, etc and get corresponding recommendations.
E6893 Big Data Analytics Project Proposal:

Data Visualization and Analytics of Columbia’s Website Based on IBM System G

Chen Xu, Yue Yu, Zhongzhu Jiang

November 19th, 2015
The IBM System G
is a comprehensive set of graph computing tools. Its key feature compared
with the traditional analytic systems is that it is designed to deal with the
data linked with each other. And the data on the Internet especially the
links on a website fit this feature very well.

We think using a new tool to do some analytics on the university’s own
website is fun. As there is few data analytics on that, we can show the
construction of the university’s website and find more about our university
in this way.
Dataset, Algorithms and Tools

Dataset: The link information of the Columbia’s website

Tools: IBM System G

Algorithms: PageRank, K-core decomposition, Degree Centrality etc.
Current Progress, Schedule and Expected Contributions

Install and configure IBM System G (finished)

Write a web crawler to obtain link information on Columbia’s websites (ongoing)

Convert the link information into nodes and edges to construct a graph

Data visualization and analytics by using System G
E6893 Big Data Analytics Project Proposal:

Twitter Based Movie Recommendation System

Jingmei Zhao UNI: jz2685
Xing Lan UNI: xl2523
Yao Yang UNI: yy2641

November 19th, 2015
Motivation

Project Motivation:

- Huge commercial market for specialized real-time data based movie recommendation system targeting both business owner and consumer
- Recommend movie lovers with the recent trending movies in their geo location

![Global Box Office Revenues](source.png)

Source: Motion Picture Association of America

![International Box Office Chart](source2.png)
Dataset, Algorithms and Tools

- Training data: Standford AI Lab Large Movie Review Dataset
 http://ai.stanford.edu/~amaas/data/sentiment/

- Data visualization: D3.JS
 http://d3js.org

- Data preprocessing
- Feature Extraction
- Build Linear SVC Model
- Find Sentiment using the built Linear SVC Model
- Calculate the rating from the average of sentiment score

Twitter Data
- Data preprocessing
- Feature Extraction
- Find Sentiment using the built Linear SVC Model
- Calculate the rating from the average of sentiment score

NLTK

Twitter API

PyEnchant a spellchecking library for Python

IMDbPY

scikit learn
Current progress:
 Project goal finalized
 Twitter data structure research initiate

Schedule:
 25/11/2015 Collect and clean up raw data
 30/11/2015 Build up data training model
 06/12/2015 Refine data training model
 13/12/2015 Visualize result and prepare for the presentation
 17/12/2015 Final presentation

Expected Contributions: *of course, we work together on difficult issues
 Jingmei Zhao: focus on twitter data retrieval consolidation and work on modelling
 Xing Lan: primarily looking at training Model with geo tag
 Yao Yang: concentrate on visualization of regionalized recommendation
E6893 Big Data Analytics Project Proposal:

Yelp dataset analysis

Name:
- Yaxin Wang
- Zhibo Wan
- Jingtao Zhu

UNI:
- yw2770
- zw2327
- jz2664

November 19th, 2015
Motivation

➢ Provide more accurate interest recommendation for customers.

➢ Some comments may be useless and we try to extract “bad” comments out.
Dataset, Algorithms and Tools

About the dataset:
- 1.6M reviews and 500K tips by 366K users for 61K businesses.
- 481K business attributes, e.g., hours, parking availability, ambience.
- Social network of 366K users for a total of 2.9M social edges.
- Aggregated check-ins over time for each of the 61K businesses.

Algorithms:
- Clustering, Classification, Recommendation.

Tools:
- Mahout and Spark.
- Java, HTML.
Current Progress, Schedule and Expected Contributions

Current Progress:
- Download yelp dataset.
- Learn to use tools and algorithms.

Schedule:
- By 11/30: finish clustering part.
- By 12/5: finish Classification part.
- By 12/11: finish extra analysis of dataset.
- By 12/16: finish final report and presentation preparation.

Expected Contributions
- Help to identify customers` interests.
- Identify “good” and “bad” commends and figure out the accuracy.
E6893 Big Data Analytics Project Proposal:

Accident Prediction System

Abhijit Roy
Juan Pablo Colomer
Pedro Perez Sanchez

November 19th, 2015
Motivation

- Weather condition is one of the causes of traffic accidents
- Portions of the city are more prone to accidents for a particular weather condition
- Highlight the areas of the city one should avoid for today’s weather conditions
Dataset, Algorithms and Tools

Datasets:
• National Climatic Data Center, NOAA
• NYC OPEN DATA: NYPD Motor Vehicle Collisions

Algorithms:
• Classification: TBD (SVMs, Perceptron, Naïve Bayes)

Tools:
• AWS
• Mahout and/or Mlib
• Hadoop
• Spark
• CartoDB or D3.js
Current Progress, Schedule and Expected Contributions

Current Progress:
• Inception Phase - Complete
• Data Gathering - Complete
• Design Phase - In Progress

Schedule:
• Design Phase to be completed by November 24th, 2015.
• Implementation to be completed by December 10th, 2015.
• Testing to be completed by December 14th, 2015.
• Final slides and Project video demo to be completed by December 16th, 2015

Expected Contributions:
• AWS: Juan Pablo Colomer and Abhijit Roy
• Environment setup: Juan Pablo Colomer, Pedro Perez Sanchez
• Implement ML algorithm: Juan Pablo Colomer, Pedro Perez Sanchez, Abhijit Roy
• UI implementation: Pedro Perez Sanchez, Abhijit Roy
E6893 Big Data Analytics Project Proposal:

Yet Another Evaluation System

Shengtong Zhang(sz2539), Tiezheng Li(tl2693), Ruiqi Duan(rd2704)

November 19th, 2015
Motivation

We focus on implementing the integration of the information of a specific product and making an overall evaluation.
Potential Dataset:

Algorithm:
Build up the dictionary of (picture -> item name & id)
For every input item:
Find all the similar items to the input item using Near Neighbors Algorithm
Extract the list of matching items
Search the Best Buy products API to find all products matching the item and retrieve product ratings and customer review texts
Search Twitter Developer API for Tweets matching the search product, and calculate sentiment
Search NYTimes Articles API for news articles matching the search product.
Calculate the sentiment value of the review text using NLP tools
Return the result to user

Potential Tools: Hadoop, Mahout, Matlab, R, python
Current Progress, Schedule and Expected Contributions

Current Progress

Schedule
- Design
 - System Architecture
 - Core Algorithm
- Development
 - Data Crawling
 - Data Filtration
 - Algorithm Implementation
- Test
 - Function Test
 - Performance Test

Expected Contributions
Shengtong Zhang: Product Manager, Core Algorithm Designer
Tiezheng Li: System Architect
Ruiqi Duan: Data Engineer, Test Engineer
E6893 Big Data Analytics Project Proposal:

Data analysis on soccer team performance

RUI WANG

SHUAIYU HAN

November 19th, 2015
Motivation

Inspired by the homework we have done, we designed this project to analyze the data of a soccer team. My partner and I are both fond of soccer game. We spent lots of time on watching soccer event, visiting media web sites (e.g. Sina, Yahoo) to see comments about the performance of each team. It is common to find out that some critics are prejudiced about some teams. Thus, we generated an idea that we can analyze a teams' performance by ourselves. We can share the results with our friends who have same interests. If it turns out that some critic has misjuged some team, we can put our results on social web site to refute them or even help our favorite team.
Dataset, Algorithms and Tools

• Data set: The data can be downloaded from the web site below: http://www.goalzz.com/.
• Algorithm:
 1. Classification
 Check the relationship between each term and the result of game. (correlation)
 Plot the relationship
 Combine the chosen terms together to see their effects on the result of game (train model: LDA, Random Forest & Classification Tree)
 2. Regression
 Change the target from game results (win, lose or tie) to the goal difference. Change the model from classification to regression.
• Tool: R programming, Hadoop (Mapreduce)
Progress: We have downloaded the data set and made some fundamental tests on the data with Hadoop.

Schedule:

<table>
<thead>
<tr>
<th>Date Range</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov.14 --- Nov. 18</td>
<td>Download data and analyze</td>
</tr>
<tr>
<td>Nov.19 --- Dec.10</td>
<td>Classification</td>
</tr>
<tr>
<td>Dec.11 --- Dec.15</td>
<td>Regresion</td>
</tr>
<tr>
<td>Dec.16 --- Dec. 17</td>
<td>Double check, Presentaion</td>
</tr>
</tbody>
</table>

Expected Contributions: We want to compare our results with the professional analysis of the website. If we have the same analysis of a soccer team, we can conclude that our project is successful. If not, we can put our results on the forum to discuss with soccer fans.
E6893 Big Data Analytics Project Proposal:

Large-Scale Visual Search

Moning Zhang(mz2499), Hongyi Jin(hj2405), Yang Liu(yl3318)

November 19th, 2015
Motivation

Search by image (Already Exist)

Video is more expressive than image, how can we extend image search to video search?
Dataset, Algorithms and Tools

Dataset: More than 1TB videos, cover various categories

Algorithms:

1) Video as “bag of images” (similar to the notion of “bag of words” in document modeling problem)

2) Labeling each image automatically by clustering and image retrieval

3) Using topic model (LDA) to infer the topic distribution for each video

Tools:

C++

CDVS (image retrieval tool)

Hadoop (dataset is quite large)
Schedule and Expected Contributions

By **Nov. 22**: Running CDVS (Yang Liu)

By **Nov. 28**: Set hadoop environment to run HDFS on AWS (Hongyi Jin)

By **Dec. 10**: Training model by dataset (All members)

By **Dec. 20**: Adjusting parameters (Moning Zhang)
Find People just Like You!

A social application clustering similar users

Haowen Pan
Kun Chen
Xuran Li
A new kind of social app that let you meet people who:

- Have similar education background!
- Have similar social status!
- Have similar professions!
- Have similar hobbies!
- Have similar favorite stars!
How this project works

Datasets:

- The names, occupations and schools downloaded by API via LinkedIn
- The names, usernames, tweets with keywords downloaded by API via Twitter
- Identify and merge the two datasets of common users by the names as keys.

Analysis:

- Cluster the users in various fields
- Use system G to present the outcome of adjacent groups
Processes and contributions

Now:

- 3,000 tweets for each user and most recent Tweets (Haowen & Kun)
- Followings of each accounts (Haowen & Kun)
- Presentation (Xuran)

Are downloaded from API

Schedule:

- Nov. 26: Fetch similar data from LinkedIn (Xuran)
- Nov. 30: Merge two sets of data (Haowen)
- Dec. 03: Complete the clustering and mapping of data (Kun and Xuran)
- Dec. 16: Format the final report and presentation (Haowen, Kun & Xuran)
Thank you!
E6893 Big Data Analytics Project Proposal:

Otto Group Product Classification

Qiuyang Shen qs2147
Peng Song ps2839
Yun Sun ys2816

November 19th, 2015
Motivation

The Otto Group is one of the world’s biggest e-commerce companies and sells millions of products worldwide. Everyday there are several thousand products needing to be added to the product line.

- Consistent analysis of the performance of the products is crucial.
- Due to the diverse global infrastructure, many identical products get classified differently.
- The quality of the product analysis depends heavily on the ability to accurately cluster similar products.
Dataset

A dataset with 93 features for more than 200,000 products.

Download Link:

Algorithms

Neural Networks, Random Forest, SVM, Linear Model, XGBoost,
Regularized Greedy Forest…

Tools

Programming Language: Python

Packages: Numpy, Pandas, Scikit-learn, pylearn, scipy…
Current Progress, Schedule and Expected Contributions

Schedule

- Week 1: do a survey on various classification models and algorithms and have a deep understanding of the dataset.
- Week 2: develop models and algorithms to classify products according to their features.
- Week 3: refine models and algorithms and compare them.
- Week 4: visualize the result and prepare for the demo.

Current Progress

Understood the dataset.
Did a survey of various classification models and algorithms.
Work division between team members.

Expected Contributions

- High-accuracy classification results.
- Comparison and analysis between different algorithms.
- Visualization that shows the info of categories and products.
E6893 Big Data Analytics Project Proposal:

Image Quality Assessment with Different Resolution

Youjia Zhang, UNI:yz2797
Zhili Zhang, UNI:zz2361

November 19th, 2015
Motivation

The same image on the screens with different resolutions can derive different subject visual experience.

Images with different degrees of detailed information derive different subject visual experience on the same screen.
Dataset, Algorithms and Tools

Reference image

Target image

extracted characters

subject score

The predicted score

The predicted score

model

model

training

extracted characters
Current progress: defined the general idea of algorithm, collecting appropriate images for subject assessment

Schedule: Grade the image pairs in one week and then figure out the detailed algorithm

Expected contributions: provide information for multimedia providers to improve their service; offer performance evaluation for future compression and coding method in image processing
San Francisco Crime Classification
Final Project – Big Data Analytics

By Sirui Tan, Guihao Liang, Haoyue Bai
BACKGROUND

- Predict the Category of Crimes
- Visualize Dataset to A Crime Map

Fig. 1 San Francisco Map
DATASETS

- Incidents derived from SFPD Crime Incident Reporting systems
- Ranges from 1/1/2003 to 5/13/2015.
- Data Fields

<table>
<thead>
<tr>
<th>Category</th>
<th>Descrt</th>
<th>Day Of Week</th>
<th>Pd District</th>
<th>Address</th>
<th>X - Longitude</th>
<th>Y - Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 An Example of Dataset

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Type</th>
<th>Location</th>
<th>Event</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-01-07</td>
<td>01:52:00</td>
<td>WARRANTS</td>
<td>SOUTHERN</td>
<td>ARREST, BOOKED</td>
<td>122.402843</td>
<td>37.779826</td>
</tr>
<tr>
<td>2003-01-07</td>
<td>04:19:00</td>
<td>WARRANTS</td>
<td>TENDERLOIN</td>
<td>ARREST, BOOKED</td>
<td>122.408495</td>
<td>37.764452</td>
</tr>
<tr>
<td>2003-01-07</td>
<td>05:52:00</td>
<td>WARRANTS</td>
<td>NORTHERN</td>
<td>ARREST, BOOKED</td>
<td>122.417304</td>
<td>37.765167</td>
</tr>
<tr>
<td>2003-01-07</td>
<td>03:34:00</td>
<td>WARRANTS</td>
<td>NORTHERN</td>
<td>ARREST, BOOKED</td>
<td>122.425550</td>
<td>37.766699</td>
</tr>
<tr>
<td>2003-01-07</td>
<td>01:22:00</td>
<td>WARRANTS</td>
<td>SOUTHERN</td>
<td>ARREST, BOOKED</td>
<td>122.405837</td>
<td>37.760861</td>
</tr>
<tr>
<td>2003-01-06</td>
<td>05:30:00</td>
<td>WARRANTS</td>
<td>BAYVIEW</td>
<td>ARREST, BOOKED</td>
<td>122.384507</td>
<td>37.728467</td>
</tr>
<tr>
<td>2003-01-06</td>
<td>05:14:00</td>
<td>WARRANTS</td>
<td>CENTRAL</td>
<td>ARREST, BOOKED</td>
<td>122.417019</td>
<td>37.789110</td>
</tr>
<tr>
<td>2003-01-06</td>
<td>02:49:00</td>
<td>WARRANTS</td>
<td>SOUTHERN</td>
<td>ARREST, BOOKED</td>
<td>122.403405</td>
<td>37.773421</td>
</tr>
<tr>
<td>2003-01-06</td>
<td>02:45:00</td>
<td>WARRANTS</td>
<td>SOUTHERN</td>
<td>ARREST, BOOKED</td>
<td>122.403405</td>
<td>37.773421</td>
</tr>
<tr>
<td>2003-01-06</td>
<td>02:19:00</td>
<td>WARRANTS</td>
<td>NORTHERN</td>
<td>ARREST, BOOKED</td>
<td>122.4158740</td>
<td>37.766803</td>
</tr>
<tr>
<td>2003-01-06</td>
<td>01:54:00</td>
<td>WARRANTS</td>
<td>NORTHERN</td>
<td>ARREST, BOOKED</td>
<td>122.420120</td>
<td>37.787757</td>
</tr>
</tbody>
</table>
METHODS & ALGORITHMS

• Machine Learning Algorithms, e.g. SVM, HMM, ANN
• Spark
• Python-based Machine Learning and Statistics Libraries: pandas, scpy, scikit-learn, matplotlib
• Visualization - making a crime distribution graph based on the map of San Francisco, and a generic table based on crime category.
E6893 Big Data Analytics Project Proposal:

Yelp Recommendation

Yufei Ou(yo2265), Ke Li(kl2831), Ye Cao(c3113)

November 19th, 2015
Motivation

Recommendation is more and more important in modern society.

Review analysis has become a critical reference in recommendation and business strategies nowadays. Exploration into the feedbacks of the users can grant us incredible insights.

Given such untapped treasure of resources, we aim at harnessing the fusion of the review analysis and recommendation, and try to extract valuable advice for business management
Dataset, Algorithms and Tools

- **Dataset:**
 - Yelp Dataset Challenge, including users, businesses, and reviews

- **Algorithms:**
 - KNN, LDA, BP

- **Tools:**
 - Hadoop, Spark, Mahout
Current Progress:
get dataset, design algorithm

Schedule:
Nov.20 - Nov.27 : dataset extraction
Nov. 28 - Dec.5 : algorithm implementation
Dec.6 - Dec.16 : result analysis, prepare for final report

Expected Contributions:
Get recommendation result with high accuracy
E6893 Big Data Analytics Project Proposal:

Earnings Predictor: A system that predicts whether a company will beat consensus earnings estimate

Roberto Martin, Kedar Patil

November 19th, 2015
Motivation

Many analysts are paid to give estimates of earnings for different companies. The consensus earnings estimate is an average of these estimates. This consensus is correct approximately 60% of the time. There are a number of reasons why analysts incorrectly predict earnings for companies:

- Conflicting Interests
- Various Biases
- Manipulation

We think that building a model that is based on past prices and other company data will correct for these shortcomings. The model will not attempt to predict a company’s earnings directly, instead, it will predict whether earnings will beat analysts estimations.
Dataset

• 10 years of daily stock prices from all the stocks in the technology sector (1172 at last count). The data will consist of the following columns: Open, High, Low, Close, Adjusted Close, Volume.

• Possibly also use sentiment data from twitter as an additional feature.

Algorithms

• We will create a model using decision trees and svm and score each to see which performs better. We will use Spark’s MLLib to generate the model.

Tools

• Python
• Spark (PySpark)
• MongoDB
• Openscoring
Current Progress
We are in the data gathering phase at this point. OHLC stock data is being downloaded from Yahoo with a script that runs nightly. Consensus estimates is very hard to come by. We use the Zacks dataset on Quantdl for this. Zacks (https://www.quandl.com/data/ZEEH) and Quantdl was kind enough to give us access to this for free (It costs $1800/year for the cheapest license)

Schedule
1. Finish gathering data – 11/20
2. Aggregate/summarize data – 11/27
3. Setup Big Data Pipeline – 11/24
4. Build model and iterate – 12/11

Expected Contribution
Roberto: Gather Data, Aggregate/Summarize, Setup Pipeline, Build Model
Kedar: Aggregate/Summarize, Pipeline Setup, Build Model
E6893 Big Data Analytics Project Proposal:

Predicting Optimal Daily Fantasy Basketball Rosters

Michael Raimi (mar2260)
Justin Pugliese (jp3571)

November 19th, 2015
Motivation

Daily fantasy, the newest incarnation of fantasy sports, is the fastest growing segment and is currently an over $3 billion industry.

Daily fantasy has been featured heavily in the news over the last few weeks. The Attorney General is currently close to banning it outright in the state of New York following a similar ban in Nevada. The rationale is that daily fantasy is purely luck and is thus illegal gambling. Hopefully we can make an informed evaluation of that statement after performing some research in the daily fantasy sector.

Luckily for us the format of daily fantasy lends itself rather well to certain kinds of optimization. Considering that it’s daily, it also has tons of data waiting to be integrated into predictive models.

Bloomberg
Dataset: We intend to scrape http://rotoguru.net/ which has a few years worth of daily fantasy records. At 82 games a year, across 30 teams and hundreds of players we will have enough data for meaningful predictions.

Algorithms: We want to offer several forms of predictions through clustering (k-means and Gaussian mixtures), optimization (stochastic gradient descent), and recommendation (Euclidean, cosine, Pearson, etc.)

Tools: We have settled on Spark for our Machine Learning algorithms and python for scraping the web. We would like to use HDFS for storage.
Current Progress, Schedule and Expected Contributions

Current progress

1. Git Repository setup
2. Data collection
 a. Evaluate
 b. Parse
 c. Store
3. Algorithm Architecture

Schedule

1. Parse and sanitize to HDFS (1 week)
2. Build prediction pipeline (1 week)
3. Build clustering pipeline (1 week)
4. Build recommendation pipeline (1 week)

Expected Contributions

We plan to collaborate on all aspects of the project including: development, evaluating results, and creating deliverables.
E6893 Big Data Analytics Project Proposal:

Passenger-and-Driver-Based Analytics of NYC Taxi Database

Yunzhe Li UNI: yl3390
Changtai Liu UNI: cl3391
Xiaonan Duan UNI: xd2169

November 19th, 2015
NYC is a highly trafficked city where people valued time and efficiency more.

- **For passengers**
 - Request for special service
 - Difficulty in taking taxi
 - Confusion about estimated cost & tips

- **For driver:**
 - Low passenger load factor
 - Too busy to remember license expiration

With more suggestions and analysis, which hopefully will be provided by our project, both passengers and drivers can make their trip more efficient and convenient.
Dataset, Algorithms and Tools

Dataset

- Green Taxi Trip and Yellow Taxi Trip Data
- Assistance_Trained_Data
 - Pick Up and Drop Off Data (date, longitude and latitude)
 - Trip Distance, Total Amount and Tip amount
 - Drivers License Information and Special Assistance

Algorithms

- Recommendation: item-based, user-based similarity measurement
- Filter: collaborative filtering
- Clustering: k-means

Tools

- Hadoop, Mahout, Eclipse, Pig, Matlab……
- Languages: Java, Pig Latin, Matlab……
Progress:
- Acquired NYC Yellow and Green Taxi database and begun initial testing
- Setup an environment for Java Recommendation and Hadoop distributed system
- Selected algorithms and Tools to complement recommendation, clustering, and filter.

Expected Contributions:
- **Driver-Based**
 - Driver license with Disabled Service expiration date reminder
 - Time based popular pick up location recommendation

- **Passenger-Based**
 - Trip fare and time estimation
 - Tip amount recommendation
 - Popular boarding location recommendation
 - Disabled Service request
E6893 Big Data Analytics Project Proposal:

Analyzing the Yelp Review Dataset with Topic Modeling

Jon Adelson, Kyle DeRosa & Karthik Jayaraman

November 19th, 2015
Motivation

- Use cutting-edge topic modeling techniques to analyze the Yelp Reviews dataset.

- Find a list of differences in topics between high-rating and low-rating reviews for the same business or class of businesses.

- Examine the feasibility of reproducing the Yelp category hierarchy purely by analyzing the review text.

- Use LDA as a baseline and then, as time permits, see what improvements can be achieved by using more cutting edge techniques such as Hierarchical Dirichlet Process Topic Model or Collaborative Topic Models.
Dataset, Algorithms and Tools

- Tools
 - Hadoop + HDFS – distributed document store
 - NLTK – for lemmatization, named entity recognition and other text preprocessing prior to LDA
 - Mahout – For baseline topic modeling using LDA
 - HDP (Hierarchical Dirichlet Process), CTM (Collaborative Topic Modeling), DEF (Deep Exponential Families) – Open source libraries for topic modeling from various academic research groups.
 - Amazon Web Services Elastic MapReduce + S3 – S3 for document storage and EMR to speed up processing by using a cluster
Current Progress, Schedule and Expected Contributions

- Current Status
 Selected dataset for analysis, performed preprocessing to convert it into input format for input to topic modeling tools

- Schedule
 - Before Nov 30th – finish initial preprocessing, run numerous iterations of LDA to find optimal parameters for our dataset
 - Nov 30th – Dec 10th – experiment with more cutting-edge topic modeling techniques such as Deep Exponential Families or Collaborative Topic Modeling
 - Dec 10th – Dec 17th – continue experimentation, create simple web application to act as a front-end to display results, analyze and summarize results for presentation

- Expected Contributions
 - We expect to split the work pretty evenly across all three participants with Jon Adelson playing a slightly greater role in experimenting with newer topic modeling frameworks and Karthik and Kyle playing a slightly greater role in running iterations of LDA to find the optimal parameters, setting up our tools to work on AWS if needed and putting together presentations.
E6893 Big Data Analytics Project Proposal:

New York City Taxi Trips

Kevin Graney

November 19th, 2015
Motivation

The NYC Taxi & Limousine commission provides a dataset containing detailed information about every taxi trip taken in the city. We plan to use this information to gain insights into how New Yorkers use taxis.
Dataset
NYC Taxi & Limousine Commission’s Trip Record Data (2009 through 2015)

A database of NYC attraction locations (e.g. theaters, airports, hotels, etc.)
A database of NYC neighborhood boundaries

Algorithms
Clustering algorithms (e.g. K-means) applied to
 Geographic locations (i.e. trip start and end points as well as attraction locations)
 Trip data (i.e. pairs of start and end points, and possibly duration, fare, etc.)
Possibly some statistical testing around fares for different trips

Tools
HDFS for storing the dataset CSV files
Spark for fast iterative analysis of the dataset and use of its built-in algorithms
Current Progress, Schedule and Expected Contributions

Current progress
2009-2015 TLC dataset is fully downloaded to HDFS
A 16-node Hadoop/Spark cluster with plenty of RAM (200GB/node) is configured and ready for use

Schedule
This project will be broken down into several distinct phases

Phase 1: Clustering start and end points
We will start by clustering start and end locations of trips. This will be done geographically using Euclidean distance.

Phase 2: Giving clusters an identity
Each cluster will be given an identity based on its geographic location. This identity might be an attraction (e.g. Lincoln Center) or a more general term that applies to the area (e.g. Residential if the point is on a primarily residential block).

Phase 3: Clustering trips
Within each identity we will cluster individual trips together. This should help us identify patterns (e.g. Residential UES to Financial District, or Midtown to JFK) that occur in the trips. We may cluster multiple identities together for the purpose of this analysis.

Expected Contributions
Kevin will contribute the entire project
E6893 Big Data Analytics Project Proposal:

Visualization of Machine Learning Algorithms in MapReduce

Yubin Shen
Ziyu He
Jie Yuan

November 19th, 2015
Motivation

Currently, we treat machine learning packages such as Mahout as black boxes – we would like to make an ML package that is more transparent to the user

• Implement ML algorithms in MapReduce on handwritten data

 Random Forest
 Neural Network

• Visualize summary of inputs and outputs into mappers and reducers as a graph (in real time if possible).

• Visualize performance metrics related to the particular algorithm (in real time if possible)

Dataset, Algorithms and Tools

Dataset

- MNIST: vectors of pixel intensity for handwritten numbers

Algorithms

- Machine Learning algorithms: Random Forest, Neural Network
- Neural Network: test the performance of dropout with different drop probabilities

Tools:

- MapReduce: Hadoop, Java
- Parsing Log output of Hadoop: Python
- Visualization: D3.js, javascript

Collapsible Force Layout

http://bl.ocks.org/mbostock/1062288
Current Progress

• Exploring usage of D3.js
• Investigating creation of MapReduce jobs

Schedule

• Parsing of text dataset into appropriate input format
• Implement Random Forest/Neural Network in MapReduce
• Design summary visualizations for algorithm output (e.g. graph showing Mappers and Reducers)
• Try to get the visualizations to update in real time, as the MapReduce job runs

Expected Contributions

• MapReduce implementation: Ziyu, Yubin, Jie
• Transferring data to log files and to front-end: Ziyu, Yubin
• Front end (D3.js): Jie Yuan
E6893 Big Data Analytics Project Proposal:

Visualization and Analysis based on NYC Taxi Trip Data

Xianglu Kong, Guochen Jin, Junfei Shen

November 19th, 2015
Motivation

- Identify popular taxi pick-up & drop-off locations at different time of day
- Help people get taxis more efficiently
- Suggest locations good for taxi drivers to pick up potential passengers
- Present NYC taxi trips information in an intuitive way - visualization
Dataset: NYC Taxi Trip Records

- Date time, longitude and latitude for pick up and drop off
- Passenger count, trip distance, fare amount etc.

Methods

- MapReduce: Count taxi trips in each time period
- Cluster: Find out geographical clusters i.e. popular locations
- Visualize

Tools

- Hadoop, Spark, JavaScript etc.
Current Progress, Schedule and Expected Contributions

- **Schedule:**
 - Step 1: Count taxi trips
 - Step 2: Draw maps
 - Step 3: Find clusters

- **Expected Contributions:**
 - A clear mind of how taxis are distributed and moving in NYC
 - Make finding a taxi in NYC easier
E6893 Big Data Analytics Project Proposal:

Pedestrian Tracking for ATC Shopping Mall

Yan Lu (yl3406)
Mengzhuo Lu (ml3806)
Dingyu Yao (dy2307)

November 19th, 2015
Motivation

Asian Pacific Trade Center (ATC), located in Osaka Japan, is the largest international mall complex in Kansai.

We analyze its pedestrian flow information to help ATC distinguish target client and come up with store deploy strategy.

1. People behavior in ATC shopping mall

2. Difference between single, couple, group shopper.
2. Children ratio among all shoppers
3. Popular area in the shopping mall
A censoring system was set up in ATC shopping mall, which contains multiple 3D range sensors.

The dataset was collected between October 24, 2012 and November 29, 2013, Wednesday and Sunday, 9:40-20:20. It contains 92 days in total.

It tracks people with their height, coordinate, velocity and group interaction, etc.

Pig, Mahout, spark, and so on...

Filter and sort pedestrians by their behavior (Pig), clustering them by coordinates (Mahout), analysis their behavior and give classification for new coming people and groups (spark).
Current progress:
• Gathered ATC pedestrian tracking dataset
• Researched data and environment background
• Developed potential big data analytical methodologies

Schedule:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Research data</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Proposal presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>Filter and sort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clustering and Classification</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td>Final presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
</tbody>
</table>

Expected delivery:
• Find patterns for pedestrian behavior
• Make suggestions to new building construction
E6893 Big Data Analytics Project Proposal:

Analysis of Traffic Accidents in NYC

Shuo Chang (sc3919)
Sheng Qie (sq2179)
Baochan Zheng (bz2269)

November 19th, 2015
Motivation

• New York City ranks number five in the top 10 worst traffic cities in the U.S. by INRIX Traffic Scorecard\(^1\)

• According to Forbes, NYC is 41.1% greater-than-average accident frequency in the U.S.\(^2\)

• Therefore, certain solutions need to be designed, from the analysis of associated dataset, in order to reduce the rate of traffic accidents in NYC

Dataset, Algorithms and Tools

Dataset

• The dataset of traffic accidents in NYC (2012 - 2015) can be downloaded from the following link:

• The accidents information is compiled in the format of DATE, TIME, BOROUGH, ZIP CODE, LATITUDE, LONGITUDE, CONTRIBUTING FACTORS, VEHICLE TYPE etc.

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>BOROUGH</th>
<th>ZIP CODE</th>
<th>LATITUDE</th>
<th>LONGITUDE</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/09/2015</td>
<td>19:00</td>
<td>QUEENS</td>
<td>11413</td>
<td>40.7173906</td>
<td>-74.009884</td>
<td>LAFAYETTE</td>
</tr>
<tr>
<td>11/09/2015</td>
<td>19:00</td>
<td>MANHATTAN</td>
<td>10013</td>
<td>40.7173906</td>
<td>-74.009884</td>
<td>WALKER</td>
</tr>
</tbody>
</table>

Algorithms

• In order to determine the optimal algorithm, we plan to test the performances of various classification and clustering algorithms

• Naïve Bayesian Classifier as a starting point

Tools

• Mahout and Spark
Current Progress, Schedule and Expected Contributions

Current Progress

- **Title**	**Duration (hours)**	**Key**	**Week 8**	**Week 9**	**Week 10**	**Week 11**
Team Formation | 1 | 1 | | | |
Topic Selection | 3 | 2 | | | |
Background Research | 8 | 3 | | | |
Dataset Search | 1 | 4 | | | |
Algorithms Search | 3 | 5 | | | |
Implementation of Naïve Bayesian Classifier | 5 | 6 | | | |

Schedule

- **Title**	**Duration (hours)**	**Key**	**Week 12**	**Week 13**	**Week 14**
Futher Research on Classification and Clustering Algorithms | 10 | 1 | | |
Futher Implementation of Classification and Clustering Algorithms | 20 | 2 | | |
Performance Verification | 1 | 3 | | |
Performance Enhancement | 5 | 4 | | |
Final Report Writing | 10 | 5 | | |
Presentation | 0.5 | 6 | | |

Expected Contributions

- Determine the contributing factor and vehicle type involved in the traffic accidents with the highest frequency, at given time, location etc.
- Propose solutions to reduce the rate of traffic accidents
E6893 Big Data Analytics Project Proposal:

<Twitter Based Youtube Video Recommender>

<Hanyi Du, Baokun Cheng, Zhe Li>

November 19th, 2015
Motivation

Why:
1. Information explosion.
2. People are busy, time is money.
3. Profit.

How:
1. Using Twitter API to acquire user’s tweets.
2. Analyzing these data to get his/her interest.
3. Recommend related video from Youtube.
Dataset, Algorithms and Tools

▲Datasets:
▲Tweets from Twitter API
▲Videos from Youtube API

▲Algorithms:
▲Feature Selection
▲Classification: Decision Trees, Clustering, Naive Bayes, TF-IDF

▲Tools:
▲language: Python (sklearn for NLP and ML algorithms), Scala
▲Tool: Spark
Current Progress, Schedule and Expected Contributions

Current Progress:
1. Got familiar with hadoop, mahout and some related algorithms to deal with and analyze large dataset.
2. Getting familiar with twitter and youtube APIs.

Schedule:
1. First week: parsing twitter dataset part.
2. Second week: Finding youtube videos part.
3. Third week: recommend video to twitter users.

Team Contributions:
1. Hanyi Du: presentation+data&algorithm analysis
2. Baokun Cheng: programming
3. Zhe Li: algorithms choosing and some programming

Expected Result: recommend videos that interest twitter users.
E6893 Big Data Analytics Project Proposal:

Yelp Dataset Visualization and Customized Recommender System

Wendan Kang
Jing Hu

November 19th, 2015
Motivation

Yelp offers a platform for consumers to find restaurants especially through reviews and ratings. A typical search on Yelp displays the best match of the keywords. However, the same keywords will give same search results to different customers so that each customer still has to go though many reviews and ratings before making a choice.

Our project is designed to analyze the Yelp open database and provide customized recommendation based on users’ preference. The database analysis part will include implementation of big data analytical tools such as Hadoop, Hive on AWS EC2 and certain visualization tool. The customized recommender system will include implementation of Yelp API, recommendation algorithms and UI on an android app.
Dataset, Algorithms and Tools

- **Dataset**
 - Yelp Open Dataset

- **Algorithm**
 - Collaborative Filtering Recommender Algorithm

- **Tools**
 - Hadoop
 - Hive
 - AWS
 - Yelp API
 - Tableau (Data Visualization Tool)
 - Java
Current Progress, Schedule and Expected Contributions

✦ Current Progress
 ✦ Dived into the Yelp Academic Dataset
 ✦ Start using Yelp API

✦ Schedule
 ✦ 11/19 — 11/30: Data Pre-Processing and Analysis
 ✦ 12/01 — 12/08: Recommender System
 ✦ 12/09 — 12/16: UI

✦ Expected Contribution
 ✦ Data Pre-Processing and Analysis: Jing Hu
 ✦ Recommender System: Wendan Kang
 ✦ UI: Jing Hu & Wendan Kang
E6893 Big Data Analytics Project Proposal:

* Auction Recommendation for Advertiser *

Qi Xu (qx2155)
Chen Chen (cc3701)
Xiaowen Li (xl2519)
Motivation

As many recommendations aim at the users based on their phrase searching and clicking. We want to design the recommendation for another kind of users, that is, the advertisers. According to the keyword phrases they bid on, we hope to recommend several appropriate keyword phrases for each advertiser.
Dataset, Algorithms and Tools

Dataset

Search Marketing Advertiser-phrase Bipartite Graph (14MB)

Anonymized graph reflecting the pattern of connectivity between advertisers and some of the search keyword phrases they bid on.

- Total nodes: 653,260
- Anonymous phrases ids: 193,582
- Anonymous advertiser ids: 2,278,448
- Edges, representing the act of an advertiser bidding on a phrase.

Algorithms

- Shortest path problem
- Maximum weight matching problem

Tools

- Python: Pre-process dataset
- System G: Graph visualization
- Spark: Process large-scale data
Current Progress, Schedule and Expected Contributions

• **Current progress:**
 We’ve accomplished the first stage of data analysis, converting the raw data into node and edges.

• **Schedule:**
 Approximately 4 weeks:
 Week 1: Organize the raw data
 Week 2: Working on making improvement based on existing algorithm
 Week 3: Utilizing the algorithm on our data and evaluate it
 Week 4: Organize the result and write a final report

• **Expected contribution:**
 Qi Xu: Data analysis and algorithm implementation
 Chen Chen: Algorithm design and implementation
 Xiaowen Li: UI design and implementation
E6893 Big Data Analytics Project Proposal:

RelEx: Relationship Explainer Using Knowledge Bases
Wangda Zhang (wz2295)

November 19th, 2015
Motivation

Given two objects, what is their relationship?

- \(<\text{person}>\) lives in \(<\text{country}>\)
- \(<\text{person}>\) works at \(<\text{institution}>\) located in \(<\text{country}>\)
- \(<\text{person}>\) married to \(<\text{person}>\) born in \(<\text{country}>\)
- ….

Novelty: objects from different domains; relationships are more complex

- Webpages: pagerank
- Facebook friends: common friends, friends of friends

Use knowledge bases for objects from general concepts
Dataset, Algorithms and Tools

Dataset: Yago, DBPedia (knowledge bases extracted from Wikipedia)
Storage: property graphs in graph databases (e.g. Neo4j)

Build a system for explaining relationships:
- Online traversal from both objects
 - May be slow for longer path
 - Which relationship is more important?
- Offline learning:
 - Use object class information (hierarchical classes)
 - Discover path patterns: e.g. random walk
 - Rank path patterns: e.g. logistic regression

Tools: Neo4j for storage, Spark MLlib for learning, Alchemy.js for visualization
Current Progress, Schedule and Expected Contributions

Current Progress: data preparation
 - Load DBPedia into Neo4j using open source importers
 - Implementing online traversal for query processing

Schedule:
 1) Finish online query framework
 2) Perform path pattern learning
 3) Build visualization module
 4) Integrate entire explainer system

Expected Contributions:
 - A prototype system for explaining relationships between general objects
E6893 Big Data Analytics Project Proposal:
Delving into the Q&A network – graph analysis and text mining

Zhen Liang, Xinli Wang
ZI2406, xw2341

November 19th, 2015
Motivation

Q&A platform is increasingly important for students, engineers and scientists sharing their knowledge and get their questions answered. Piazza, Stack Exchange are two of popular forums for us.

As users, we are interested in:
• What are heated discussed topics
• How easily they get their problems solved using such platforms

As developers, we are interested in:
• The problems users are facing and how they can take such information to improve their products and documentation.

Our project addresses such problems by
• Extracting the key statistics out of large amount of users’ data
• Merging similar information to reduce information duplicates.
• Visualizing the “network” of questions, to know what’s the trends and relationships among discussed topics
Dataset, Algorithms and Tools

- **Dataset:** Stack Exchange Data Explorer (SEDE)

Algorithm & Tools:

- Python (getting and cleaning data, topic modeling)
- Spark (clustering, sentiment analysis)
- SystemG, d3.js (visualization)

Expected Contribution:

- Novel application of graph analysis in text and users analysis
- Finding trends in topics and user behaviors.
- Visualization dashboard.

<table>
<thead>
<tr>
<th>Achievement</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Progress</td>
<td>Nov. 19</td>
</tr>
<tr>
<td>Got and cleaned data and performed basic analysis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schedule</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Text Mining (topic modeling, sentiment analysis)</td>
<td>Nov. 20 – Dec. 4</td>
</tr>
<tr>
<td>Graph Analysis</td>
<td>Dec. 4 - 11</td>
</tr>
<tr>
<td>Visualization</td>
<td>Dec 12 - 16</td>
</tr>
</tbody>
</table>
E6893 Big Data Analytics Project Proposal:

<Analysis of Motor Vehicle Accident in NYC>

Team Member Names: Jimin Ge, Xiaowen Zhang, Peiran Zhou

November 19th, 2015
New York City has one of the most extensive and oldest transportation infrastructures across the country. However, NYC is infamous for its world’s most notorious traffic condition for its high rate of motor vehicle accidents. Today, the city is renowned for its commercial and prosperous scene. With the large population of motor vehicle holders in NYC, we noticed that we could use data science tools to probe into this phenomenon.

To achieve this goal:

• Grab dataset of motor vehicle accident reports for NYC
• Analyzing the historical relationship between accidents and time / location
• Build category by descriptions using topic modeling
• Build and train classifier to classify different category, and predict classification result given time and location information
Dataset, Algorithms and Tools

Dataset

NYPD_Motor_Vehicle_Accidents.csv; (https://data.cityofnewyork.us)

Algorithms

1. Naive Bayes Classification
2. K-Means Clustering
3. Latent Dirichlet allocation

Tools

1. Hadoop, Mahout, Hbase
2. R, Python
3. PHP, HTML, JavaScript
Current Progress, Schedule and Expected Contributions

Current Progress

1. Downloaded the data from data.cityofnewyork.us, and transformed the data set into the common CSV format. Also, we have created the train.csv and the test.csv files on the basis of Naive Bayes.

2. Designed the front-end of interactive visualization module.

Schedule

1. Realizing Classification Engine before December.

2. Implementing interactive visualization module about December 10.

3. Test and debug the system, analyzing the statistic result, preparing the final presentation.

Expected Contributions

1. train.csv; test.csv - Naive Bayes Classification / Latent Dirichlet allocation; (Xiaowen Zhang)

2. Motor_Vehicle_Accident-Based Classification Engine; (Jimin Ge, Xiaowen Zhang)

3. D3.js-based visualization for Bayesian networks; (Peiran Zhou, Jimin Ge)

4. PHP-Based Interactive Visualization; (Peiran Zhou)
E6893 Big Data Analytics Project Proposal:

Hospital Charge Data Analysis

Anubha Bhargava
Caleb Perry
Turab Ali

November 19th, 2015
Motivation

• We want to create a useful, problem-solving tool.
• Patients in hospitals want to know the medical expenses prior to receiving care.

We will create a webpage that will:
 1) Allow patients to identify which hospitals offer lower prices
 2) Focus a user’s search on the hospitals closest to them
 3) Give patients an idea of how much their care may cost
Dataset, Algorithms and Tools

• Our primary dataset is the “Inpatient Prospective Payment System (IPPS) Provider Summary for the Top 100 Diagnosis-Related Groups (DRG) – FY2011”

• Sorting the data by how much hospitals charge relative to each other.

• We plan to use the “Google Maps Geocoding API” to geocode a user’s location.

• We will calculate distance in miles between coordinates and sort/filter results by that distance.

• We will create a DRG (Diagnosis-Related Group) lookup

• We plan to tokenize ICD-10 descriptors mapped to DRG codes to train a classifier for user typed input.

• A price range (min and max) will be given including all related groupers adjusted by percent average medical care price increases since 2011.

• Create a Website User Interface
Current Progress, Schedule and Expected Contributions

Current Progress:
- Deadlines identified
- Project goals and definition
- Division of labor

Schedule:
- 11/19/2015 Proposal presentation – begin coding upon project approval
- 12/7/2015 Share code, slides, and report contributions for integration
- 12/10/2015 Team members test, peer review, and update each other’s work
- 12/17/2015 Final project submission

Expected Contributions:

Anubha Bhargava
1) Geocoding addresses and sorting by distance
2) Integrating the final report

Caleb Perry
1) DRG lookup and price range
2) Integrate final presentation

Turab Ali
1) Sorting hospitals by relative cost
2) Website user interface
E6893 Big Data Analytics Project Proposal:

<Twitty-Foodie : Twitter-Based Food Recommendation>

<Tianlong Li, Mei Mei, Shanqing Tan>

November 19th, 2015
Motivation

Twitter users offer a variety of insight about restaurants that is largely missed in various approaches to make best dining choice. We plan to gather such data through Twitter’s streaming API, targeted at tweets about restaurants near our campus, generate useful results in terms of quality and popularity of restaurants for students and residents around campus. To better serve our goal, a visualization front end will also be implemented, aggregating data and curating an appropriate view based on use case and user input.
Dataset, Algorithms and Tools

.Dataset: Twitter Streaming API, both real-time and stored results.

.Tools: Tweepy as Twitter streaming library, Django or Flask for frontend website, Node.js for backend server, Amazon EC2 & S3 & SimpleDB or DynamoDB for hosting visualization website and storing raw as well as parsed data, Amzon SNS&SQS or Kafka or RabbitMQ for message queue services, D3.js and Google Map API or Leaflet for visualization of data, Alchemy API and NLTK for natural language and sentimental analysis, Mahout or Spark for generating recommendation, Pig for batch extracting and processing tweets from raw data, contingent upon further implementation and designing.
Project Strategy

1. Gather Twitter and Instagram data on restaurants near Columbia University.
2. Identify tweets related to restaurants.
3. Create a web-based visualization of the gathered data that shows a map of the restaurants and tweets related to them.
4. Analyze the data to provide users with useful insights about these data, based on specific factors such as number of retweets.
5. Produce a rating system based on the collected data from Twitter.
Current Progress, Schedule and Expected Contributions

• **Current Progress**

 • Deciding on exact algorithms and tools for restaurant recommending.

 • Learning to use unfamiliar tools and frameworks for the project.

• **Project Timeline**

 • Week of 11/16: Gather experimental tweets for processing and trying algorithms.

 • Weeks of 11/23 & 11/30: Build up frontend visualization website and backend server logic using collected raw data for testing.

 • Weeks of 12/07 & 12/13: Deploy all components to AWS, beta testing and initial write-up of reports as well as slides.

 • Last week: Finalize write-up and demo videos.

• **Expected Contributions**

 • Dynamic adjustment of contributions and responsibilities is decided since this is covering a wide range of stacks and they are closely interconnected.
E6893 Big Data Analytics Project Proposal:

Photo Similarity & Recommendation for Journey

Team Members:
- Zhengrong Li (zl2438)
- Xingying Liu (xl2493)
- Sen Lin (sl3773)

November 19th, 2015
The information of photo album is useful. It reveals user’s travel reference

Classic, Modern, Natural, Arts …

We want to implement an App which could recommend some places to visit based on user’s photo album
Dataset, Algorithms and Tools

Dataset

Google Street View, Local photo album

Algorithm

Extract feature:

- Histogram, SURF, SIFT, Shape Detection

Similarity Match:

- Euclidean Distance Similarity,
- Cosine Measure Similarity,
- Nearest-neighbor search

Speed up process:

- Locality Sensitive Hashing (LSH)

Trade-off:

- Accuracy, Speed VS. Reliability, Scalability

Tools

- Hadoop, Pig, OpenCV
Current Progress, Schedule and Expected Contributions

Current Progress
1. Architecture design
2. Research on related algorithms

Schedule:
1. Feature extraction & Similarity computation by 25 Nov
2. Front end by 30 Nov
3. Report by 5 Dec

Contributions
1. Find keypoint features of local image
2. Compute similarity of features of local image and dataset
3. Determine quality of match, find and record five pictures with highest quality
4. Repeat step 1 to 3 until all local images are processed
5. Compute the appearance time of cities in step 3. Find the cities with the highest frequency
E6893 Big Data Analytics:

Yelp Review Analysis and Recommendation

Team Members: *Lan Yang, HongYang Bai, YaZhuo Nan*

November 19th, 2015
Describe Our Topic: Cultural Trends

Lots of aspects,...

- What is the usual lunch time at different area? Do Americans eat late than English or Chinese?
- What is the food preference at different area about a particular food? Is sushi very popular in all states of USA?
- What is the trending of giving tips at different area?

Commercial Contribution
restaurant owners..
customers..
motivation of your project
5 json files contained inside

- `yelp_academic_dataset_business.json`
 keep track of the information of business (address, open/close hours, categories, city, name, stars, delivery,)

- `yelp_academic_dataset_review.json`
 users’ reviews (user id, comment date, stars, text)

- `yelp_academic_dataset_tip.json`
 users’ tip for a business store (user id, tip text, business id)

- `yelp_academic_dataset_user.json`
 users’ information summary (user id, name, helpful, cool, average stars, review count, friends’ id)

- `yelp_academic_dataset_checkin.json`
 Users’ checking information
related to cultural trends:

- **business table**:
 - delivery attribute
 - parking attribute
 - accept credit card, wifi free or not, price range

- **tip table**:
 - tips for a user on a typical business store

- **user table**:
 - a user’s review on some store may also be preferred by his/her friends.
PIG: Manage the Yelp database using the PIG platform for analyzing.

Clustering: K-mean clustering method using Mahout or Spark to cluster users according to their ratings on various venues.

Recommendation: A typical user’s like/dislike on a business store may influence his/her friends’ taste. Create maven project in eclipse, use java to gain recommendation information for a user’s friends.

Visualization: Use IBM System G to visualize the cultural trend disseminating among the Yelp users.
Challenges

• There are might be duplicate data (users, tips, ratings)

• There are might be corrupted data (outliers)

• Association between different datasets may not be quite obvious, various methods might be needed to improve performance

• Datasets may be too large for a single PC to process
Expectation

- Specific data analysis result on a list of cities.
- Visualized presentation of data analysis result
Questions and comments
E6893 Big Data Analytics Project Proposal:

Hot Issue Extractor

Guangshi Chen
Haitian Sun
Sihan Zhao

November 19th, 2015
Motivation

Online Social Media becomes popular now. People leave different comments about the current hot issues on the internet.

We will use big data strategy to analyze all users’ online comments and try to find the current hot issue.
Dataset, Algorithms and Tools

Dataset:
Comments from the users of microsoft forum

Preprocessing:
Tokenize word and normalize sentences

Algorithm:
Pagerank(popular sentences)
Cosine similarity(common words)
Square root is to reduce the effect of the long-sentence to the whole distribution.

Tools:
Spark(python), Mysql
Current Progress, Schedule and Expected Contributions

Schedule:
Now - 11.25: Collecting data and Pre-processing
11.26 - 12.2: Calculation of Similarity
12.3 - 12.6: Extraction of hot issues with pagerank
12.7 - 12.13: Optimization of execution time and more advancement
12.14 - 12.17: Preparing for the final project report

Expected Contributions: to construct an extractor for hot issues from the Internet based on big data analytics.

Writing a python script and deal with the database together
E6893 Big Data Analytics Project Proposal:

Factors Lead to Win NBA Games

Team Members:
Xuhui Wang, Yuantuo Yu, Jiadong Yan

November 19th, 2015
Motivation

- Explore individual sporting interests
 Find out the critical factors lead to win NBA games
 Rebound, Assist, Points, Block and etc.
 Help coach by using the results to strong his team
Dataset, Algorithms and Tools

Covers all NBA basketball stats such as rebounds and assists for every NBA teams from season 1976 to season 2009

Dataset, Algorithms and Tools

- Covers all NBA basketball stats such as rebounds and assists for every NBA teams from season 1976 to season 2009
- Using Pig to list out won rates vs. every single specific stat
- Map-reduce method is deployed to do the job
 - Map stage to pick out a specific stat with won and lost from dataset
 - Reduce phase to combine and deal with the result from map operation
 - Map-reduce has optional finalized stage to make optimization to the results
Currently Progress:
We have found a dataset including rebounds, assists, steals, won rates, and many other basketball stats for every NBA team from 1976 to 2009.

Schedule:
Week 10: analyze the dataset, and list all won rates respected to every single specific stat by using PIG, for example, every single won rate at total rebound number from 30 to 40
Week 11: after having all generated data, we are going to build a diagram to describe the relation between won rate and total rebound number for instance
Week 12: from all the diagram we build, we are going to find out which of those stats contribute relatively more to a win of NBA basketball game

Expected Contributions:
help analyze critical factors lead to a NBA basketball win
help team build with different types of players who are able to contribute those critical factors
help a team know which part they need to emphasize in order to get a better won rate
E6893 Big Data Analytics Project Proposal:

Map-Reduce for Algorithmic Trading

Akshaan Kakar, Alice Berard

November 19th, 2015
Motivation

• Algorithmic Trading
 • Algorithmic trading is a highly competitive sector of global financial markets.
 - Marginal profit per trade is low
 - Potential for profit is high
 • Trading algorithms use metrics and heuristics to generate trading signals.

• Why Big Data?
 • Testing is the most crucial aspect of algorithm development.
 • Involves testing strategies on stock tick data
 - Backtesting
 - Live testing
 • Historical stock tick data (minute/day resolution, multiple symbols)
 • Live stock ticker data: data store keeps expanding with time

• Our Goal
 • To build a trading algorithm testing engine with result visualization
Dataset, Algorithms and Tools

- **Dataset**
 - Platform is data source agnostic
 - We will use historical data for S&P 500 symbols from QuantQuote
 - Live data stream from Yahoo! finance API

- **Algorithms**
 - Map-Reduce paradigm to retrieve time slices of large time series
 - Custom algorithm to apply trading algorithm rules to data
 - Numerical algorithms to compute moving averages, Sharpe Ratio etc.

- **Tools**
 - Hadoop Distributed File System
 - Daemons to update HDFS store in batches
 - Spark atop Hadoop to run trading algorithms
 - Spark visualization modules to depict algorithm performance
Current Progress, Schedule and Expected Contributions

• Progress & Schedule
 • The high-level layout has been confirmed
 • The required data sources have been explored
 • The scope of trading algorithm features supported is to be decided
 • Next step is to implement execution of trading rules and performance viz.

• Expected Contributions
 • We expect to deliver an easy-to-use, inherently distributed, algorithmic trading engine with the following features
 - Extensive backtesting capability
 - Live testing features
 - Performance metric computation
 - Performance visualization
E6893 Big Data Analytics Project Proposal:

Movie clustering and recommendation based on Netflix movie rating data

Tianchun Yang, Ziyi Luo, Pengyuan Zhao

November 19th, 2015
Motivation

Based on the Netflix movie rating data over 17 thousands movies from 480 thousand customers, our group propose to make the following analytics:

1. Movie clustering based on the movie date, rating, number of rating;
2. Movie recommendation for certain customer based on the customer rating record.
3. Based on the clustering result of movie clustering, check whether the recommendation for customers are reasonable.
Dataset, Algorithms and Tools

Dataset information:

- Netflix Prize Data Set (Data size: 2 GB)
- Available online: http://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542ce9a

Note: The dataset is used as a data analysis competition (i.e., rating prediction). Here we use the dataset for different analysis.

Algorithms:

- Clustering algorithm: K-means
- Recommendation algorithm: Knn Item-based recommendation with log likelihood similarity.

Tools:

- Hadoop & Mahout
- AWS amazon cloud computing platform
- Eclipse
Current Progress, Schedule and Expected Contributions

Current Progress:
- The Netflix dataset has been rearranged for clustering and recommendation respectively.
- AWS platform is already available for data analysis.

Schedule:
- Extract files can convert into Hadoop file respectively.
- Launching clustering and recommendation jobs on AWS
- Analysis the results and do technical report
E6893 Big Data Analytics Project Proposal:

League of Legends team builder

Chenli Yuan (cy2403)

November 19th, 2015
Motivation

League of Legends is one of the most popular multiplayer online battle arena game. The decisive factors of a game’s result include: players’ performance, objective control, team strategy and team composition.

This project aims to provide a solution to building a team in League of Legends Fantasy, and similarly, provide professional teams a data based analytical method for better team management.

This project focuses on analyzing pro-players’ performance from past games, and learning each player’s playstyle. For example, aggressive players perform better in fast push strategy, while passive players fit better in a late game team composition.

The analysis helps fantasy users and team managers choose pro-players that fit best into their teams. It also helps with the decision of starting lineup based on players’ recent performance, opponent team, and game strategy.
Dataset Roit API will be used for collecting dataset. A Python script will keep tracking game statistics from chosen pro-players periodically. Data will also backup in MySQL database. https://developer.riotgames.com/api/methods

Algorithms K-means Clustering, Recommendation, Logistic regression

Tools Python, Hadoop, Mahout, MySQL
Current Progress, Schedule and Expected Contributions

Current Progress:

Writing Python script to record statistics of most recent games from chosen pro-players. Most interested in champion selection, game time, KDA, objective control, gold earned, kill participation and so on.

Schedule:
Week_1 Finishing python script, import dataset.
Week_2 Data analyzing using different Algorithms. Compare Fantasy scores before/after applying the method.
Week_3 Apply prediction algorithm to increase win rate.
Week_4 Final Presentation

Expected Contributions:
The goal is to achieve 5%-10% increased win rate in League of Legends Fantasy, and also provide a potential solution for better game strategy making in professional matches.
E6893 Big Data Analytics Project Proposal:

Big Data on RSS Feeds

Team Member:

Jing Chen (CVN)

November 19th, 2015
Motivation

RSS (Rich Site Summary) is utilized to publish frequently updated works, such as news/sports/journals. It allows you to stay informed by retrieving the latest content from the sites that you are interested in. That says, if we could apply Big Data Analytics strategies to RSS feed, it will help process RSS content faster and organize the RSS information better.
Dataset, Algorithms and Tools

- Dataset: will be chosen from various RSS feeds.
- Language: Python, Java, Hadoop
Current Progress, Schedule and Expected Contributions

Just brainstorming ideas and possible algorithms to add to the project, I’m the only person of the team so I will contribute to the whole project.
E6893 Big Data Analytics Project Proposal:

Predicting the United States Presidential election results based on Twitter sentiment

Kirill Alshewski

November 19th, 2015
Motivation

- At least 270 of Electoral College (EC) votes are required to win the election
 - Each state is assigned a certain number of EC votes
 - Candidate with popular vote in a state (can be <50%) receives ALL state’s EC votes
 - Nation’s popular vote has no impact on results: In 2000, Al Gore won the popular vote by more than a half a million votes, but George W. Bush became President

- Knowing state’s public sentiment toward a candidate may help in running a successful campaign
 - Public sentiment toward a candidate in each state allows campaign manager to maximize the effectiveness of the campaign
 - Campaign manager may pinpoint location where additional effort and funding is required to win the state’s EC votes
 - Resources and funding may be re-allocated from “hopeless” to a “battlefield” states

- Monetizing the predictions: IEM-Iowa Electronic Markets
 - Online futures market where contract payoffs are based on real-world events

- Applicable to other areas where campaign management is important
 - Marketing -> analyze target audience
 - Retail -> analyze market for current or future product
Dataset, Algorithms and Tools

✦ Datasets:
 - *Twitter data via Twitter API*
 - *Training/Test dataset: Twitter data manually classified as positive/negative*

✦ Algorithms**:
 - *Naïve Bayes/Complementary Naïve Bayes*
 - *SVM*
 - *Random Forests*
 - *Gradient-boosted trees*
 - *Monte Carlo for simulation of election result*

✦ Tools:
 - *Back end: Ubuntu Server 14.04 LTS on Amazon EC2*
 - *Language: Storage: MongoDB*
 - *Analytics**: Hadoop, Mahout, Spark, Python*
 - *GUI/Visualization: Javascript*

** Currently I’m evaluating various classifiers and tools to produce the most accurate results. In addition, I’m looking at performance of “hybrid” algorithms i.e. Naïve Bayes for vectorization and SVM for classification
Current Progress, Schedule and Expected Contributions

Current Progress:
- Set up Amazon EC2
- Set up Twitter API
- Developed Monte Carlo model to simulate election result (using Python)
- Started evaluation of various classifiers and analytic tools
- Started working on architecture design

Schedule:
- w/e November 27: Complete evaluation of classifiers and architecture design; start writing code; start collecting data via Twitter API
- w/e December 4: Set up all required tools; implement classification algorithm(s); perform test run of entire application
- w/e December 11: Work on fine-tuning the application
- w/e December 17: Prepare project slides and report

Expected Contributions:
- All tasks are performed by Kirill Alshewski
E6893 Big Data Analytics Project Proposal:

Peer and Trend Analysis of US Institutional Investors

Xin Luan Tan (xt2167)

November 19th, 2015
Motivation

In finance, a lot of times the narrative is from the investor's perspective, which is where to invest money or what stocks to buy. Therefore there has been quite a lot of work done to find stock peers to predict or benchmark performance, and to discover potential investment targets.

On the other hand, for a company who is looking for investors to inject capital, they also need a way to find and evaluate potential investors. Most of the peer analysis for an investor is done at a fund level, comparing portfolios of stocks. But not too in depth analysis is done at an institutional level. A company might want to target new investors who are similar to their existing investors. Also, once potential investors are found, the company needs a way to evaluate the list.

The purpose of this project is to find a way to determine peers of an institutional investor, discover trends, and to discover a way to evaluate potential investors.
- Dataset consist of quarterly SEC Form 13F filings, which is required of institutional investment managers with over $100 million in qualifying assets

- I plan on using recommendation techniques in Mahout as a way of finding peers for institutional investors. Each investor has their investment strategies such as allocation across sectors, geography, or exposure to different asset classes. These can be seen as a rating. For example, a technology company would give an investor with 40% allocation in technology stocks and 20% allocation in energy stocks a higher rating as a potential investor than an energy company. The goal is to try to use a combination of different “preferences” to “recommend” similar peers for an investor.

- Clustering would also be an interesting way to partition investors depending on the features used, or to find investors that demonstrate a certain feature profile. The features and parameters will need to be determined by playing around with the data.

- Lastly, I want to explore whether classification techniques can help with the evaluation of a list of investors. The plan is to use a company’s investors and their peers (from recommendation above) to train a classifier to determine whether an investor would invest in the company.

- If time allows, will explore some visualization or UI to display the results and functionality better.
Current Progress, Schedule and Expected Contributions

- Currently in the data collection and formatting phase
- Will allocate a week each for each of the three items in the previous slide
- If successful, will discover a way to find high level peers of an investor based on a combination of features. Currently this is mostly done by matching discrete feature with no ordering in similarity.
- Provide insight into group trends for institutional investors over time
- If successful, provide a novel way to evaluate a list of potential investors
E6893 Big Data Analytics Project Proposal:

Achieving Greater Efficiency Using Machine Classification of Support Tickets

Sam Gabor (sg662) - CVN

November 19th, 2015
Motivation

A typical service organization can receive many free-form support requests emailed to a designated mailbox. Free-form requests received in this manner need to be reviewed, categorized and prioritized by support staff. The process can be very time consuming for a service organization which routinely receives hundreds or thousands of emailed requests per day.

A possible solution to this challenge is to employ machine learning algorithms to automatically classify and prioritize incoming requests. The ultimate goal is to build a streaming interface to examine incoming emails and automatically classify and prioritize in near-time.
The dataset of this application will be many labeled examples of emailed support requests with associated classification and priority extracted from a production system. The data will be partitioned between training and test data.

NOTE: *Since actual live data may be used to develop and experiment with the system, any data sets submitted with this project will be programmatically anonymized to protect the confidentiality of any participating clients.*

The current goal is to implement this project using Scala and Spark’s MLib. However, given MLib’s lack of maturity when compared to Mahout, the project may be implemented using the latter’s environment. The final decision will be made in early December.
Current progress has included:

- Implementation of a data preparation program to extract emails from a Microsoft Exchange mailbox.
- Experimentation with Scala as an implementation language
- Experimentation with Spark’s MLib support
- Experimentation with third party support for text processing, such as Stanford’s NLP libraries

Current schedule calls for:

- Finalizing the choice between Spark and Mahout (12/1)
- Implementation (12/2-12/15)
- Final presentation preparation (12/16)

The project only has one participant responsible for all tasks.
E6893 Big Data Analytics Project Proposal:

Identifying Correlated Stock Pairs

Chris Rohlfs

November 19th, 2015
Motivation

The “pair trade” is a common trading strategy in equity markets.

- Pick two similar stocks (e.g., Target and Walmart)

- Predict “mean reversion”: if the one price deviates from the other, it’s probably due to temporary mis-pricing – buy one and sell the other short to bet that this mis-pricing will self-correct.

- Traders often pick stock pairs based upon what “seem similar” – same industry or the stocks have high correlations historically.

The innovation of this study is to find a systematic way to select mean reverting pairs.

- Identify from historical data which pairs would have led to the most profitable pairs trading strategy on future dates → predict future performance of that trading strategy.
Dataset, Algorithms and Tools

CRSP data on daily stock prices.
 Daily data on 124,750 stock pairs – each possible pair of stocks that are constituents of the S&P 500 Index.
 For each one, x-variables are the daily closing prices of the two stocks over the past 90 days.
 The variable to predict (y) is the amount of profit that a simple pairs trading strategy on that pair would have generated on the next 90 days.

Algorithms:
 Test multiple classification methods including Support Vector Machines and Logistic Regression
 • What method identifies the most profitable pairs? Would simpler approaches (picking same industry or correlated pairs) be as effective?

 • Kernel modification of predictors to allow for potential nonlinearities and interaction effects.

Tools:
 Programming will use a mix of C++, Python, and R.
Progress so far:
- Have pairs trading strategy coded up
- Have dataset of S&P 500 constituents identified, downloaded and cleaned
- Some coding of predicting algorithms complete

Schedule:
- Continue to code, write, and perform data analysis over the next month to produce estimates of the effectiveness of different classification strategies.

Expected contributions:
- Hope to answer the questions:
 • Which are the best pairs?
 • Are those pairs stable over time?
 • Can historical price movements accurately forecast the profitability of a pairs trading strategy?
 • Is there a simple pattern (e.g., correlated stocks, those from certain industries or geographic regions) that can predict which pairs are best for mean reversion trading?
E6893 Big Data Analytics Project Proposal:

Live Portfolio

Paresh Thatte – pat70

Manjiri Phadke – mp3212

November 19th, 2015
Describe the motivation of your project

Rebalancing of a large set of portfolios is a periodic activity that large teams and in-house products are constructed around. Running these in batches is typically how this is done, and in some cases unavoidable.

Doing these in real-time and using the same operations to run scenarios as for batch processing allows for more nimble strategies and more confidence in performing actions.

Any change in position requires the portfolio to be recalculated. As the size of the portfolio and the number of portfolios affected grows, the number of operations that need to be performed keeps growing.

Using open source technologies that scale out and support automatic repartitioning allow implementations to focus on the task at hand – run the formulas.
Dataset, Algorithms and Tools

- Spark (Streaming)
- Messaging (Kafka)
- RESTful backend (Vertx - Spring/Scala, Java/JavaScript)
- MySQL in memory

- Sample portfolios (mix of asset classes)

- Streaming market data
- Streaming trade confirmations
- Research mode

- Recalculate position based on trade
- Recalculate value based on market data
- Allow scenarios to be run in research mode
Current Progress, Schedule and Expected Contributions