EECS E6893 Big Data Analytics - Fall 2024

Homework Assignment 2: Steaming Big Data
Analytics & Data Analytics Pipeline

Due Friday, October 18th, 2024, by 5:00pm

Streaming Analytics

Abstract: In this section, we will demonstrate how to handle live streaming data, where information is
received in real-time. Here, analytical operations need to be performed dynamically as the data arrives,
without having a central repository of all the data to refer to. While the ideal choice would have been
Twitter Streaming, due to recent organizational changes and the complexity of accessing the data, we will
instead use the Polygon API. By making frequent requests to this API for stock price data, we will simulate
streaming analysis and showcase the process of handling real-time data.

Note: We are pulling data in real-time but the data is not from the same day. Polygon API (free version) doesn’t support
pulling realtime stock data but we are emulating a real-time stream from previous business day using a Spark session.

Setup:

Step 1: Create your account using your Columbia email 1D on Polygon

Step 2: Login and Save your API Key (You will use your own unigque API key in the following exercise)
Step 3: Create your GCP Dataproc Cluster as done for previous assignments.

Step 4: In your Dataproc cluster’s Jupyter notebook run the following to install the Polygon api

Skeleton Code:
To pull data from Polygon for a particular stock — the syntax is as follows:

v [1] !pip install polygon

¥ [2] !pip install pandas pyspark requests polygon-api-client

~ Sample Python code to pull data from Polygon API

[1@] !pip install requests pandas

import pandas as pd
¥ [33) BASE_URL = 'https://api.polygon.io*

[34] def get_histdata_polygon(ticker, start_date, end_date, timespan, multiplier):
url = f"{BASE_URL}/v2/aggs/ticker/{ticker}/range/{multiplier}/{timespan}/{start_date}/{end_date}?apiKey={API_KEY}"
response = requests.get(url)
if response.status_code == 280:
data = response.json(}
df = pd.DataFrame(datal'results'])

df['timestamp'] = pd.to_datetime(df['t'], unit='ms")

columns = ['timestamp', 'o', 'h', 'l*, 'c', 'v']

df = df[['timestamp’, ‘o', ‘'h*, ‘1, ‘c', *v'l]

df.columns = ['timestamp', 'open’', "high', 'low', "close', 'volume']

df.set_index('timestamp', inplace=True)

return df
elif response.status_code == 483:

print("Error 483: Forbidden. Check your API key and subscription plan.")
else:

print(f"Error: {response.status_code} - {response.text}")
return pd.DataFrame()


https://polygon.io/dashboard
https://polygon.io/dashboard
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ticker = 'AAPL'
start_date = '2024-10-03"'
end_date = '2024-18-04'

timespan = 'minute' # Can be 'minute', 'hour", ‘'day’', etc.
multiplier = 1 # For S5-minute intervals

data = get_histdata_polygon(ticker, start_date, end_date, timespan, multiplier)
print(data)

open high low close volume

©

timestamp

2024-10-03 0B:00:00 226.2000 226.2000 226.2000 226.2000 1143.0
2024-10-03 08:01:00 225.9100 225.9100 225.8400 225.8400 1235.0
2024-10-03 @B:02:00 225.9802 226.0000 225.9800 226.0000 629.8
2024-10-03 098:03:00 226.0000 226.0000 225.9500 225.9500 493.9
2024-10-03 ©8:04:00 225.8000 226.0000 225.8000 226.0000 756.0
2024-10-04 23:53:00 226.4899 226.4899 226.4899 226.4899 152.0
2024-10-04 23:54:00 226.4600 226.4600 226.4600 226.4600 519.0
2024-10-04 23:55:00 226.4220 226.4500 226.4220 226.4500 423.0
2024-10-04 23:56:00 226.4200 226.4600 226.3700 226.3700 2134.0
2024-10-04 23:59:80 226.3745 226.3745 226.3745 226.3745 266.0

[1386 rows x 5 columns]

This code needs to be modified as per the requirements of the question. A detailed explanation of the
variables in the response can be found on the website and also given below.

¢+ number

The close price for the symbol in the given time period.

h#* number

The highest price for the symbol in the given time period.

1% number

The lowest price for the symbol in the given time period.

n integer

The number of transactions in the aggregate window.

o# number

The open price for the symbol in the given time period.

otc boolean

Whether or not this aggregate is for an OTC ticker. This field will be left off if false.

t= integer

The Unix Msec timestamp for the start of the aggregate window.

v* number

The trading volume of the symbol in the given time period.

vw number

The volume weighted average price.

Tasks (20 points)
Read all 3 parts collectively to decide the approach to be taken.

(1) Pull the stock data of “AAPL” at 1-minute level data resolution every 5 minutes. Each such pull
made once every 5 minutes should have data from the (current timestamp - one hour) to the current
timestamp when you hit the api i.e. one hour's worth of data in each pull. Let this process run for 30
minutes. At the end of your program, your code should have generated ~1.5 hours’ worth of data for
the stock and the api should have been called 7 times (once every 5 minutes, over a period of 30
minutes).

(2) In each data pull, the data should be incrementally loaded into a Spark data frame where the
dataframe schema will be [‘Stock Name’, “UTC Timestamp”, “c”, “I”, ’h”, ”0”, ”v’] where UTC
timestamp will be obtained by converting the UNIX timestamps of each entry the api call will
return under the “t” key.



Incremental loading entails fetching data in stages. Initially, data covering an hour, say from
timestamp X to x+60 minutes, is retrieved and stored in a dataframe. In the subsequent pull, fetch
data from x+5 minutes to x+65 minutes. The data from x+5 to x+60 minutes, already present in the
dataframe, gets replaced by the new pull (though it might remain the same in our exercise, real-
world scenarios could witness changes in the same data points pulled at different intervals.

HINT: To do this filtering operation explore the concept of antijoins). The data points from x+60
to x+65 minutes are directly added. This process is repeated for all pulls within the next 30
minutes, resulting in a data frame containing data from x to x+1.5 hours. (It may exactly not be
1.5hours since the api sometimes may not return the exact timestamp till which you request due to
lags and afew datapoints maybe missing here and there which is fine)

Sample flow of incremental update operation:

Final dataframe state after

Data Currently in dataframe Data from latest api pull incremental update
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(3) Every 5 minutes, after inserting data into the dataframe created in part (2), compute the 30-minute
moving averages for each stock's "c", "I", "h", "0", and "v" values. Store these moving averages
incrementally in a separate PySpark dataframe with the schema ["Datetime”, "c_MA", "I_MA",
"n_MA", "o_MA", "v_MA"], where "Datetime" represents the end timestamp of the moving
average window.

Moving Averages for the data Moving Averages for all the data present
called till 2023-10-02 22:42:00 after next api call at 2023-10-02 22:46:00
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IMPORTANT NOTE: The data should be pulled anytime between 12pm — 4pm between Monday — Friday
since that is the only time you will get real time stock data from this API, when the markets are operational.
Plan your assignment timeline accordingly. You will most probably not be able to pull data outside these
timings accurately and on weekends.



Airflow Data Pipelining:

Task 1 Helloworld (35 pts)

Q1.1 Read through the tutorial slides and install Airflow either on your local laptop or on a VM of GCP.
You can also use google cloud composer if you know how to use that. (20 pts)

(1) Provide screenshots of terminals after you successfully start the webserver and scheduler.

(2) Provide screenshots of the web browser after you successfully login and see the DAGs.

Q1.2 Run helloworld with SequentialExecutor (15 pts)
(1) Provide screenshots of Tree, Graph, and Gantt charts after execution. (10 pts)
(2) Explore other features and visualizations you can find in the Airflow Ul. Choose two
features/visualizations (other than tree, graph, and Gantt), explain their functions and how they
help monitor and troubleshoot the pipeline, use helloword as an example. (5 pts)

Task 2 Build workflows (45 pts)

Q2.1 Implement the DAG below (20 pts)
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(] Python operators
| | Bash operators

For each kind of operator, use at least 3 different commands. For example, you can choose sleep, print,
count functions for Python operators, and echo, run bash script, run python file for Bash operators.

(1) Provide screenshots of Tree and Graph in airflow. (5 pts)

(2) Manually trigger the DAG and provide screenshots of Gantt. (10 pts)

(3) Schedule the first run immediately and then schedule running the program every 30 minutes.
Describe how you decide the start date and schedule interval. Provide screenshots of running
history after two repeats (first run + 2 repeats). On your browser, you can find the running
history. (5 pts)



Q2.2 Stock price fetching, prediction, and storage every day (25 pts)

(1) Schedule fetching the stock price of [AAPL, GOOGL, META, MSFT, AMZN]. Use Yahoo!
Finance data downloader https://pypi.org/project/yfinance/.

(2) Preprocess data if you think necessary.

(3) Train/update 5 linear regression models for stock price prediction for these 5 corporates. Each
linear model takes the “open price”, “high price”, “low price”, “close price”, “volume” of the
corporate in the current day as the feature and predicts the “high price” for the next day.

(4) Calculate the relative errors for the last 5 days, i.e., (prediction made from yesterday’s data
for today - actual price today) / actual price today and update the prediction date and 5 errors
into a table, e.g., a csv file.

(5) Provide screenshots of your code, the resultant errors csv, and the Airflow DAG. Describe with
screenshots briefly how to build this workflow, e.g., what the DAG is with the various tasks, how
you manage the cross tasks communication, how you setup the airflow scheduler...

Pointers for Q2.2: (You have to think how to create the different tasks and the overall Airflow
execution DAG based on the question requirements, below are pointers that may give you some ideas)
- Pull historical data for each corporate till the current date and store data for each in a csv. (Set
period in history to “max” yf.Ticker(company _tag).history(period="max"))

- Use this csv to incrementally train the linear regression models for each corporate’s data. The
dataset for each model X and y should be created such that each X(d) = [“open price”, “high

price”, “low price”, “close price”, “volume”] of date d and the corresponding y = “High price”
for date d+1 as stated in the question.

- Assume current date (the date till which you have pulled the data) is d_current.

For each corporate,

o Train/Update a model using data from [X,y] till (d_current — i days) and use this model
to predict the y for the (d_current — (i-1) day). Repeat the training and prediction for i =
5,4,3,2,1 (make predictions for last 5 days and calculate relative errors for each
prediction)

o For each value of i keep storing the relative errors in a csv for each model for each
corporate on each of the 5 testing days.

o The final errors csv should look something like below:

If the latest date till which you pulled data was 11/30/2022 then your final errors csv
should look like:

A B C D E F G k
1 Date APPLE GOOGLE META MICROSOf AMAZON
2 0 11/26/2022 -0.00501 -0.00083 -0.001 -0.00167 0.005777
3 1 11/27/2022 -0.00091 -0.00755 -0.00097 -0.00698 -0.00609
4 2 11/28/2022 0.026959 0.007073 0.005526 0.003579 0.008291
5 3 11/29/2022 0.019557 0.0088 0.008127 0.011455 -0.0204
6 4 11/30/2022 0.009074 0.010989 -0.00189 0.009092 0.014896

To give an example: the value in cell C2 represents the relative error produced by the
linear regression model trained on Apple data till 11/25/2022 and the prediction made
for 11/26/2022. Similarly, the value in cell C3 represents the relative error produced by
the updated linear regression model trained on Apple data till 11/26/2022 and the
prediction made for 11/27/2022. The value in cell F6 represents the relative error
produced by the linear regression model trained on Microsoft data till 11/29/2022 and
the prediction made for 11/30/2022.
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https://pypi.org/project/yfinance/

Homework Submissions
Streaming Analytics:

- PDF with screenshots of your code, brief explanation of the code worflow
and the results i.e. dataframe holding the streamed data and the dataframe
holding the moving averages.

- Code file for Streaming Analytics section

Airflow:
- Provide your screenshots, answers and code as mentioned in the individual questions.
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