
© CY Lin, 2016 Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 7

E6895 Advanced Big Data Analytics Lecture 7:

 GPU and CUDA

Ching-Yung Lin, Ph.D.

Adjunct Professor, Dept. of Electrical Engineering and Computer Science

IBM Chief Scientist, Graph Computing Research

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 72

Reference Book

CUDA:
Compute Unified Device Architecture

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 73

GPU

2001: NVIDIA’s GeForce 3 series made probably the most breakthrough in GPU
technology

 — the computing industry’s first chip to implement Microsoft’s then-new Direct
8.0 standard;

 — which required that the compliant hardware contain both programmable
vertex and programmable pixel shading stages

Early 2000s: The release of GPUs that possessed programmable pipelines
attracted many researchers to the possibility of using graphics hardware for
more than simply OpenGL or DirectX-based rendering.

 — The GPUs of the early 2000s were designed to produce a color for every

pixel on the screen using programmable arithmetic units known as pixel
shaders.

 — The additional information could be input colors, texture coordinates, or
other attributes

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 74

2006: GPU computing starts going for prime time
 — Release of CUDA
 — The CUDA Architecture included a unified shader pipeline, allowing each

and every arithmetic logic unit (ALU) on the chip to be marshaled by a
program intending to perform general-purpose computations.

CUDA

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 75

• Medical Imaging
• Computational Fluid Dynamics
• Environmental Science

Examples

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 76

GPU on a MacBook

GT 750M:
— 2 * 192 CUDA cores
— max thread number: 2 * 2048

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 77

Amazon AWS

© 2015 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 138

GPU on iOS devices

© 2015 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 139

iPhone models and their GPUs

PowerVR GPU has been used.
A4 => SGX 535 (1.6 GFLOPS)
A5 => SGX 543 MP2 (12.8 GLOPS)

A6 => SGX 543 MP3 (25.5 GFLOPS)
A7 => G6430 (quad core)
 (230.4 GFLOPS)

A8 => GX6450 (quad core)
 (332.8 GLOPS)

© 2015 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 1310

GPU in Apple A8 SoC

A8 — iPhone 6 and iPhone 6 Plus

GPU: PowerVR Quad-core GX6450

4 Unified Shading Cluster (USC)

of ALUs: 32 (FP32) or 64 (FP16) per USC

GFLOPS: 166.4 (FP32)/ 332.8 (FP16) @ 650 MHz

Supports OpenCL 1.2

source: http://www.imgtec.com/powervr/series6xt.asp

manufactured
by TSMC

http://www.imgtec.com/powervr/series6xt.asp

© 2015 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 1311

GPU Programming in iPhone/iPad - Metal

Metal provides the lowest-overhead access to the GPU, enabling developers to maximize the
graphics and compute potential of iOS 8 app.*

Metal could be used for:

Graphic processing ➔ openGL

General data-parallel processing ➔ open CL and CUDA

*: https://developer.apple.com/metal/

https://developer.apple.com/metal/

© 2015 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 1312

Fundamental Metal Concepts

• Low-overhead interface
• Memory and resource management
• Integrated support for both graphics and compute operations
• Precompiled shaders

© 2015 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 1313

GPU Programming in iPhone/iPad - Metal

Programming flow is similar to CUDA

Copy data from CPU to GPU

Computing in GPU

Send data back from GPU to CPU

Example: kernel code in Metal, sigmoid function:

source: http://memkite.com

thread_id for data parallelization

kernel code
device memory

http://memkite.com

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 714

CUDA Compiler

CUDA supports most Windows, Linux, and Mac OS compilers

For Linux:
• Red Hat
• OpenSUSE
• Ubuntu
• Fedora

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 715

CUDA C

Hello World!!

Host: CPU and its memory
Device: GPU and its memory

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 716

A Kernel Call

nvcc handles compiling the function kernel()
it feeds main() to the host compiler

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 717

Passing Parameters

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 718

Parallel Programming in CUDA C

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 719

Traditional C way

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 720

Executing on each of the two CPU cores

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 721

GPU way — I

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 722

GPU way — II

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 723

Blocks and Threads

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 724

2D hierarchy of blocks and threads

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 725

GPU way — III

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 726

GPU Blocks

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 727

GPU Threads — I

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 728

GPU Threads — II

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 7

CUDA on Mac OS X

29

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 730

Example: deviceQuery

Understand the hardware constraint via deviceQuery (in example code of CUDA toolkit)

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 731

Example: Matrix Addition on CPU

Problem: Sum two matrices with M by N size.
Cmxn = Amxn + Bmxn

In traditional C/C++ implementation:
• A, B are input matrix, N is the size of A and B.
• C is output matrix
• Matrix stored in array is row-major fashion

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 732

Example: Matrix Addition on GPU - 2D grid with 2D blocks

Problem: Sum two matrices with M by N size.
Cmxn = Amxn + Bmxn

CUDA C implementation:
• matA, matB are input matrix, nx is column size, and ny is row size
• matC is output matrix

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 733

Example: Matrix Addition on GPU - 2D grid with 2D blocks

Data accessing in 2D grid with 2D blocks arrangement (one green block is one thread block)

bl
oc

kD
im

.y

blockDim.x

threadIdx.x

threadIdx.y

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 734

Example: Matrix Addition on GPU - 1D grid with 1D blocks

Data accessing in 1D grid with 1D blocks arrangement (one green block is one thread block)

blockDim.x

(ix, iy)
threadIdx.x

iy

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 735

Example: Matrix Addition on GPU - 2D grid with 1D blocks

Data accessing in 2D grid with 1D blocks arrangement (one green block is one thread block)

blockDim.x
1

(ix, iy)
threadIdx.x

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 736

Example: Matrix Transpose on CPU

Problem: Transpose one matrix with M by N to one matrix with N by
Amxn = Bnxm

In traditional C/C++ implementation:
• in is input matrix, nx is column size, and ny is row size.
• out is output matrix
• Matrix stored in array is row-major fashion

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 737

Example: Matrix Transpose on GPU

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 738

Example: Matrix Transpose on GPU

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 739

Example: Concurrent Processing

Concurrent handle data transfer and computation
For NVIDIA GT 650M (laptop GPU), there is one copy engine.
For NVIDIA Tesla K40 (high-end GPU), there are two copy engines

The latency in data transfer could be hidden during computing
To handle two tasks, which both are matrix multiplications.

Copy two inputs to GPU, copy one output from GPU

No concurrent processing Concurrent processing

© 2016 CY Lin, Columbia UniversityE6895 Big Data Analytics – Lecture 740

Reference

Professional CUDA C Programming
http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-

Programming.productCd-1118739329,descCd-DOWNLOAD.html
source code are available on the above website

http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-Programming.productCd-1118739329,descCd-DOWNLOAD.html

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 7

Homework #3 (due March 31st)

Choose 2 of the algorithms you use in your homework #2. Convert them into a GPU version.

Show your code, and performance measurement comparing to your non-GPU version.

The more innovative/complex your algorithms are, the higher score you will get on your
Homework #3.

41

