Machine Reasoning using
Bayesian Network

Ching-Yung Lin, Ph.D.
Columbia University
March 22, 2024

Outline

* Introduction

* Probability Review

* Bayesian Network

* Inference Methods

* Network Structure Learning

Evolution of Intelligence

Direction of Evolution

B & $
Tt-f- B ’\\L] \I {))
\7 \ \\\(' f ()\ oy
| R (F 6N
r N] (//‘) { 5 V]\ \\
y ¢ [&er { 7 A) \
\ M AN L e b
0\ | v\ \ & 1 B i A
S O <;L‘/ >4 > A) A AP (_]Jf)
/’f-'—\\\\
(i N\ & N LN @
S/’\:,\) ﬁm\\ \) ﬁ - 3) g

—<.Ssensors

3 S ey e

 Strategy }':Krepresentation }’/
Vi

-
/ J \/ﬁ: recognition)
&///(perception \{
:) .
iy reaso:ltrr\gjv}

Introduction

\%

Suppose the doctor is trying to
determine if a patient has inhalational
anthrax. She observes the following
symptoms:

oT
oT
oT

ne patient

ne patient

ne patient

Nas a cough

nas difficulty in breathing

nas a fever

Introduction

Dealing with uncertainty:

You would like to determine how likely the

patient is infected with inhalational anthrax
given that the patient has a cough, a fever,

and difficulty breathing

Introduction

New evidence: X-ray image shows that the
patient has a wide mediastinum.

Belief update: your belief that the patient is
infected with inhalational anthrax is now
much higher now.

Introduction

* In the previous slides, what you observed affected your
belief that the patient is infected with anthrax

* This is called reasoning with uncertainty

* Wouldn’t it be nice if we had some tools for reasoning
with uncertainty? In fact, we do...

Difficulty Breathing

* Need a representation and reasoning system
that is based on conditional independence

* Compact yet expressive representation
e Efficient reasoning procedures

* Bayesian Network is such a representation
 Named after Thomas Bayes (ca. 1702 -1761)

 Term coined in 1985 by Judea Pearl (1936 —)
, 2011 winner of the ACM Turing Award

 Many applications, e.g., spam filtering, speech
recognition, robotics, diagnostic systems and

even syndromic surveillance G
Judea Pearl

RO G, ame, E
L e =% #

2
édb
>

<

Vv v

Graphen Health Bayesian Network Visualizer

> ® Time: 11

Outline

* Introduction

* Probability Review

* Bayesian Network

* Inference methods

* Network Structure Learning

Probabilities

We will write P(A = true) to mean the probability that A = true.

One definition of probability: the relative frequency with which an
outcome would be obtained if the process were repeated a large number
of times under similar conditions

The sum of the red and

blue areas is 1
\

11

Conditional Probability

* P(A =true | B =true) : Out of all the outcomes in which B is
true, how many also have A equal to true

* Read as: “Probability of A given B”

F = “Have a fever”
C = “Coming down with cold”

P(F = true)
P(F = true) = 1/10

P(C = true) = 1/15

P(F =true | C=true)=1/2

“Fever are rare and cold is rarer, but if

P(C=true) you're coming down with cold there’s a
50-50 chance you’ll have a headache.”

12

The Joint Probability Distribution

* P(A =true, B = true) :“the probability of A = true and B = true”

* Notice that:

P(F = true)

P(C = true)

P(F=true|C=true)

P(F = true/C = true)
_ Areaof "Cand F"region

Area of "C"region
_ P(C=trueF = true)
P(C =true)

The Joint Probability Distribution

* Joint probabilities can be between any
number of variables

e.g. P(A = true, B = true, C = true)

* For each combination of variables, we
need to say how probable that
combination is

A B C P(A,B,C)
false |false |false |0.1

false [false [true [0.2

false [true [false [0.05

false [true [true [0.05

true |[false |[false |0.3

true |[false ([true |[0.1

true |[true |[false |0.05

true |true |[true |0.15

\ J
Y

Sumstol

The Joint Probability Distribution

Once you have the joint probability
distribution, you can calculate any
probability involving A, B, and C

Note: May need to use
marginalization and Bayes rule,

Examples of things you can compute:

A B C P(A,B,C)
false |[false [false |0O.1

false (false [true [0.2

false |true [false [0.05

false |true [true [0.05

true [false |false [0.3

true [false |[true |[0.1

true [true |false [0.05

true |true |[true |0.15

 P(A=true) = sum of P(4,B,C) in rows with A=true

 P(A=true, B = true | C=true) =

P(A = true, B = true, C = true) / P(C = true)

Independence

Variables A and B are independent if any of the
following hold:

* P(A,B) = P(A) P(B)
* P(A| B)=P(A)
* P(B | A)=P(B)

Independence

How is independence useful?

e Suppose you have n coin flips and you want to
calculate the joint distribution P(C;, ..., C,)

* If the coin flips are not independent, you need 2"
values in the table

* If the coin flips are independent, then

PKLMLD=11PKD

Conditional Independence

* Cand A are conditionally independent given B if the following
holds:

P(C|A B)=P(C|B)

* Example: “Cancer is a common cause of the two symptoms: a
positive X-ray and dyspnoea”

. — Lung
" cancer
. \ dyspnoea
~@

e Joint distribution:
P(A,B,C)=P(C/A,B)P(A,B)=P(C/B)P(A,B)=P(C/B)P(A/B)P(B)

Outline

* Introduction
* Probability Review
* Bayesian Network

* Inference methods

A Bayesian Network

A Bayesian network is made up of:

1. A Directed Acyclic Graph 6

2. A set of tables for each node in the graph: conditional probability table

A P(A) ||A B P(B|A) ||B D P(D|B) ||B C P(C|B)

false 0.4 false |false [0.03 false |false [0.01 false [false (0.3

true (0.6 false [true 0.97 false [true 0.99 false [true 0.7
true |false |0.6 true |false |0.04 true |false |0.8
true |[true 0.4 true |true 0.96 true |true 0.2

A Directed Acyclic Graph

Each node in the graph is a random
variable

an arrow from node Xto node Y
means X has a direct influence on
Y

A node X is a parent of another node Y if
there is an arrow from node X to node Y
e.g. Ais a parent of B

P(X; | Parents(X;)) that quantifies the effect of the parents on the node
except the root node

A Set of Tables for Each Node

Each node X; has a conditional probability distribution

A P(A)
false 0.4
true 0.6
B C P(C|B)
false [false (0.3
false |true 0.7
true |false |0.8
true |[true 0.2

A B P(B|A)
false |[false [0.03
false |true 0.97
true |false |0.6

true |true 0.4

B D P(D|B)
false |false [0.01
false |true 0.99
true [false [0.04
true |true 0.96

Bayesian Networks

Two important properties:

1. Encodes the conditional independence relationships between the
variables in the graph structure

2. |s acompact representation of the joint probability distribution
over the variables °

Conditional Independence

The probability distribution for each node depends only on its parents
C,and C, are conditionally independent given X

24

The Joint Probability Distribution

Due to the conditional independence property, the
joint probability distribution over all the variables X,
..., X, in the Bayesian net can be computed using the
formula:

P(X,=x,.,X =x)=]_][P(Xl. = x, | Parents(X)))

Using a Bayesian Network Example

P(A = true, B = true, C = true, D = true)
= P(A = true) * P(B =true | A =true) *

P(C =true | B =true) *P(D =true | B = true)
= (0.6)*(0.4)*(0.2)*(0.96)

©® @

Using a Bayesian Network Example

P(A = true, B = true, C = true, D = true)
= P(A = true) * P(B =true | A =true) *

P(C =true | B=true) *P(D =true | B =true)
=(0.6)*(0.4)*(0.2)*(0.96)

N _

. O

From the conditional

}*— from the graph structure

probability tables @ G
PA) [|[A |B PB|A) [[B |D POB) ||[B |C P(C|B)

A

false (0.4 false |[false [0.03 false |[false [0.01 false |[false (0.3

true 0.6 false [true 0.97 false [true 0.99 false [true 0.7
true |false [0.6 true |false [0.04 true |false [0.8

true [true 0.4 true |true 0.96 true |true 0.2

27

Another example

* I'm at work, neighbor Jeff calls to say my alarm is ringing, but neighbor Mary doesn't call.
Sometimes it's set off by minor earthquakes. Is there a burglar?

 Variables: Burglary, Earthquake, Alarm, JeffCalls, MaryCalls

 Network topology reflects "causal" knowledge:

* A burglar can set the alarm off

* An earthquake can set the alarm off
* The alarm can cause Mary to call

* The alarm can cause Jeff to call

Another example' Earthquake or Burglar

B Burglary E Earthquake]

N

[A:Alarm |

/

[M:Mary Calls] [J Jeft Calls]

29

Bayesian Network for Alarm Domain

oE) [B:Burglary] [E:Earthquake] o E)
001 002
B E P(A)
T T 95
T F
o A Alarm
F F .00l
A P(M) / \ A P(J))
T .70 T .90
F 01 F .05
[M Mary Calls J Jeff Calls

P(J =true, M=true, A=true, B=false, E=false)
= P(J =true |A =true)P(M =true |A =true)P(A =true |B =false, E =false)P(B =false)P(E =false)

=0.9*0.7*0.001 *0.999 * 0.998 = 0.00062

Outline

* Introduction

* Probability Review

* Bayesian Network

* Inference methods

* Network Structure Learning

Inference

How can one infer the (probabilities of) values of one or more
network variables, given observed values of others?

P(X|E)

\ \ E = The evidence variable(s)

X = The query variable(s)
Bayes net contains all information needed for this inference
If only one variable with unknown value, easy to infer it
In general case, problem is NP hard

Inference: example

Has Cough Has Difficulty Breathing

An example of a query would be:

Has Wide Medi@

P(Anthrax = true | Fever = true, Cough = true)

Note: Even though HasDifficultyBreathing and HasWideMediastinum
are in the Bayesian network, they are not given values in the query

They are treated as unobserved variables

Inference in Bayesian Network

* Exact inference:
Variable Elimination
Junction Tree

* Approximate inference:
Markov Chain Monte Carlo
Variational Methods

B | | —E
From. Bayesian Network to Junction Tree — Exact Inference

allows information propagated from a node to another

=> foundation of probabilistic inference ﬁ Not straightforward
| — random variable |
— precedence relationship

Given evidence (observations) E,
output the posterior probabilities of

T 05 1 2 T o3
F 05 F ' 0.7
3,1,2/ TT TF FTFF 3 NP hard
T 0.50.30.60.7
F 0.50.70.40.3
43T F 4 5 Bayes’ theorem can not be applied
F 0704 53T F directly to non-singly connected
F 0807 networks, as it would yield erroneous
6 11 resuits

64T F 11,5,6 TT TF FTFF
T 0.40.6 T 0.70.30.60.4
F 0604 F 0.30.70.40.6

Therefore, junction trees are used to implement exact inference

\5—————’

Conversion of Bayesian Network into Junction Tree

- - 3,1
1 2 10 1 2 10 1 2\ - 19,-’ A -
3 7 3 7 T A 53,
NS ”._.'\)/ '/\.,\ 4 7.3
4 5 8 4 5 8 —=5 T\ (8N es > e
,/‘/ / |I \“/\i P
6 —»11 9 611 9 6 117 L9, M5 g
N ~._’ ¢
moralization triangulation ~ clique
identification

— Parallel Moralization connects all parents of each node

Junction tree
construction

— Parallel Triangulation chordalizes cycles with more than 3 edges

— Clique identification finds using node elimination
* Node elimination is a step look-ahead algorithms that brings challenges in processing

large scale graphs

— Parallel Junction tree construction builds a
network based on running intersection property

of the Bayesian

36

N =

Constructing Junction Trees

Moralization: construct an undirected graph from the DAG
Triangulation: Selectively add arcs to the moral graph

Build a junction graph by identifying the cliques and separators
Build the junction tree by find an appropriate spanning tree

Step 1: Moralization: marry the parents

0
§ O
eee.

G=(V,E)

1. Forallw e V:
e For all u,veparents(w) add an edge e=u-v.

2. Undirect all edges.

Step 2: Triangulation

Add edges to GM such that there is no cycle
with length > 4 that does not contain a chord.
NO E

Step 3: Build the junction graph

* A junction graph for an undirected graph G is an undirected, labeled
graph.

* Cligue: a subgraph that is complete and maximal.
* The nodes are the cliques in G.

* If two cliques intersect, they are joined in the junction graph by an
edge labeled with their intersection. (separators)

Bayesian Network
G=(V.,E)

sy a

ad | [p¢

> separators
LY e—% p

e.g. cegMegh=eg

Cliques
Junction graph G’ (not complete)

Step 4: Junction Tree

* A junction tree is a sub-graph of the junction graph
that
*|s atree
* Contains all the cliques (spanning tree)
e Satisfies the running intersection property:

for each pair of nodes U, V, all nodes on the path
between U and V contain Unv

Step 4: Junction Tree (cont.)

 Theorem: An undirected graph is triangulated if and only if its junction
graph has a junction tree

* Definition: The weight of a link in a junction graph is the number of
variable in the label. The weight of a junction tree is the sum of
weights of the labels.

* Theorem: A sub-tree of the junction graph of a triangulated graph is a
junction tree if and only if it is a spanning of maximal weight

There are several methods to find MST.

Kruskal's algorithm: choose successively a link of

maximal weight unless it creates a cycle.

God)—{a]—Cace)

ad

Junction graph G' (not complete)

de

el leg

Gty

egh)

ce

@Eﬁ @
s> &

Junction tree G'T

Inference using junction tree

* Potential @y: a function that maps each instantiation x of a set of variables X into a nonnegative real number
* Marginalization: suppose X €Y, @y= Zy\x By
* Constraints on potentials

1) Consistency property : for each clique X and neighboring separator S, it holds that

2) The potentials encode the joint distribution P(U) of the network
according to

* Property: for each clique/separator, it holds that @y = P(X)
That means, for any variable V' € X, we can compute its marginal by

Inference without evidence

Belief Network

l Graphical

Transformation

Join Tree Structure

l Initialization

Inconsistent Join Tree

l Propagation

Consistent Join Tree

l Marginalization

P(V)

from Huang&Darwiche, 1996

Initialization

The following procedure assigns initial join tree potentials, using the

conditional probabilities from the belief network:
Belief Network
1. For each cluster and sepset X, set each ¢x(x) to 1:
Graphical
bx —— 1. Transformation

Join Tree Structure

2. For each variable V', perform the following: Assign to V' a cluster X

that contains Fy;'! call X the parent cluster of Fy,. Multiply ¢x Initialization
by P(V | IIy):

px «— ¢x P(V | IIy).

Inconsistent Join Tree

After initialization, the conditional distribution P(V | Iy) of each vari-
able V' has been multiplied into some cluster potential. The initialization Propagation
procedure satisfies Equation (2) as follows:

N Q Consistent Join Tree
[Tox; II P(Vi|Cw) o
1,7:1 _ k=1 — P(U), Marginalization
N-—-1 , 1

[I ¢s; |

where NN is the number of clusters,) is the number of variables, and ¢x,
and ¢sg; are the cluster and sepset potentials, respectively.

from Huang&Darwiche, 1996

Example for initialization

CE —

P(C | A) P(E | C)

Pace Pck
a c e Initial Values - o iZﬁiii}

on on on 1 x .7 x .3 = .21

on on off |1 x .7 x .7 = .49 n om .
on off on 1 x .3 x .6 = _13 o ot)
on off off |1 x .3 x .4 = .12 Cff om .
off on on 1 x .2 x .3 = .06 et ors)
off on off |1 x .2 x .7 = .14

off off on 1 x .8 x .6 = .48

off off off |1 x .8 x .4 = .32 etc.

from Huang&Darwiche, 1996

Global propagation

®—o—@

Consider two adjacent clusters X and Y with separator R.

* Single message pass

A message pass from X to Y occurs in two steps:

1. Projection. Assign a new table to R, saving the old table:

2. Absorption. Assign a new table to Y, using both the old and
new tables of R:

from Huang&Darwiche, 1996

Global propagation

— P COLLECT-EVIDENCE - - - - DISTRIBUTE-EVIDENCE
COLLECT-EVIDENCE(X) DISTRIBUTE-EVIDENCE(X)
1. Mark X. 1. Mark X.
2. Call CoLLECT-EVIDENCE recursively on X's unmarked neighboring 2. Pass a message from X to each of its unmarked neighboring clusters,
clusters, if any. if any.

3. Pass a message from X to the cluster which invoked CoLLECT-EviDENCE(X). 3. Call DISTRIBUTE-EVIDENCE recursively on X'’s unmarked neighbor-
ing clusters, if any.

from Huang&Darwiche, 1996

Marginalization

* Once we have a consistent junction tree, we can compute P(V) for
each variable of interest V by computing the marginals.

a b d Prpp(abd)
on on on .229
on on off .025
on off on .125
Pagp = on off off .125
off on on .180
off on off .020
off off on .150
off off off .150

a P(a)

on .225 + .025 + .125 + .125 = .500

off | .180 + .020 + .150 + .150 = .500
d P(d)

on 225 + 125 + .180 + .150 = .680
off| .025 + .125 + .020 + .150 = .320

from Huang&Darwiche, 1996

Inference with evidence

Belief Network

Graphical
Transformation

Join Tree Structure

1. Initialization
2. Observation entry

Inconsistent Join Tree

l Propagation

Consistent Join Tree

1. Marginalization
2. Normalization

PV |e)

from Huang&Darwiche, 1996

Observations and Likelihoods

* An observation is a statement of the form V = v
e Observations are the simplest forms of evidence.
* Collections of observations denoted by E.

* Define likelihood to encode observations:
e If V € E—thatis, if V is observed—then assign each Ay (v) as follows:

\v (v) 1, when v is the observed value of V
0, otherwise

o If V & E—that is, if the value of V' is unknown—then assign Ay (v) =
1 for each value wv.

from Huang&Darwiche, 1996

Example of likelihood encoding

e Suppose we have observations C =on, E = off

Variable Av(v)
V v=on | v=off
A 1 1
B 1 1
C 1 0
D 1 1
E 0 1
F 1 1
G 1 1
H 1 1

from Huang&Darwiche, 1996

Initialization with observations

We keep track of observations by maintaining a likelihood for each vari-
able. We initialize these likelihoods by adding step 2b to the initialization
procedure below:

1. For each cluster and sepset X, set each ¢x(x) to 1:

(bx(——l.

2. For each variable V:

(a) Assign to V a cluster X that contains Fy/; multiply ¢x by
P(V | H‘)
ox +— ox P(V | Ily).

(b) Set each likelihood element Ay (v) to 1:

A v — 1.

Observation entry

Note that upon completion of initialization, the likelihoods encode no
observations. We incorporate each observation V' = » by encoding the
observation as a likelihood, and then incorporating this likelihood into the
join tree, as follows:

1. Encode the observation V' = v as a likelihood AT™.

2. Identify a cluster X that contains V.'?

3. Update ¢x and Ay:

Ox — Ox AT, (1)
Ay +— AP,

By entering a set of observations e as described above, we modify the
join tree potentials, so that all subsequent probabilities derived from the join
tree are probabilities of events that are conjoined with evidence e. In other
words, instead of computing P(X) and P(V), we compute P(X,e) and
P(V,e), respectively. Note also that the join tree encodes P(U,e) instead

of P(U) (see Equation (2)). from Huang&Darwiche, 1996

Normalization

After the join tree is made consistent through global propagation, we
have, for each cluster (or sepset) X, ¢x = P(X,e), where e denotes the
observations incorporated into the join tree according to Section 6.4 [2].
When we marginalize a cluster potential ¢x into a variable V', we obtain
the probability of V' and e:

P(V,e) = Z OxX.

X\{V}

Our goal is to compute P(V | e), the probability of V' given e. We obtain
P(V | e) from P(V,e) by normalizing P(V,e) as follows:

P(V,e) P(V,e)
P(e) Y P(V,e)
V

P(V |e) = (2)

The probability of the observations P(e) is often referred to as a normal-
izing constant.

from Huang&Darwiche, 1996

Approximate inference

e Exact inference is feasible in small to medium-sized networks
* Takes a very long time for large networks

* Turn to approximate inference techniques which are much faster and
give pretty good results

Sampling

Input: Bayesian network with set of nodes X
Sample = a tuple with assigned values
S=(X1=X1,X5=X5, .o , X =X)

- Tuple may include all variables (except evidence) or a
subset

Sampling schemas dictate how to generate samples (tuples)
ldeally, samples are distributed according to P(X|E)

Sampling algorithms

. Gibbs Sampling (MCMC)
. Importance Sampling

. Sequential Monte-Carlo (Particle Filtering) in Dynamic
Bayesian Networks

- etc.

A list of Python libraries

Library
BayesPy
pomegranate
PgmMpy
libpgm

bayesnetinference

PImRY @

‘Q
_.

Algorithm Algorithm Type
variational message passing approximate
loopy belief approximate

multiple approximate/exact

likelihood sampling approximate

variable elimination

pémegranate

exact

License
MIT

MIT

MIT
Proprietary

None

Outline

* Introduction

* Probability Review

* Bayesian Network

* Inference methods

* Network Structure Learning

Original Graph — Asia Example

In [18]: bnh.get model from bif('/datadrive/masa/bayesian/asia.bif')

In [19]: bnh.plot_model()

Asia

This example is the well known Asia Bayesian network.

The Bayesian network below will update when you click the check boxes to set evidence. The on
very small subset of the features of the full User Interface and APIs.

Visit to Asia Smoker
True 1.00% || Tue [l 50.00% [|
Fase [l 99.00% [| Fase [l 50.00% | |

l

Has Tuberculosis

True 1.04% |:| Has Lung Cancer Has Bronchitis

Faise [l 98.96% [| True | 5.50% | | Tue [l 45.00% []
Faise [l 94.50% [| Fase [l 55.00% [|

Tuberculosis or Cancer
True | 6.48% | |

Faise [93.52% [|

XRay Result / \

Abnormal | 11.03% || Dyspnea

Normal [l 88.97% [| Tue [l 4360% [|
Faise [l 56.40% [|

Prediction S

: X test_copy

Out[98]:

 Setting one (or more) column to
None and let Pomegranate predict
the value based on other
observations

* Need to already have Bayesian
network with conditional
probabilities (through .bif file or
generated network)

* Right example: original Asia
network, 64% accuracy

smoke

lung bronc asia tub either xray dysp

75721
80184
19864
76699

92991

97545
15490
62384
54594

64709

None

None

None

None

None

None

None

None

None

None

33000 rows x 8 columns

* Get random samples from Asia
network, then re-feed the samples to
generate graph estimate

* Run prediction again on “smoke”
* 49% accuracy

* Takeaway: generated networks and
conditional probabilities from samples
may generate completely different
networks

Generating Bayesian Network = NP-Hard

PGMPY
Exhaustive Search

class pgmpy .estimators.ExhaustiveSearch.ExhaustiveSearch(data, scoring_ method=None, **kwargs)
[Source][source]

all_dags(nodes=None)
Computes all possible directed acyclic graphs with a given set of nodes, sparse ones first. 2**(n*(n-1))

graphs need to be searched, given n nodes, so this is likely not feasible for n>6. This is a generator.

Pomegranate
However, one can also initialize a Bayesian network based completely on data. As mentioned before, the exact version

of this algorithm takes exponential time with the number of variables and typically can't be done on more than ~25
variables. This is because there are a super-exponential number of directed acyclic graphs that one could define over
a set of variables, but fortunately one can use dynamic programming in order to reduce this complexity down to
"simply exponential." The implementation of the exact algorithm actually goes further than the original dynamic

Generate Models with Pomegranate (greedy)

* Results can highly dep = s st son samiconeenin - @
on samples In (921 bah.plot._node1() @
G
<>
i o) Lo
;@
< [o= s
(orone)
= G

Generate Acyclic Permutations

* For each node, randomly assign it to level 1, 2, ..., K

* Randomly pick two nodes
* One node from level k
e Other node from level k+1
* Add a directed edge from first to second node
* Edges cannot skip levels or connect nodes in the same level

* This leveling system prevents generating networks with cycles
e Use PGMPY’s K2Score to quantify network fit

Bayesian scoring functions

Compute the posterior probability distribution, starting from a prior probability
distribution on the possible networks, conditioned to data 7', that is, P(B|T).

The best network is the one that maximizes the posterior probability.

L I

Since the term P(T) is the same for all possible networks, in practice, for comparative
purposes, computing P(B, T) is sufficient.

® Asitis easier to work in the logarithmic space, the scoring functions use the value
log(P(B,T)) instead of P(B,T).

http://www.Ix.it.pt/~asmc/pub/talks/09-TA/ta_pres.pdf

-

K2 scoring function

| Cooper and Herskovits (1992) proposed a particular case of the BD score, called the
K2 score,

K2(B,T) = log(P(B)) + Z ZL: (log ((N(T:__le 1)') + ZL: log(Nijk:!)) ,
v v) k=1

i=1j=1

with the uninformative assignment V. z.’j . = 1 (corresponding to zero pseudo-counts).

Example where max_level =3

Network with best score

@,

-29380.702304021157

How to handle larger datasets with many
columns/nodes and cardinality?

In [2]: csv_file = '/datadrive/masa/bayesian/hidden_rel new l.csv'
df = pd.read_csv(csv_file)
df

out[2]:

date source target source_in_degree source_out_degree source_all_degree target_in_degree target_out _degree target_all_degree source_closeness

0 2018/8/30 39 28 6.0 2.0 8.0 6.0 5.0 11.0 1.000000
1 2018/8/30 28 39 6.0 5.0 11.0 6.0 2.0 8.0 2.950000
2 2018/8/30 45 28 0.0 4.0 4.0 6.0 5.0 11.0 2.083333
3 2018/8/30 28 45 6.0 5.0 11.0 0.0 4.0 4.0 2.950000
4 2018/8/30 45 39 0.0 4.0 4.0 6.0 2.0 8.0 2.083333
276 2018/8/30 25 33 4.0 2.0 6.0 4.0 2.0 6.0 2.616667
277 2018/8/30 33 25 4.0 2.0 6.0 4.0 2.0 6.0 1.500000
278 2018/8/30 23 49 0.0 2.0 2.0 4.0 0.0 4.0 1.000000
279 2018/8/30 38 49 0.0 2.0 2.0 4.0 0.0 4.0 1.000000
280 2018/8/30 23 40 0.0 1.0 1.0 1.0 0.0 1.0 1.000000

281 rows x 40 columns

Use histogram binning to reduce the cardinality

* Instead of having too many cardinality, reduce it using histogram
(fixed # bins or percentage).

e Also reduces chance of having value only appear once or twice

In [5]: simp = Simplify(df_ valid)

In [6]: simp.df hist

Out[6]:

o preferential_attachment direct_hitting_time CC_num_vertices leicht source allpaths edge_indicator source_all degree adar salton_e ... target_between
0 7.2 0.231071 6.4 0.0 30.4 50.0 1.0 58 -05 0.0 .. 0.00

1 28.8 0.231071 6.4 0.0 20.6 50.0 1.0 106 -0.5 0.0 .. 0.00

2 21.6 0.000000 6.4 0.0 40.2 50.0 0.0 34 -05 T2 o 0.00

3 0.0 0.231071 6.4 0.0 20.6 50.0 0.0 10.6 -0.5 0.0 .. 0.00

4 21.6 0.000000 6.4 0.0 40.2 50.0 1.0 34 -05 0.0 .. 0.00

276 7.2 0.231071 8.6 0.0 20.6 50.0 1.0 58 -0.5 0.6 .. 0.00

277 7.2 0.462143 8.6 0.0 30.4 50.0 1.0 58 -0.5 0.6 .. 0.00

278 7.2 0.462143 2.0 0.0 20.6 0.0 1.0 1.0 -0.5 0.0 .. 0.00

279 7.2 0.924286 2.0 0.0 30.4 0.0 1.0 1.0 -05 06 .. 0.00

280 0.0 0.000000 2.0 0.0 20.6 0.0 1.0 1.0 -0.5 0.0 .. 0.00

281 rows x 38 columns

Example with max_level =

@rceioutidegﬁ G’oumeiallideg'ree> Ga’rgeticlosenesb @ge)ndicator) @

\sorenseb @getﬁpagera@ G)rensenb targetjnﬁdeg@ Garget GaccarcD) G’Cinumiedgg rai) Ga’rgetiallideg@
- - T - -

<sourceip agerank> <ground7truth> QAE)

sum_of edges

leicht_e

(allpaths
\

< lﬂyet_out_degff)

Permutation + Pruning Algorithm

* Have a loop where we choose 1, 2, ... tuple of nodes and run through
each permutation of node-edge connections with the tuples

» After every loop, look through the permutations that are generated
and pick the ones with highest scores

» Scores are calculated by doing prediction on the leaf nodes (nodes without
any children)

Networks with high scores

'property': {'category': 'Classification', 'trainer': None},

'model name': 'my bayes'},

'model metrics': {0: (0.996969696969697, ('tub', 'asia', 'either', 'lung')),
l1: (1.0, ('lung', 'tub', 'either')),

2: (0.9924242424242424, ('lung', 'asia', 'either')),
3: (0.9757575757575757, ('lung', 'tub', 'asia')),

4: (0.9681818181818181, ('tub', 'asia', 'either')),
5: (0.9681818181818181, ('xray', 'asia', 'either')),
6: (0.9636363636363636, ('lung', 'xray', 'asia')),
7: (0.9424242424242424, ('lung', 'tub', 'xray')),

8: (0.9424242424242424, ('lung', 'xray', 'either')),
9: (0.9424242424242424, ('tub', 'xray', 'either')),
10: (0.9393939393939394, ('tub', 'xray', 'asia')),
11: (0.9924242424242424, ('asia', 'tub')),

12: (0.990909090909091, ('lung', 'either')),

13: (0.9681818181818181, ('lung', 'asia')),

14: (0.9666666666666667, ('lung', 'tub')),

15: (0.9636363636363636, ('asia', 'either')),

16: (0.9424242424242424, ('tub', 'either')),

17: (0.9424242424242424, ('either', 'xray')),

18: (0.9348484848484848, ('asia', 'xray')),

19: (0.9333333333333333, ('lung', 'xray'))},

"M Ard ma+-hh! . '"JAa+raAdAvaivrAalmana /lavAs /ImamnhinAa TAaarnaina/AalasAandt /mi NAamriit A JiraAar At ranae

Network with high score

In [150]: bayes analysis.bayes network handler.get model from sample(X train[list(score dict[6][0][1])])
bayes analysis.bayes network handler.plot model()

[DEBUG] PngImagePlugin.call().146 STREAM b'IHDR' 16 13
[DEBUG] PngImagePlugin.call().146 STREAM b'bKGD' 41 6
[DEBUG] PngImagePlugin. open().592 b'bKGD' 41 6 (unknown)
[DEBUG] PngImagePlugin.call().146 STREAM b'IDAT' 59 8192

(ground truth) ¢ target betweenness)
\ //

7~ T
(_ sorensen_c > < cdge indicator > [(0.6103286384976526,
('sorensen e',
'ground_truth',
'edge_indicator'’,
K alton (h <Katz\) .Katz ! ;
N _ target_betweenness’,

'salton _e'))]

Graphen Ardi Bayesian Networks

ml-manager ml-worker

* Read files and
Get file from Ul parameters
Process parameters * Run Bayesian code
Store entry in database * Return results
Wait for available
requests worker to take the work
Read results Pomegran

ate

BayesNetworkHandler.py

ml-db

Stores data
and
parameters

Acknowledgements

* Some of the materials are based on work by the following:

* Dr.Cheng, Dr. Wong, Dr. Hamo, Dr. Silberstein, Dr. Huang, Mr. Chang-
Ogimoto, etc...

