

E6895 Advanced Big Data Analytics: Lecture 14

Big Data Visualization

Ching-Yung Lin, Ph.D.

Adjunct Professor, Dept. of Electrical Engineering and Computer Science

April 28th, 2016

Existing Visualisation Techniques

Taxonomy by data types

1D

2D

3D

Multi-D

Example : Visualizing 1D Ordinal Data

http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html

E6895 Advanced Big Data Analytics

6

© 2016 CY Lin, Columbia University

COLUMBIA

Size of each Cell: Stock Market Value Color: Stock Change

Examples: Visualizing Unstructured Data

Larger cinema markets support stronger domestic film industries.

Countries sized by relative share of worldwide box office revenue, 2009

Examples: Visualizing Spatial Temporal Data

wind map

Dec. 3, 2014 11:35 am EST (time of forecast download)

top speed: 31.5 mph average: 8.2 mph

.

http://hint.fm/wind/

1 mph

3 mph

5 mph

10 mph

15 mph

30 mph

The purpose of visualization is to reveal the insight of the data

Realism

Information

Physical Data

Artificial Data

Three Sub-areas

Major Conferences and Journals

36

Recommended Books

Visualizing Big Data

Are you ready to Big Data?

340 million tweets a day!

Information Overload difficult caused by too much information

Challenge

How can we acquire useful information from the overwhelming data

Tree of Life by Dr. Yifan Hu

14.8 million tweets

The information diffusion graph of the death of Osama bin Laden by Gilad Lotan

500 million users

Facebook friendship graph by Paul Butler

Challenging Task:

26

Squeezing millions and even billions of records into million pixels (1600 X 1200 = 2 million pixels)

Visual clutter

How can we avoid visual clutters like overlaps and crossings?

Performance issues

How can we render the huge datasets in real time with rich interactions?

Limited cognition

How can users understand the visual representation when the information is overwhelming?

A multidimensional data item contains 6 attributes

Database visualization (10,000 items, 6 dimensions)

Jan	Feb	Mar	Apr	May	Jun
-99.99	-99.99	315.7	317.45	317.5	317.26
315.62	316.38	316.71	317.72	318.29	318.16
316.43	316.97	317.58	319.02	320.03	319.59
316.93	317.7	318.54	319.48	320.58	319.77
317.94	318.56	319.68	320.63	321.01	320.55
318.74	319.08	319.86	321.39	322.24	321.47
319.57	-99.99	-99.99	-99.99	322.24	321.89
319.44	320.44	320.89	322.13	322.16	321.87
320.62	321.59	322.39	323.87	324.01	323.75
322.06	322.5	323.04	324.42	325	324.09
322.57	323.15	323.89	325.02	325.57	325.36
324	324.42	325.64	326.66	327.34	326.76
325.03	325.99	326.87	328.14	328.07	327.66
326.17	326.68	327.18	327.78	328.92	328.57
326.77	327.63	327.75	329.72	330.07	329.09
328.55	329.56	330.3	331.5	332.48	332.07
329.35	330.71	331.48	332.65	333.09	332.25
330.4	331.41	332.04	333.31	333,96	333.6
331.75	332.56	333.5	334.58	334.87	334.34
332.93	333.42	334.7	336.07	336.74	336.27
334.97	335.39	336.64	337,76	338.01	337.89
336.23	336.76	337.96	338.89	339.47	339.29
338.01	338.36	340.08	340.77	341.46	341.17
339.23	340.47	341.38	342.51	342.91	342.25
340.75	341.61	342.7	343.57	344.13	343.35
341.37	342.52	343.1	344.94	345.75	345.32
343.7	344.5	345.28	347.08	347.43	346.79
344.97	346	347.43	348.35	348.93	348.25
346.3	346.96	347.85	349.55	350.21	349.54
348.02	348.47	349.42	350.99	351.84	351.25
350.43	351.73	352.22	353.59	354.22	353.79
352.76	35307	353.68	355.42	355.67	355.13
353.66	354.7	355.39	356.2	357.16	356.23
354.72	355.75	357.16	358.6	359.33	358.24
355.98		357.81	359.15	359.66	359.25
356.7	357.16	358.38	359.46	360.28	359.6
358.37	358.91	359.97	361.26	361.68	360,95
359.97	361	361.64	363.45	363.79	363.26
362.05	363.25	364.02	364.72	365.41	364.97
363.18	364	364.56	366.35	366.79	365.62
365.33	366.15	367.31	368.61	369.3	368.87
368.15	368.87	369.59	371.14	371	370.35
369.14	369.46	370.52	371.66	371.82	371.7
370.28	371.5	372.12	372.87	374.02	373.3
372.43	373.09	373.52	374.86	375.55	375.41
372.43	375.63	375.52	374.86	378.35	378.13
374.68	375.63		380.52		379.57
		378.41		380.63	
378.37	379.69	380.41	382.1	382.28	382.13
381.38	382.03	382.64	384.62	384.95	384.06
382.45	383.68	384.23	386.26	386.39	385.87
385.07	385.72	385.85	386.71	388.45	387.64

Order by degree of interests max

© 2016 CY Lin, Columbia University

Database Visualization (10,000 items, 6 dimensions)

min

Different Ways for splitting the display region

Jan		Feb	Mar		Apr		Мау	Jur		Jul		Aug		Бер	Oct		Nov		Dec		Annual Avera
1958	-99.99		-99.99	315.7		17.45		317.5	317.26		315.86		14.93	313.		312.44		3.33		314.6	-99.99
1959	315.62		316.38	316.71		17.72		18.29	318.16		316.54		314.8	313.8		313.26		14.8		315.58	315.98
1960	316.43		316.97	317.58		19.02		20.03	319.59		318.18		15.91	314.1		313.84		315		316.19	316.91
1961	316.93		317.7	318.54		19.48		20.58	319.77		318.57		16.79	314.		315.38		16.1		317.01	317.64
962	317.94		318.56	319.68		20.63		21.01	320.55		319.58		317.4	316.2		315.42		5.69		317.7	318.45
963	318.74		319.08	319.86		21.39		22.24	321.47		319.74		17.77	316.2		315.99		7.12		318.31	318.99
1964	319.57		-99.99	-99.99		99.99		22.24	321.89		320.44		318.7	316.		316.79		7.79		318.71	-99.99
1965	319.44		320.44	320.89		22.13		22.16	321.87		321.39		318.8	317.8		317.3		8.87		319.42	320.04
1966	320.62		321.59	322.39		23.87	3	24.01	323.75		322.39		20.37	318.6		318.1		9.79		321.08	321.38
1967	322.06		322.5	323.04		24.42		325	324.09		322.55		20.92	319.3		319.31		0.72		321.96	322.16
1968	322.57		323.15	323.89		25.02		25.57	325.36		324.14		22.03	320.4		320.25		1.31		322.84	323.05
1969	324		324.42	325.64		26.66		27.34	326.76		325.88		23.67	322.3		321.78		2.85		324.12	324.63
970	325.03		325.99	326.87	3	28.14	3	28.07	327.66		326.35	3	24.69	323.	1	323.16	32	3.98		325.13	325.68
1971	326.17		326.68	327.18	3	27.78	3	28.92	328.57		327.34	3	25.46	323.3	6	323.57	3	24.8		326.01	326.32
1972	326.77		327.63	327.75	3	29.72	3	30.07	329.09		328.05	3	26.32	324.9	3	325.06	3	26.5		327.55	327.45
1973	328.55		329.56	330.3		331.5	3	32.48	332.07		330.87		29.31	327.5	1	327.18		8.16		328.64	329.68
974	329.35		330.71	331.48		32.65	3	33.09	332.25		331.18		329.4	327.4		327.37		8.46		329.57	330.25
1975	330.4		331.41	332.04	3	33.31	3	33.96	333.6		331.91	3	30.06	328.5		328.34	32	9.49		330.76	331.15
1976	331.75		332.56	333.5	3	34.58	3	34.87	334.34		333.05	3	30.94	329.	3	328.94	33	0.31		331.68	332.15
977	332.93		333.42	334.7	3	36.07	3	36.74	336.27		334.93	3	32.75	331.5	9	331.16	3	32.4		333.85	333.9
978	334.97		335.39	336.64		37.76		38.01	337.89		336.54		34.68	332.7		332.55		3.92		334.95	335.51
979	336.23		336.76	337.96		38.89		39.47	339.29		337.73		36.09	333.9		333.86		5.29		336.73	336.85
980	338.01		338.36	340.08		40.77		41.46	341.17		339.56		337.6	335.8		336.02		37.1		338.21	338.69
981	339.23		340.47	341.38		42.51		42.91	342.25		340.49		38.43	336.6		336.86		8.36		339.61	339,91
982	340.75		341.61	342.7		43.57		44.13	343.35		342.06		39.81	337.9		337.86		9.26		340.49	2 .1.13
983	341.37		342.52	343.1		44.94		45.75	345.32		343.99		42.39	339.8		339.99		1.15		342.99	342.78
984	343.7		344.5	345.28		47.08		47.43	346.79		345.4		43.28	341.0		341.35		2.98		344.22	344.42
985	344.97		346	347.43		48.35		48.93	348.25		346.56		44.68	343.0		342.8		4.24		345.55	345.9
986	346.3		346.96	347.86		49.55		50.21	349.54		347.94		345.9	344.8		344.17		5.66		346.9	347.15
987	348.02		348.47	349.42		50.99		51.84	351.25		349.52		348.1	346.4		346.36		7.81		348.96	348.93
988	350.43		351.73	352.22		53.59		54.22	353.79		352.38		50.43	348.7		348.88		0.07		351.34	351.48
989	352.76		353.07	353.68		55.42		55.67	355.13		353.9		51.67	349.		349.99		1.29		352.52	352.91
1990	353.66		354.7	355.39		356.2		57.16	356.23		354.82		52.91	350.9		351.18		2.83		354.21	354.19
991	354.72		355.75	357.16		358.6		59.33	358.24		356.17		54.02	352.1		352.21		3.75		354.99	355.59
992	355.98		356.72	357.81		59.15		59.66	359.25		357.02	5.	355	353.0		353.31		4.16		355.4	356.37
993	356.7		357.16	358.38		59.46		60.28	359.6		357.57	2	55.52	353.6		353.99		5.34		356.8	357.04
994	358.37		358.91	359.97		61.26		61.68	360.95		359.55		57.48	355.8		355.99		7.58		359.04	358.89
995	359.97		361	361.64		63.45		63.79	363.26		361.9		59.46	358.0		357.76		9.56		360.7	360.88
1995	362.05		363.25	364.02		64.72		65.41	364.97		363.65		61.48	359.4		359.6		0.76		362.33	362.64
.997 .998	363.18 365.33		364 366.15	364.56 367.31		66.35 68.61		66.79 369.3	365.62		364.47 367.64		62.51	360.1		360.77		2.43		364.28 366.97	363.76 366.63
													65.77			364.23					
999	368.15		368.87	369.59		71.14		371	370.35		369.27		66.93	364.6		365.13		5.67		368.01 369.53	368.31
	369.14		369.46	370.52		71.66		71.82	371.7		370.12		68.12	366.6		366.73		8.29			369.48
2001	370.28		371.5	372.12		72.87		74.02	373.3		371.62		69.55	367.9		368.09		9.68		371.24	371.02
2002	372.43		373.09	373.52		74.86		75.55	375.41		374.02		71.49	370.		370.25		2.08		373.78	373.1
2003	374.68		375.63	376.11		77.65		78.35	378.13		376.62		374.5	372.9		373.01		4.35		375.7	375.64
2004	376.79		377.37	378.41		80.52		80.63	379.57		377.79		75.86	374.0		374.24		5.86		377.47	377.38
2005	378.37		379.69	380.41		382.1		82.28	382.13		380.66		78.71	376.4		376.88		8.32	-	380.04	379.67
2006	381.38		382.03	382.64		84.62		84.95	384.06		382.29		80.47	378.6		379.06		0.14	-	381.74	381.84
2007	382.45		383.68	384.23		86.26		86.39	385.87		384.39		81.78	380.7		380.81		2.33		383.69	383.55
2008	385.07		385.72	385.85	3	86.71	3	88.45	387.64		386.1	3	83.95	382.9	1	382.73	38	3.96		385.07	385.34
			centrations a																		
per million	by volum	ne (pp	mv) expresse monthly value	d in the 2	003A SIC	manor	metric r	nole fraction	on scale. T	he "ar	nnual avera	iqe"									

COLUMBIA UNIVERSITY

(Yang et al., 2006)

Building a tree for aggregating data items in either a bottom-up or top-down approach

Technique (2) : Aggregation & LOD

Scatter Plots (Elmqvist & Fekete, 2010)

(Yang et al., 2003b)

Technique (3) : Distortion

Sampling

Reordering

Technique (4): Clutter Reduction

Technique (4): Query based Visualization

A Survey of GPU-Based Large-Scale Volume Visualization, EuroVis, 2014

Graph & Network Visualization

- Drawing Graphs with Special Structure:
 - Planar Graphs
 - Orthogonal paths for edges
 - K-sided convex polygons for each cycle of length k
 - -Trees

43

- Layering of Edges
- Horizontal and vertical edges (hv-layout)
- Radiate outward on concentric circles (radial layout)
- Drawing Graphs Using Analogies to Physical Systems

- Minimize Edge Crossing
 - Planar Graph and Planar Drawing
 - -Graph Planarity Test
 - O(n) algorithm at best
 - Intuitive method: test for subdivision of K5 or K3,3 Non-Planar Drawings
- Minimize and Uniform Edge Length
 - -Minimize edge length
 - Minimize the total edge length
 - Minimize the maximum of edge length
 - Uniform edge length (for unweighted graph)
 - Minimize the variance of edge length
 - · For weighted graph: edge length proportional to

Uniform Edge Length Drawing

- Minimize and Uniform Edge Bends
 - -Minimize total edge bends
 - -Minimize the variance of edge bends
- Maximize Angular Resolution
 - -Maximize the smallest angle between two edge
- Minimize Aspect Ratio
 - -Adapt to the real-world screens
- Graph Symmetry

Graph with and without edge bend

Various modern drawing approaches

- Graph drawing without modern techniques
 - -Hand-made images
 - Drawing with cluster/factor analysis, multidin
- Graph drawing approaches according to elaborately-c
 - Each approach follows a list of aesthetics wi...
 - · Aesthetics conflict with each other
 - Hard to design algorithm to fit all the aesthetics

Hand-made drawing of friendships

© 2016 CY Lin, Columbia University

E6895 Advanced Big Data Analytics

- Layering of Edges
- Horizontal and vert
- · Radiate outward or

Hierarchical Graph Drawing

- For dependency relationships abstracted as acyclic digraph
- Sugiyama-style 3-step layout annual

Hierarchical drawing of a citation network

- Orthogonal Graph Drawing
 - For circuit placement in VLSI and PCB board layout
 - Topology-Shape-Metrics approach
- Radial Graph Drawing
 - For rooted tree drawing
 - Foldable for hierarchical graphs
 Radial Drawing

COLUMBIA UNIVERSITY

- Force-directed Graph Drawing
 - -For undirected straight-line drawing
 - Simulate physical systems with forces, the final graph layout reaches the local system equilibrium (i.e. a local minimization of energy)
 - Generate graphs with good node uniformity and symmetric
 - Two types of force-directed algorithms
 - Spring Embedder by Eades and the seminar work by Fructerman and Reingold
 - Kamada and Kawai algorithm, trying to maintain graph theoretic distances between nodes, the recent solution by stress majorization is popular
 - Multi-Scale force-directed algorithms for large graphs

Force-directed layout with spring embedder

Algorithm

- Assign a measure of 'force' to each vertex.
- Iteratively adjust the position $p_v = (x_v, y_v)^T$ until the forces on each have converged.
- A standard setup defines the force $F = (F_x, F_y)^T$ on v in the x direction to be:

$$F_{x}(v) = \sum_{\{u,v\}\in E} k_{uv}^{(1)}(\|p_{u} - p_{v}\| - len_{uv}) \frac{x_{v} - x_{u}}{\|p_{u} - p_{v}\|} + \sum_{(u,v)\in V^{2}} k_{uv}^{(2)} \frac{x_{v} - x_{u}}{\|p_{u} - p_{v}\|^{3}}$$

where

$$\begin{array}{ll} k_{uv}^{(1)} & \text{is a spring stiffness} \\ k_{uv}^{(2)} & \text{is s strength of electric repulsion stiffness} \\ \left\| \cdot \right\| & \text{is Euclidean distance} & len_{uv} \\ \end{array}$$
 is a parameter for desired dist.

- Basic Metaphors with Graph
 - $-Nodes \sim People$
 - Visual attribute mapping:
 - Edges ~ Relationships
 - Visual attribute mapping:
- Advanced Metaphors with Graph
 Shading ~ Community (clust
- Other Non-Graph Metaphors
 Adjacency Matrix

Social Network Visualization -- Matrix

- Adjacency Matrix as an Alternative of Node-Link Graph
 - -Good for huge, scale-free graph
 - -Hybrid visualization
 - MatrixExplorer: synchronized view of both adjacency matrix and nodelink graph
 - NodeTrix: combined visualization for social network with communities
- User Studies on Performance
 - Matrix is better than node-link graph in several major tasks when node number is over 20
 - Negatives: the mass people (information consumer) can only perceive simple visualization such as maps, line-charts and graphs

- Social Networks could be quite large, posing challenge to visualization
 - Traditional layout algorithms do not scale, with $O(n^2) \sim O(n^3)$ computation complexity
 - With multi-scale fast layout algorithm, huge graph can be drawn with degraded quality, but raises severe visual clutter
- Social Networks are intrinsically clustered, with well-known feature of scale-free, small-world
 - Visualization should reveal this structural information

A Huge Graph Visualization with Multi-Scale Layout Algorithm (by AT&T)

- Graph Skeleton Visualization by Edge Pruning
 - Filter edges by edge betweenness centrality from low to high

Edge pruning with betweenness centrality

- Graph Skeleton Visualization by Edge Pruning
 - Construct a minimal spanning tree (MST) or path-finder network from the original huge graph
 - Graph skeleton visualization highlights the topology and intrinsic structure of huge graph by reducing visua

Case study – Mapping 'Science'

E6895 Advanced Big Data Analytics

© 2016 CY Lin, Columbia University

Case study – Mapping 'Science'

Fig 3.6 in Statistical Analysis of Network Data. Original source: Kevin Boyack.

© 2016 CY Lin, Columbia University

Social Network Visualization – Huge Structural Network

- Graph Visual Clutter Reduction through Edge Bundling
 - Edge bundling steps
 - Generate control mesh
 - Cluster the edges
 - Let the clustered edge traverse through the same set of control points

The effectiveness of edge bundling

Social Network Visualization – Huge Structural Network

- Graph Visual Clutter Reduction through Edge Bundling
 - Hierarchical edge bundling
 - For hierarchically clustered graph
 - Maintain high-level topology information of edges
 Hierarchical Edge Bundling

- Huge Graph Visualization through Advanced Interactions
 - -Focus+Context: to highlight part of the network while leaving context
 - Topology Fisheye
 - Hyperbolic Tree

Focus + Context

- Huge Graph Visualization through Advanced Interactions
 - -Overview + Detail
 - Overview graph with lowered quality
 - Overview graph show hierarchy information
 - Traditional Zoom & Pan
- **Overview + Detail**

- Avoid huge graph with user-interest centric visualization
 - Spring-board by Frank Van Ham
 - The "search, show context, expand on Demand" paradigm
 - Degree of Interest (DOI) function combining graph topology (distance to the central node) and user interest (search context)
 - Allow further navigation by expanding a subgraph

Springboard: visualize huge graph by user-interest

- Dynamic Network Visualization with "Network Movie"
 - A Key Guideline: preserving user's mental map during the visualization
 - Balance the static graph layout aesthetic and the graph stability between time frame
 - Use Staged Animation to Help User Perceive Complex Changes
 - Animation planning according to cognitive studies
 - Intermediate layout result had better satisfy graph aesthetics rather than interpolations
 - Some Negative Comments from User Studies
 - Animation leads to many participant errors, though participants find it enjoyable
 - Animation is the least effective form for analysis, even worse than static depictions

Dynamic Network Visualization

How can we visualize big data ?

Encoding : Visual Design

Technique : Layout Algorithm

Using existing tools are easy

Tableau

ManyEyes

Admin

Q. Se

Python: iGraph : <u>http://igraph.org/redirect.html</u> Networkx : <u>https://networkx.github.io/</u>

JavaScript: D3.js (2D, SVG): <u>http://d3js.org/</u> Tree.js (3D, WebGL): <u>http://threejs.org/</u>

Java:

prefuse: <u>http://prefuse.org/</u> InofVis Toolkit: <u>http://ivtk.sourceforge.net/</u>

Example 1: Visualising Streaming Data

Whisper: Tracing the Spatiotemporal Process of Information Diffusion in Real Time IEEE InfoVis 2012

Example 2: Visualizing Large Text Corpus

ContexTour SDM 2010

Visualizing Heterogeneous Clusters FacetAtlas TVCG (InfoVis 2010)

Visualizing Multi-relational Clusters SolarMap ICDM 2011

Cluster Interpretation

© 2016 CY Lin, Columbia University

Computational Power

Data Mining

Human Intellegence

Visual Analysis

Analysis + Visualisation + Interaction

Example 3: Detect Anomalous Users in Twitter

TargetVue: Visual Analysis of Anomalous User Behaviors in Online Communication Systems, IEEE Transactions on Visualisation and Computer Graphics (VAST'15)

Visualization Viewpoints

Editor: Theresa-Marie Rhyne

The Top 10 Challenges in Extreme-Scale Visual Analytics

Pak Chung Wong Pacific Northwest National Laboratory

Han-Wei Shen Ohio State University

Christopher R. Johnson University of Utah

Chaomei Chen Drexel University

Robert B. Ross Argonne National Laboratory

Wong, P. C., Shen, H. W., Johnson, C. R., Chen, C., & Ross, R. B. (2012). The top 10 challenges in extreme-scale visual analytics. IEEE computer graphics and applications, 32(4), 63.

Thank You!

Thank you very much for the many slides provided by Dr. Nan Cao and Dr. Lei Shi.