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Introduction

Suppose the doctor is trying to 
determine if a patient has inhalational 
anthrax.  She observes the following 
symptoms:

• The patient has a cough

• The patient has difficulty in breathing

• The patient has a fever
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Introduction

Dealing with uncertainty:

You would like to determine how likely the 
patient is infected with inhalational anthrax 
given that the patient has a cough, a fever, 
and difficulty breathing
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Introduction

New evidence: X-ray image shows that the 
patient has a wide mediastinum.

Belief update: your belief that the patient  is 
infected with inhalational anthrax is now 
much higher now.
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Introduction

• In the previous slides, what you observed affected your 
belief that the patient is infected with anthrax
• This is called reasoning with uncertainty
• Wouldn’t it be nice if we had some tools for reasoning 

with uncertainty? In fact, we do…
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Bayesian Network Has Anthrax

Cough Fever Difficulty Breathing Wide Mediastinum

• Need a representation and reasoning system 
that is based on conditional independence
• Compact yet expressive representation
• Efficient reasoning procedures

• Bayesian Network is such a representation
• Named after Thomas Bayes (ca. 1702 –1761)
• Term coined in 1985 by Judea Pearl (1936 – )
， 2011 winner of the ACM Turing Award

• Many applications,  e.g., spam filtering, speech 
recognition, robotics, diagnostic systems and 
even syndromic surveillance

Judea Pearl

Thomas Bayes 
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Probabilities

The sum of the red and 
blue areas is 1

P(A = false)

P(A = true)

We will write P(A = true) to mean the probability that A = true.

One definition of probability: the relative frequency with which an 
outcome would be obtained if the process were repeated a large number 
of times under similar conditions
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Conditional Probability
• P(A = true | B = true) : Out of all the outcomes in which B is 

true, how many also have A equal to true
• Read as: “Probability of A given B”

P(F = true)

P(C = true)

F = “Have a fever”
C = “Coming down with cold”

P(F = true) = 1/10
P(C = true) = 1/15
P(F  = true | C = true) = 1/2

“Fever are rare and cold is rarer, but if 
you’re coming down with cold there’s a 
50-50 chance you’ll have a headache.”



13

The Joint Probability Distribution
• P(A = true, B = true) :“the probability of A = true and B = true”
• Notice that:

P(F=true|C=true)

P(F = true)

P(C = true)
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The Joint Probability Distribution

• Joint probabilities can be between any 
number of variables
e.g. P(A = true, B = true, C = true)

• For each combination of variables, we 
need to say how probable that 
combination is

A B C P(A,B,C)
false false false 0.1
false false true 0.2
false true false 0.05
false true true 0.05
true false false 0.3
true false true 0.1
true true false 0.05
true true true 0.15

Sums to 1



15

The Joint Probability Distribution

• Once you have the joint probability 
distribution, you can calculate any 
probability involving A, B, and C

• Note: May need to use 
marginalization and Bayes rule, 

A B C P(A,B,C)
false false false 0.1
false false true 0.2
false true false 0.05
false true true 0.05
true false false 0.3
true false true 0.1
true true false 0.05
true true true 0.15Examples of things you can compute:

• P(A=true) = sum of P(A,B,C) in rows with A=true

• P(A=true, B = true | C=true) = 

P(A = true, B = true, C = true) / P(C = true)
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Independence
Variables A and B are independent if any of the 

following hold:
• P(A,B) = P(A) P(B)
• P(A | B) = P(A)
• P(B | A) = P(B)
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Independence
How is independence useful?
• Suppose you have n coin flips and you want to 

calculate the joint distribution P(C1, …, Cn)
• If the coin flips are not independent, you need 2n

values in the table
• If the coin flips are independent, then
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Conditional Independence
• C and A are conditionally independent given B if the following 

holds:
P(C | A, B) = P(C | B)
• Example: “Cancer is a common cause of the two symptoms: a 

positive X-ray and dyspnoea”

• Joint distribution: 
P(A,B,C)=P(C/A,B)P(A,B)=P(C/B)P(A,B)=P(C/B)P(A/B)P(B)

A

B

C

Lung 
cancer

X-ray
dyspnoea
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A Bayesian Network
A Bayesian network is made up of:

A P(A)
false 0.4
true 0.6

A

B

C D

A B P(B|A)
false false 0.03
false true 0.97
true false 0.6
true true 0.4

B C P(C|B)
false false 0.3
false true 0.7
true false 0.8
true true 0.2

B D P(D|B)
false false 0.01
false true 0.99
true false 0.04
true true 0.96

1. A Directed Acyclic Graph

2. A set of tables for each node in the graph: conditional probability table
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A Directed Acyclic Graph

A

B

C D

Each node in the graph is a random 
variable

A node X is a parent of another node Y if 
there is an arrow from node X to node Y
e.g. A is a parent of B

an arrow from node X to node Y
means X has a direct influence on 
Y



A Set of Tables for Each Node
Each node Xi has a conditional probability distribution 

P(Xi | Parents(Xi)) that quantifies the effect of  the parents on the node 
except the root node

A

B

C D

A P(A)
false 0.4
true 0.6

B C P(C|B)
false false 0.3
false true 0.7
true false 0.8
true true 0.2

A B P(B|A)
false false 0.03
false true 0.97
true false 0.6
true true 0.4

B D P(D|B)
false false 0.01
false true 0.99
true false 0.04
true true 0.96
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Bayesian Networks

Two important properties:
1. Encodes the conditional independence relationships between the 

variables in the graph structure
2. Is a compact representation of the joint probability distribution 

over the variables
A

B

C D
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Conditional Independence
The probability distribution for each node depends only on its parents
C1 and C2 are conditionally independent given X

X

P1 P2

C1 C2
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The Joint Probability Distribution
Due to the conditional independence property, the 
joint probability distribution over all the variables X1, 
…, Xn in the Bayesian net can be computed using the 
formula:
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Using a Bayesian Network Example
P(A = true, B = true, C = true, D = true)
= P(A = true) * P(B = true | A = true) * 

P(C = true | B = true) *P( D = true | B = true) 
= (0.6)*(0.4)*(0.2)*(0.96)

A

B

C D
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Using a Bayesian Network Example
P(A = true, B = true, C = true, D = true)
= P(A = true) * P(B = true | A = true) * 

P(C = true | B = true) *P( D = true | B = true) 
= (0.6)*(0.4)*(0.2)*(0.96)

A

B

C D
A P(A)
false 0.4
true 0.6

A B P(B|A)
false false 0.03
false true 0.97
true false 0.6
true true 0.4

B C P(C|B)
false false 0.3
false true 0.7
true false 0.8
true true 0.2

B D P(D|B)
false false 0.01
false true 0.99
true false 0.04
true true 0.96

from the graph structure

From the conditional 
probability tables



Another example
• I'm at work, neighbor Jeff calls to say my alarm is ringing, but neighbor Mary doesn't call. 

Sometimes it's set off by minor earthquakes. Is there a burglar?

• Variables: Burglary, Earthquake, Alarm, JeffCalls, MaryCalls

• Network topology reflects "causal" knowledge:

• A burglar can set the alarm off
• An earthquake can set the alarm off
• The alarm can cause Mary to call
• The alarm can cause Jeff to call
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Another example: Earthquake or Burglar

A:Alarm

M:Mary Calls J:Jeff Calls

B:Burglary E: Earthquake
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Bayesian Network for Alarm Domain

A:Alarm

M:Mary Calls J:Jeff Calls

P(B) P(E)
.001 .002

B     E     P(A)
T     T       .95
T     F       .94
F     T       .29
F     F       .001

A    P(J)A   P(M)
T     .70
F     .01

T     .90
F     .05

B:Burglary E:Earthquake

P(J =true, M=true, A=true, B=false, E=false)
= P(J =true |A =true)P(M =true |A =true)P(A =true |B =false, E =false)P(B =false)P(E =false)
= 0.9 * 0.7 * 0.001 * 0.999 * 0.998 = 0.00062
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Inference
• How can one infer the (probabilities of) values of one or more 

network variables, given observed values of others?
• P( X | E )

• Bayes net contains all information needed for this inference
• If only one variable with unknown value, easy to infer it
• In general case, problem is NP hard

X = The query variable(s)

E = The evidence variable(s)
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Inference: example

• An example of a query would be:
P(Anthrax = true | Fever = true, Cough = true)

• Note:  Even though HasDifficultyBreathing and HasWideMediastinum
are in the Bayesian network, they are not given values in the query 

• They are treated as unobserved variables

Has Anthrax

Has Cough Has Fever Has Difficulty Breathing Has Wide Mediastinum



Inference in Bayesian Network

• Exact inference:
Variable Elimination
Junction Tree

• Approximate inference:
Markov Chain Monte Carlo
Variational Methods  
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From Bayesian Network to Junction Tree – Exact Inference• Conditional dependence among random variables 
allows information propagated from a node to another 
⇨ foundation of probabilistic inference

Bayes’ theorem can not be applied 
directly to non-singly connected 
networks, as it would yield erroneous 
results

Given evidence (observations) E, 
output the posterior probabilities of 
query P(Q|E)

Therefore, junction trees are used to implement exact inference

NP hard

node → random variable
edge → precedence relationship
conditional probability table (CPT)

Not straightforward
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Conversion of Bayesian Network into Junction Tree

– Parallel Moralization connects all parents of each node
– Parallel Triangulation chordalizes cycles with more than 3 edges
– Clique identification finds cliques using node elimination

• Node elimination is a step look-ahead algorithms that brings challenges in processing 
large scale graphs

– Parallel Junction tree construction builds a hypergraph of the Bayesian 
network based on running intersection property

moralization triangulation clique 
identification

Junction tree 
construction
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Constructing Junction Trees

1. Moralization: construct an undirected graph from the DAG
2. Triangulation: Selectively add arcs to the moral graph
3. Build a junction graph by identifying the cliques and separators
4. Build the junction tree by find an appropriate spanning tree
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Step 1: Moralization: marry the parents

a

b c

d e

f

g

h

a

b c

d e

f

g

h

a

b c

d e

f

g

h

1. For all w Î V:
• For all u,vÎparents(w) add an edge e=u-v.

2. Undirect all edges.

GMG = ( V , E )



39

Step 2: Triangulation

Add edges to GM such that there is no cycle
with length ³ 4 that does not contain a chord.

NO YES

a

b c

d e

f

g

h

a

b c

d e

f

g

h

GM GT
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Step 3: Build the junction graph

• A junction graph for an undirected graph G is an undirected, labeled 
graph.
• Clique: a subgraph that is complete and maximal.
• The nodes are the cliques in G.
• If two cliques intersect, they are joined in the junction graph by an 

edge labeled with their intersection. (separators)



41

a

b

d

a

c

e
d e

f

a

d e
e

g

h

c

e

g

a

b c

d e

f

g

h

Bayesian Network
G = ( V , E )

a

b c

d e

f

g

h

a

b c

d e

f

g

h

Moral graph GM Triangulated graph GT

abd

ade

ace

ceg

eghdef

ad ae ce

de eg

separators

Junction graph GJ (not complete) e.g.   ceg Ç egh = eg Cliques
e

e

e

a

e
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Step 4: Junction Tree

•A junction tree is a sub-graph of the junction graph 
that 
• Is a tree 
• Contains all the cliques (spanning  tree)
• Satisfies the running intersection property:

for each pair of nodes U, V, all nodes on the path 
between U and V contain 
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Step 4: Junction Tree (cont.)

• Theorem: An undirected graph is triangulated if and only if its junction 
graph has a junction tree
• Definition: The weight of a link in a junction graph is the number of 

variable in the label. The weight of a junction tree is the sum of 
weights of the labels.
• Theorem: A sub-tree of the junction graph of a triangulated graph is a 

junction tree if and only if it is a spanning of maximal weight
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Junction graph GJ (not complete)

abd

ade

ace

ceg

eghdef

ad ae ce

de eg

e

e

e

a

e

abd

ade

ace

ceg

eghdef

ad ae ce

de eg

Junction tree GJT

There are several methods to find MST.
Kruskal’s algorithm: choose successively a link of
maximal weight unless it creates a cycle.



Inference using junction tree
• Potential ∅!: a function that maps each instantiation x of a set of variables X into a nonnegative real number
• Marginalization: suppose 𝑋 ∈ 𝑌, ∅"= ∑"\$∅"
• Constraints on potentials 

1)  Consistency property : for each clique X and neighboring separator S, it holds that

2)  The potentials encode the joint distribution P(U) of the network    
according to 

• Property: for each clique/separator, it holds that ∅! = 𝑃 𝑋
That means, for any variable 𝑉 ∈ 𝑋, we can compute its marginal by 



Inference without evidence

from Huang&Darwiche, 1996



Initialization

from Huang&Darwiche, 1996



Example for initialization

from Huang&Darwiche, 1996



Global propagation

• Single message pass
Consider two adjacent clusters X and Y with separator R. 
A message pass from X to Y occurs in two steps:

X yR

from Huang&Darwiche, 1996



Global propagation

from Huang&Darwiche, 1996



Marginalization

• Once we have a consistent junction tree, we can compute P(V) for 
each variable of interest V by computing the marginals.

from Huang&Darwiche, 1996



Inference with evidence

from Huang&Darwiche, 1996



Observations and Likelihoods

• An observation is a statement of the form 
• Observations are the simplest forms of evidence.
• Collections of observations denoted by E.
• Define likelihood to encode observations:

from Huang&Darwiche, 1996



Example of likelihood encoding

• Suppose we have observations C =on, E = off

from Huang&Darwiche, 1996



Initialization with observations



Observation entry

from Huang&Darwiche, 1996



Normalization

from Huang&Darwiche, 1996



Approximate inference

• Exact inference is feasible in small to medium-sized networks
• Takes a very long time for large networks
• Turn to approximate inference techniques which are much faster and 

give pretty good results



Sampling

• Input: Bayesian network with set of nodes X
• Sample = a tuple with assigned values 

s=(X1=x1,X2=x2,… ,Xk=xk)
• Tuple may include all variables (except evidence) or a 

subset 
• Sampling schemas dictate how to generate samples (tuples) 
• Ideally, samples are distributed according to P(X|E)



Sampling algorithms

• Gibbs Sampling (MCMC)
• Importance Sampling
• Sequential Monte-Carlo (Particle Filtering) in Dynamic 

Bayesian Networks
• etc.



A list of Python libraries
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Original Graph – Asia Example





Prediction

• Setting one (or more) column to 
None and let Pomegranate predict 
the value based on other 
observations
• Need to already have Bayesian 

network with conditional 
probabilities (through .bif file or 
generated network)
• Right example: original Asia 

network, 64% accuracy



• Get random samples from Asia 
network, then re-feed the samples to 
generate graph estimate
• Run prediction again on “smoke”
• 49% accuracy
• Takeaway: generated networks and 

conditional probabilities from samples 
may generate completely different 
networks



Generating Bayesian Network = NP-Hard

Pomegranate

PGMPY



Generate Models with Pomegranate (greedy)

• Results can highly depend 
on samples



Generate Acyclic Permutations

• For each node, randomly assign it to level 1, 2, …, K
• Randomly pick two nodes

• One node from level k
• Other node from level k+1
• Add a directed edge from first to second node
• Edges cannot skip levels or connect nodes in the same level

• This leveling system prevents generating networks with cycles
• Use PGMPY’s K2Score to quantify network fit



http://www.lx.it.pt/~asmc/pub/talks/09-TA/ta_pres.pdf





Example where max_level = 3



Network with best score



How to handle larger datasets with many 
columns/nodes and cardinality?



Use histogram binning to reduce the cardinality
• Instead of having too many cardinality, reduce it using histogram 

(fixed # bins or percentage).
• Also reduces chance of having value only appear once or twice



Example with max_level = 5



Permutation + Pruning Algorithm

• Have a loop where we choose 1, 2, … tuple of nodes and run through 
each permutation of node-edge connections with the tuples
• After every loop, look through the permutations that are generated 

and pick the ones with highest scores
• Scores are calculated by doing prediction on the leaf nodes (nodes without 

any children)



Networks with high scores



Network with high score



Graphen Ardi Bayesian Networks

PGMPY Pomegran
ate

BayesNetworkHandler.py

ml-workerml-managerml-ui

requests

• Get file from UI
• Process parameters
• Store entry in database
• Wait for available 

worker to take the work
• Read results

• Read files and 
parameters

• Run Bayesian code
• Return results

ml-db

• Stores data 
and 
parameters
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