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Reference Book

CUDA:  
Compute Unified Device Architecture
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GPU

2001: NVIDIA’s GeForce 3 series made probably the most breakthrough in GPU 
technology  

    — the computing industry’s first chip to implement Microsoft’s then-new Direct 
8.0 standard; 

    — which required that the compliant hardware contain both programmable 
vertex and programmable pixel shading stages 

Early 2000s: The release of GPUs that possessed programmable pipelines 
attracted many researchers to the possibility of using graphics hardware for 
more than simply OpenGL or DirectX-based rendering. 

     
       — The GPUs of the early 2000s were designed to produce a color for every 

pixel on the screen using programmable arithmetic units known as pixel 
shaders. 

     — The additional information could be input colors, texture coordinates, or 
other attributes 
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2006:  GPU computing starts going for prime time 
   — Release of CUDA 
   — The CUDA Architecture included a unified shader pipeline, allowing each 

and every arithmetic logic unit (ALU) on the chip to be marshaled by a 
program intending to perform general-purpose computations. 

CUDA
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• Medical Imaging 
• Computational Fluid Dynamics 
• Environmental Science 

Examples
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GPU on a MacBook

GT 750M: 
— 2 * 192 CUDA cores 
— max thread number: 2 * 2048
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Amazon AWS



© 2015 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 138

GPU on iOS devices
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iPhone models and their GPUs

PowerVR GPU has been used. 
A4 => SGX 535 (1.6 GFLOPS) 
A5 => SGX 543 MP2 (12.8 GLOPS)

A6 => SGX 543 MP3 (25.5 GFLOPS) 
A7 => G6430 (quad core) 
           (230.4 GFLOPS)

A8 => GX6450 (quad core)  
           (332.8 GLOPS)
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GPU in Apple A8 SoC

A8 — iPhone 6 and iPhone 6 Plus 

GPU: PowerVR Quad-core GX6450 

4 Unified Shading Cluster (USC) 

# of ALUs: 32 (FP32) or 64 (FP16) per USC 

GFLOPS: 166.4 (FP32)/ 332.8 (FP16) @ 650 MHz 

Supports OpenCL 1.2

source: http://www.imgtec.com/powervr/series6xt.asp

manufactured  
by TSMC

http://www.imgtec.com/powervr/series6xt.asp
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GPU Programming in iPhone/iPad - Metal

Metal provides the lowest-overhead access to the GPU, enabling developers to maximize the 
graphics and compute potential of iOS 8 app.* 

Metal could be used for: 

Graphic processing ➔ openGL 

General data-parallel processing ➔ open CL and CUDA

*: https://developer.apple.com/metal/

https://developer.apple.com/metal/
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Fundamental Metal Concepts

• Low-overhead interface 
• Memory and resource management 
• Integrated support for both graphics and compute operations 
• Precompiled shaders



© 2015 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 1313

GPU Programming in iPhone/iPad - Metal

Programming flow is similar to CUDA 

Copy data from CPU to GPU 

Computing in GPU 

Send data back from GPU to CPU 

Example: kernel code in Metal, sigmoid function:

source: http://memkite.com

thread_id for data parallelization

kernel code
device memory

http://memkite.com


© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 714

CUDA Compiler

CUDA supports most Windows, Linux, and Mac OS compilers 

For Linux: 
•    Red Hat  
•    OpenSUSE 
•    Ubuntu 
•    Fedora
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CUDA C

Hello World!!

Host: CPU and its memory 
Device: GPU and its memory
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A Kernel Call

nvcc handles compiling the function kernel() 
it feeds main() to the host compiler
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Passing Parameters
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Parallel Programming in CUDA C
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Traditional C way
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Executing on each of the two CPU cores
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GPU way — I
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GPU way — II
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Blocks and Threads
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2D hierarchy of blocks and threads
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GPU way — III
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GPU Blocks
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GPU Threads — I
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GPU Threads — II
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CUDA on Mac OS X

29
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Example: deviceQuery

Understand the hardware constraint via deviceQuery (in example code of CUDA toolkit)
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Example: Matrix Addition on CPU

Problem: Sum two matrices with M by N size. 
Cmxn = Amxn + Bmxn  

In traditional C/C++ implementation: 
• A, B are input matrix, N is the size of A and B. 
• C is output matrix 
• Matrix stored in array is row-major fashion
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Example: Matrix Addition on GPU - 2D grid with 2D blocks

Problem: Sum two matrices with M by N size. 
Cmxn = Amxn + Bmxn  

CUDA C implementation: 
• matA, matB are input matrix, nx is column size, and ny is row size 
• matC is output matrix
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Example: Matrix Addition on GPU - 2D grid with 2D blocks

Data accessing in 2D grid with 2D blocks arrangement (one green block is one thread block)

bl
oc

kD
im

.y

blockDim.x

threadIdx.x

threadIdx.y
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Example: Matrix Addition on GPU - 1D grid with 1D blocks

Data accessing in 1D grid with 1D blocks arrangement (one green block is one thread block)

blockDim.x

(ix, iy)
threadIdx.x

iy
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Example: Matrix Addition on GPU - 2D grid with 1D blocks

Data accessing in 2D grid with 1D blocks arrangement (one green block is one thread block)

blockDim.x
1

(ix, iy)
threadIdx.x
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Example: Matrix Transpose on CPU

Problem: Transpose one matrix with M by N to one matrix with N by 
Amxn = Bnxm  

In traditional C/C++ implementation: 
• in is input matrix, nx is column size, and ny is row size. 
• out is output matrix 
• Matrix stored in array is row-major fashion
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Example: Matrix Transpose on GPU
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Example: Matrix Transpose on GPU
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Example: Concurrent Processing

Concurrent handle data transfer and computation 
For NVIDIA GT 650M (laptop GPU), there is one copy engine. 
For NVIDIA Tesla K40 (high-end GPU), there are two copy engines 

The latency in data transfer could be hidden during computing 
To handle two tasks, which both are matrix multiplications. 

Copy two inputs to GPU, copy one output from GPU

No concurrent processing Concurrent processing
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Reference

Professional CUDA C Programming 
http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-

Programming.productCd-1118739329,descCd-DOWNLOAD.html 
source code are available on the above website

http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-Programming.productCd-1118739329,descCd-DOWNLOAD.html


© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 7

Homework #3 (due March 31st)

Choose 2 of the algorithms you use in your homework #2. Convert them into a GPU version. 

Show your code, and performance measurement comparing to your non-GPU version. 

The more innovative/complex your algorithms are, the higher score you will get on your 
Homework #3.
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