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Demo of GPU Computing on MacBook and iPhone

Speaker: Richard Chen
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CUDA on Mac OS X
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GPU Architecture

GPU Architecture 
built by several streaming multiprocessors (SMs) 

In each SM: 
CUDA cores 
Shared Memory/L1 Cache 
Register File 
Load/Store Units 
Special Function Units 
Warp Scheduler 

In each device: 
L2 Cache

Kepler Architecture, K20X
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Example: deviceQuery

Understand the hardware constraint via deviceQuery (in example code of CUDA toolkit)
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Example: Matrix Addition on CPU

Problem: Sum two matrices with M by N size. 
Cmxn = Amxn + Bmxn  

In traditional C/C++ implementation: 
• A, B are input matrix, N is the size of A and B. 
• C is output matrix 
• Matrix stored in array is row-major fashion
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Example: Matrix Addition on GPU - 2D grid with 2D blocks

Problem: Sum two matrices with M by N size. 
Cmxn = Amxn + Bmxn  

CUDA C implementation: 
• matA, matB are input matrix, nx is column size, and ny is row size 
• matC is output matrix



© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 88

Example: Matrix Addition on GPU - 2D grid with 2D blocks

Data accessing in 2D grid with 2D blocks arrangement (one green block is one thread block)
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Example: Matrix Addition on GPU - 1D grid with 1D blocks

Data accessing in 1D grid with 1D blocks arrangement (one green block is one thread block)

blockDim.x
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Example: Matrix Addition on GPU - 2D grid with 1D blocks

Data accessing in 2D grid with 1D blocks arrangement (one green block is one thread block)
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Example: Matrix Transpose on CPU

Problem: Transpose one matrix with M by N to one matrix with N by 
Amxn = Bnxm  

In traditional C/C++ implementation: 
• in is input matrix, nx is column size, and ny is row size. 
• out is output matrix 
• Matrix stored in array is row-major fashion
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Example: Matrix Transpose on GPU
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Example: Matrix Transpose on GPU
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Example: Concurrent Processing

Concurrent handle data transfer and computation 
For NVIDIA GT 650M (laptop GPU), there is one copy engine. 
For NVIDIA Tesla K40 (high-end GPU), there are two copy engines 

The latency in data transfer could be hidden during computing 
To handle two tasks, which both are matrix multiplications. 

Copy two inputs to GPU, copy one output from GPU

No concurrent processing Concurrent processing
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GPU on iOS devices
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GPU Programming in iPhone/iPad - Metal

Metal provides the lowest-overhead access to the GPU, enabling developers to maximize the 
graphics and compute potential of iOS 8 app.* 

Metal could be used for: 

Graphic processing ➔ openGL 

General data-parallel processing ➔ open CL and CUDA

*: https://developer.apple.com/metal/

https://developer.apple.com/metal/
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Fundamental Metal Concepts

• Low-overhead interface 
• Memory and resource management 
• Integrated support for both graphics and compute operations 
• Precompiled shaders
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GPU Programming in iPhone/iPad - Metal

Programming flow is similar to CUDA 

Copy data from CPU to GPU 

Computing in GPU 

Send data back from GPU to CPU 

Example: kernel code in Metal, sigmoid function:

source: http://memkite.com

thread_id for data parallelization

kernel code
device memory

http://memkite.com
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Metal Object Relationships
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Metal Command Buffers with Multiple Threads
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Metal Programming Model

It integrates the support for both graphics and compute operations. 
Three command encoder: 

Graphics Rendering: Render Command Encoder 
Data-Parallel Compute Processing: Compute Command Encoder 
Transfer Data between Resource: Blitting Command Encoder 

Multi-threading in encoding command is supported 
Typical flow in compute command encoder 

Prepare data 
Put your function into pipeline 
Command encoder 
Put command into command buffer 
Commit it to command queue 
Execute the command 
Get result back
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Metal Programming, Kernel Function

Compute command 
• Two parameters, threadsPerGroup and numThreadgroups, determines number of 

threads. ➔ equivalent to grid and thread block in CUDA. They are all 3-D variable. 
• The total of all threadgroup memory allocations must not exceed 16 KB. 

• Kernel function: sigmoid function
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Example
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Example
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Speaker: Eric Johnson
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