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Spark SQL
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Spark SQL
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Apache Hive
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Using Hive to Create a Table
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Creating, Dropping, and Altering DBs in Apache Hive
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Another Hive Example
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Hive’s operation modes
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Using HiveQL for Spark SQL
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Hive Language Manual
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Using Spark SQL — Steps and Example
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Query testtweet.json
Get it from Learning Spark Github ==> https://github.com/databricks/learning-spark/tree/master/files
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SchemaRDD
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Row Objects

Row objects represent records inside SchemaRDDs, and are simply fixed-length arrays of fields.
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Types stored by Schema RDDs



© 2015 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 4: Data Store17

Look at the Schema

(not a complete screen shot)
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Another way to create SchemaRDD
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JDBC Server

Spark SQL provides JDBC connectivity, which is useful for connecting business intelligence 
tools to a Spark cluster and for sharing a cluster across multiple users.
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User-Defined Functions (UDF)

UDFs allow you to register custom functions in Python, Java, and Scala to call within SQL. 

This is a very popular way to expose advanced functionality to SQL users in an organization, 
so that these users can call into it without writing code.



© 2014 CY Lin, Columbia UniversityE6893 Big Data Analytics – Lecture 9: Linked Big Data: Graph Computing21

Streaming
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Spark Streaming

In Spark 1.1, Spark Streaming is available only in Java and Scala.  
Spark 1.2 has limited Python support.
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Spark Streaming architecture
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Spark Streaming with Spark’s components
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Try these examples
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Graph Database
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Big Data: “While enterprises struggle to consolidate 
systems and collapse redundant databases to enable 
greater operational, analytical, and collaborative 
consistencies, changing economic conditions have 
made this job more difficult. E-commerce, in particular, 
has exploded data management challenges along three 
dimensions: volumes, velocity and variety. In 2001/02, 
IT organizations much compile a variety of approaches 
to have at their disposal for dealing each.” – Doug 
Laney, Gartner, 2001 
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CM,	RM,	DM RDBMS Feeds Web	2.0 Email Web CRM,	ERP File	Systems
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UI	/	User

Streams WarehouseData	ExplorerGraphs

Linked	
Big	Data
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Graph is a missing pillar in the existing Big Data foundation

Graph Computing is difficult because data cannot be easily partitioned 
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Graph Database Example
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Forrester: Over 25% of enterprise will use Graph DB by 2017

TechRadar: Enterprise DBMS, Q12014

Graph DB is in the significant success trajectory, and with the highest 
business value in the upcoming DBs.
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GraphDB has the largest Popularity Change among DBMS lately
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Graph Database key differentiator — native store

Native Graph DB stores nodes 
and relationships directly, It 
makes retrieval efficient. 

In Relational DB, relationships are 
distributed and stored as tables

Retrieving multi-step 
relationships is a 
'graph traversal' problem

Cited “Graph Database” O’liey 2013Technology ==> Top Layer: Graph, Bottom Layer: Graph
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A usual example
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Query Example – I
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Query Examples – II & III

Computational intensive
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Execution Time in the example of finding extended friends (by 
Neo4j)
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Modeling Order History as a Graph
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A query language on Property Graph – Cypher
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Property Graph Example – Shakespeare
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Creating the Shakespeare Graph
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Query on the Shakespeare Graph



© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 442

Building Application Example – Collaborative Filtering
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http://systemG.research.ibm.com	(Internet)	or	http://systemG.ibm.com	(IBM	internal	site)

43

What is IBM System G?

A Complete Graph Computing Suite — Toolkits, Solutions, & Cloud  
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Download IBM System G Standard Edition (on-premise)

http://systemg.research.ibm.com/download.html

or 
http://www.ibm.com/developerworks/labs/
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Observations

Intrinsic senses

Reasoning
• Reasoning Engine: 

• Markovian & Bayesian Networks 
• Anomaly Detection Tools 
• Brain Analysis Tool 

• Cognitive Networks: 
• Deep Learning 
• Emotion Analysis 

• Spatiotemporal Analytics: 
• Road Network Algorithms 
• Spatiotemporal Data Mining 
• Spatiotemporal Indexing 

• Mobile & Sensor Analytics: 
• Mobile Security Tools 
• Sensor Analytics Tools 

   

IBM System G Tools — 8 categories
• Graph Database: 

• Native Store 
• GBase 

• Scalable Middleware: 
• Parallel Prog. Lib. 
• Power Optimization 
• Software Defined Env. 

•  Contextual Analytics: 
• Topological Analysis 
• Matching and Search 
• Path and Flow 

• Visual Analytics: 
• Multivariate Graph 
• Heterogeneous Graph 
• Dynamic Graph 
• Big Graph 
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Similarity to the Brain Functions and Evolution

Perception

Observation
Memory

Judgement

Abstract  
comprehension
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Visualization
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IBM System G Graph Computing Tools

Graph	Data	Interface	(TinkerPop)

Dynamic	Network	
Visualization

Mainframe		
(System	Z	&	Power)

Mobile	
(	iOS)Cloud

Super	
Computer

Graph	Computing	Tools	APIs	and	Query	Langauge	Support

Enterprise	Graph	
Database	Enhancer

Other	
Graph	Store
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Interface

Performance	Driven		
System	G	Native	Graph	Store

Hardware Server	
(Linux	&	OS	X)

Cluster	
(CPU,	CPU+GPU)

Streams	
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GPU	Graph		
Computing	Driver

In-Memory	
Graph	RT	Library

Multi-Core	
Multi-Thread	

Graph	RT	Library

Distributed	Memory		
Graph	RT	Library
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Top k-shortest paths

Graph Analytical Tools

• Network topological analysis tools 
•Centralities (degree, closeness, betweenness) 
•PageRank 
•Communities (connected component, K-core,  
triangle count, clustering coefficient) 
•Neighborhood (egonet, K-neighborhood) 

• Graph matching and search tools 
•Graph search/filter by label,  
vertex/edge properties 
(including geo locations) 
•Graph matching 
•Collaborative filtering 

• Graph path and flow tools 
•Shortest paths 
•Top K-shortest paths 

• Probabilistic graphical model tools 
•Bayesian network inference 
•Deep learning

K-neighborhoodK-core

Collaborative filtering  
Bipartite weighted graph matching

1
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data graph

Graph matching

Bayesian network inference
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Performance comparisons

IBM KnowledgeView 1-year Access Log: 72.3K users, 82.1K docs, and 1.74 million downloads

For Visualization ==> 4-hop traversal & rankings 

System GOpen SourcesStartupProducts

*All performance numbers are preliminary

TBD

  TBD

Recommendation ==> 2-hop traversal & ranking 

user

item

People who bought this also bought that..
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IBM System G Visualizer – Graph Data Explorer

Console Panel

Visualization Panel

Visual Mapping Panel

Visual Query Panel 
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Panel Introduction

51

• Visual Query Panel  
• Providing users a friendly UI to create, delete, and query graphs from the 

System G native store. 

• Console Panel 
• Display all the interaction information with System G native store. 
• Execute user defined query. 

• Visualization Panel 
• Rendering graph structure on screen for users to visually explore graphs. 

• Visual Mapping Panel 
• Customizing rendering effects to show desired graph information.
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Visual Query Panel – Creating a graph

1

2

3

4 5

1: Click “Create Graph”; 2: Prepare the graph data   
3: Set the graph name; 4: Upload node files;   
5: Upload edge files and finalize creating the graph.

52



© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 453

Visual Query Panel – Visual Query Builder

“analytics_degree	<=	10	and	(group	==	“center”	or	group	==	
“guard”)	
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Console Panel – User typed query

Query with no graph returned

Query with graph returned
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Visual Mapping Panel 

Name Functionality
Background Color Change the background color of the canvas.

Node Default Color Set a unified color for all nodes.
Edge Default Color Set a unified color for all edges.

Show Nodes Set the visibility of all nodes.

Node Color Mapping Assign color to nodes according to selected 
property of nodes. 

Node Size Mapping Assign the radius of nodes according to 
selected property of nodes.

Filter Node Label by Node Size

Selectively show the node label according to 
the threshold. Labels will be shown for the 
nodes of which the size is larger than the 
threshold.

Node Label Mapping Set the label value according to selected 
property of nodes.

Node Label Size Adjust the font size of node labels
Show Edges Set the visibility of all edges

Edge Color Mapping Assign color to edges according to selected 
property of edges. 

Edge Label Mapping Set the label value according to selected 
property of edges.

Edge Label Size Adjust the font size of edge labels

Edge Thickness Mapping Assign thickess to edges according to selected 
property of edges.

Edge Style
Select the rendering style of edges. For directed 
graphs, users also can choose if showing the 
arrows or not.
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Visualization Panel – Before Customization
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Visualization Panel – After Customization
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Visualization Panel – Further Customization

Users can further specify colors by clicking the color blocks shown in the 
legend area
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http://systemg.ibm.com/tool/visualizer/ 

59

http://systemg.ibm.com/tool/visualizer/
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Characteristics of IBM System G Graph Analytics

• Cover  a wide range of graph analytics to support many application use cases in 
different domains, e.g.: 

• Enterprise social network analysis, expertise search, knowledge recommendation 
• Financial/security anomaly/fraud detection 
• Social media monitoring and analysis 
• Cellular network analytics in Telco operation 
• Patient and disease analytics for healthcare 
• Live neural brain network analysis 

• Provide efficient in-memory computation as well as on-disk persistence 
• Optimal performance enabled by IBM System G graph database technologies that 

focus on efficient use of available computing resources with architecture-aware 
design to leverage system/architecture advantages 

• Single-threaded, concurrent (shared memory), and distributed versions 
• Multiple deployment options to suit different customer preferences and needs 

• C++ executables in Linux environments (Redhat CentOS, Ubuntu, Mac OS X, 
Power) 

• TinkerPop (Blueprints) API 
• gShell (a shell-like environment with interactive, batch, and server/client modes to 

operate multiple graph stores simultaneously) 
• Gremlin console 
• REST API Web service 
• Python wrapper

60
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http://sql2gremlin.com

http://tinkerpop.incubator.apache.org

Compatible with TinkerPop Interface (Apache Incubator)
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Write Python Code based on System G

g.analytic_find_path(src="1",sink="2") g.analytic_find_path(src="1",sink="2",label="b")

Output of the 
above 

Python script

62
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 Nov 2015: IBM Research’s Software powered all Top 3 winners of Graph 500 benchmark and 
9 out of the Top 10 winners (supercomputers in US, Japan, France, UK, and Germany; except 
in China).

×3.25

K computer

SGI UV2000

TSUBAME 2.5

#3

#4

#3
FX10 

TSUBAME-KFC

#1

#4 #4 #4

CPU only

GPU

CPU only
4-way Xeon server

Sequoia

The Nov 2015 winner, K-computer supercomputer of 83K nodes and 663Kcores, 
achieved graph search of up to 38, 621,400,000 vertices per second. 

http://www.graph500.orgHighly Scalable Graph Database
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Comparison of graph size
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