
© CY Lin, 2024 Columbia UniversityE6893 Big Data Analytics — Lecture 9

E6893 Big Data Analytics Lecture 9:

 GPU Fundamentals for Massive Data Processing

Ching-Yung Lin, Ph.D.

Adjunct Professor, Dept. of Electrical Engineering and Computer Science

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 92

GPU

2001: NVIDIA’s GeForce 3 series made probably the most breakthrough in GPU
technology

 — the computing industry’s first chip to implement Microsoft’s then-new Direct
8.0 standard;

 — which required that the compliant hardware contain both programmable
vertex and programmable pixel shading stages

Early 2000s: The release of GPUs that possessed programmable pipelines
attracted many researchers to the possibility of using graphics hardware for
more than simply OpenGL or DirectX-based rendering.

 — The GPUs of the early 2000s were designed to produce a color for every

pixel on the screen using programmable arithmetic units known as pixel
shaders.

 — The additional information could be input colors, texture coordinates, or
other attributes

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 93

2006: GPU computing starts going for prime time
 — Release of CUDA
 — The CUDA Architecture included a unified shader pipeline, allowing each

and every arithmetic logic unit (ALU) on the chip to be marshaled by a
program intending to perform general-purpose computations.

CUDA

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 94

Medical Imaging
Computational Fluid Dynamics
Environmental Science

Examples

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 95

GPU on an Intel MacBook

GT 750M:
— 2 * 192 CUDA cores
— max thread number: 2 * 2048

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 96

GPU on an M1 MacBook

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 97

Amazon AWS

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 98

Compiler

CUDA supports most Windows, Linux, and Mac OS compilers

For Linux:
 Red Hat
 OpenSUSE
 Ubuntu
 Fedora

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 99

GPU Architecture

GPU Architecture
built by several streaming multiprocessors (SMs)

In each SM:
CUDA cores
Shared Memory/L1 Cache
Register File
Load/Store Units
Special Function Units
Warp Scheduler

In each device:
L2 Cache

Kepler Architecture, K20X

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 910

Blocks and Threads

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 911

2D hierarchy of blocks and threads

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 912

CUDA C

Hello World!!

Host: CPU and its memory
Device: GPU and its memory

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 913

A Kernel Call

nvcc handles compiling the function kernel()
it feeds main() to the host compiler

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 914

Passing Parameters

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 915

Parallel Programming in CUDA C

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 916

Traditional C way

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 917

Executing on each of the two CPU cores

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 918

GPU way — I

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 919

GPU way — II

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 920

GPU way — III

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 921

GPU Blocks

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 922

GPU Threads — I

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 923

GPU Threads — II

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 924

GPU Architecture

GPU Architecture
built by several streaming multiprocessors (SMs)

In each SM:
CUDA cores
Shared Memory/L1 Cache
Register File
Load/Store Units
Special Function Units
Warp Scheduler

In each device:
L2 Cache

Kepler Architecture, K20X

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 825

Example: deviceQuery

Understand the hardware constraint via deviceQuery (in example code of CUDA toolkit)

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 826

Example: Matrix Addition on CPU

Problem: Sum two matrices with M by N size.
Cmxn = Amxn + Bmxn

In traditional C/C++ implementation:
• A, B are input matrix, N is the size of A and B.
• C is output matrix
• Matrix stored in array is row-major fashion

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 827

Example: Matrix Addition on GPU - 2D grid with 2D blocks

Problem: Sum two matrices with M by N size.
Cmxn = Amxn + Bmxn

CUDA C implementation:
• matA, matB are input matrix, nx is column size, and ny is row size
• matC is output matrix

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 828

Example: Matrix Addition on GPU - 2D grid with 2D blocks

Data accessing in 2D grid with 2D blocks arrangement (one green block is one thread block)

bl
oc

kD
im

.y

blockDim.x

threadIdx.x

threadIdx.y

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 829

Example: Matrix Addition on GPU - 1D grid with 1D blocks

Data accessing in 1D grid with 1D blocks arrangement (one green block is one thread block)

blockDim.x

(ix, iy)
threadIdx.x

iy

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 830

Example: Matrix Addition on GPU - 2D grid with 1D blocks

Data accessing in 2D grid with 1D blocks arrangement (one green block is one thread block)

blockDim.x
1

(ix, iy)
threadIdx.x

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 831

Example: Matrix Transpose on CPU

Problem: Transpose one matrix with M by N to one matrix with N by
Amxn = Bnxm

In traditional C/C++ implementation:
• in is input matrix, nx is column size, and ny is row size.
• out is output matrix
• Matrix stored in array is row-major fashion

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 832

Example: Matrix Transpose on GPU

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 833

Example: Matrix Transpose on GPU

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 834

Example: Concurrent Processing

Concurrent handle data transfer and computation
For NVIDIA GT 650M (laptop GPU), there is one copy engine.
For NVIDIA Tesla K40 (high-end GPU), there are two copy engines

The latency in data transfer could be hidden during computing
To handle two tasks, which both are matrix multiplications.

Copy two inputs to GPU, copy one output from GPU

No concurrent processing Concurrent processing

© CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 9

Outline

NVIDIA GPU Architecture
Execution Model
Resource Allocation
Memory Type
Concurrent Processing

Applications on NVIDIA GPU:
Mandatory Component in Machine Learning:

Matrix Multiplication with Addition (Y = ATB + C)

GPU Architecture on iPhone/iPad
Execution Model
Metal Programming Examples for Data-Parallel Computation on GPU

Sigmoid Function
Sobel Operators for Image Processing

35

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 936

Execution Model - Warp Concept

NVIDIA GPU groups 32 threads into one warp, and then execute warps sequentially.
Number of concurrent warps are based on the number of warp scheduler. (Kepler has 4

warp scheduler)
Relationship between logical view and hardware view

Inefficient way to allocate a thread block: thread number in one block is not multiples of 32.

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 937

Execution Model - Warp Divergence

GPU has light-weight control module, complicated control flow will hurt the performance of GPU.
In the same warp, e.g., if you allocate 16 threads to do A task; and 16 threads to do B task.

A and B will be executed serially.

Example: simpleDivergence.cu
• Test with optimization (-O2) and without optimization (-g)

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 938

Execution Model - Warp Divergence

Compilation — turn off the optimization
nvcc -g -G -o simpleDivergence simpleDivergence.cu

Execute through nvprof to extract profiling information
nvprof --metrics branch_efficiency --events branch,divergent_branch ./

simpleDivergence

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 939

Resource Allocation

A warp is consisted of
Program counters
Registers
Shared memory

If a thread use lots of resource, fewer threads will be allocated in one SM.

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 940

Occupancy

Toolkit, CUDA Occupancy Calculator:
in /usr/local/cuda/tools/CUDA_Occupancy_Calculator.xls

It could assist in measuring the occupancy of your configuration

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 941

Occupancy, Memory Load Efficiency, Memory Load
Throughput

View number of registers, set the constraints on number of registers per thread
nvcc -g -G -arch=sm_30 --ptxas-options=-v --maxrregcount=31 -o sumMatrix

sumMatrix.cu

Check occupancy, memory load efficiency, memory load throughput to explore the suitable
configuration of size of thread block

nvprof --metrics gld_throughput,gld_efficiency,achieved_occupancy ./sumMatrix dimX dimY

do example on sumMatrix.cu with dim of thread block {4,4}, {4,8}, {8,4}, {8,8}, {16,16}, {32,32}
{16,16} is the fast one.

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 942

Memory Type

1. Register
• per thread, An automatic variable in kernel function,

low latency, high bandwidth
2. Local memory

• per thread, variable in a kernel but can not be fitted in
register

3. Shared memory (__shared__)
• all threads, faster than local and global memory, share

among thread blocks
• Use for inter-thread communication, 64KB,

physically shared with L1 cache
4. Constant memory (__constant__)

• per device, read-only memory
5. Texture memory

• per SM, read-only cache, optimized for 2D spatial
locality

6. Global memory

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 943

Memory Type

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 944

Concurrent Processing

Concurrent handle
• Data transfer + computation
For NVIDIA GT 750M (laptop GPU), there is one copy engine.
For NVIDIA Tesla K40 (high-end server GPU), there are two copy engines

• Computation + computation is possible if your computation resource is enough.

Check example, sumMatrixOnGPUStream.cu and sumMatrixOnGPUNoStream.cu
Goal: Compute two matrix addition (C1 = A1 + B1 and C2 = A2 + B2)

The latency in data transfer could be hidden during computing
or concurrent computation.

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 945

Concurrent Processing

Sequential processing

Concurrent processing (data transfer + computation)

Concurrent processing (computation + computation)

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 946

Application: Neural Network

In neural network, the most important operation is inner-product
a=f(xTw+b)
x is a matrix that records the input which is fed to neural network
w is a matrix that records the weights of network connection
b is a matrix that records the bias of network connection
f is an activation function that used to activate the neuron
a is output

GPU is more suitable for such
intensively regular operations.
Example, xTw+b
cuBLAS (GPU) vs. OpenBLAS (CPU)

GPU computation includes data transfer
between host and device.

x
w

© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics — Lecture 947

Reference

Check all metrics and events for nvprof, it will also explain the meaning of options
nvprof --query-metrics
nvprof --query-events

Professional CUDA C Programming
http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-

Programming.productCd-1118739329,descCd-DOWNLOAD.html
source code are available on the above website

GTC On-Demand:
http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php

Developer Zone:
http://www.gputechconf.com/resource/developer-zone

NVIDIA Parallel Programming Blog:
http://devblogs.nvidia.com/parallelforall

NVIDIA Developer Zone Forums:
http://devtalk.nvidia.com

http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-Programming.productCd-1118739329,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-Programming.productCd-1118739329,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-Programming.productCd-1118739329,descCd-DOWNLOAD.html
http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php
http://www.gputechconf.com/resource/developer-zone
http://devblogs.nvidia.com/parallelforall
http://devtalk.nvidia.com

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics – Lecture 948

GPU on iOS devices

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics – Lecture 949

GPU Programming in iPhone/iPad - Metal

Metal provides the lowest-overhead access to the GPU, enabling developers to maximize the
graphics and compute potential of iOS apps.*

Metal could be used for:

Graphic processing ➔ openGL

General data-parallel processing ➔ open CL and CUDA

*: https://developer.apple.com/metal/

https://developer.apple.com/metal/

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics – Lecture 950

Fundamental Metal Concepts

• Low-overhead interface
• Memory and resource management
• Integrated support for both graphics and compute operations
• Precompiled shaders

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics – Lecture 951

GPU Programming in iPhone/iPad - Metal

Programming flow is similar to CUDA

Copy data from CPU to GPU

Computing in GPU

Send data back from GPU to CPU

Example: kernel code in Metal, sigmoid function:

source: http://memkite.com

thread_id for data parallelization

kernel code
device memory

http://memkite.com

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics – Lecture 952

Metal Object Relationships

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics – Lecture 953

Metal Command Buffers with Multiple Threads

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 954

Metal Programming Model

It integrates the support for both graphics and compute operations.
Three command encoder:

Graphics Rendering: Render Command Encoder
Data-Parallel Compute Processing: Compute Command Encoder
Transfer Data between Resource: Blitting Command Encoder

Multi-threading in encoding command is supported
Typical flow in compute command encoder

Prepare data
Put your function into pipeline
Command encoder
Put command into command buffer
Commit it to command queue
Execute the command
Get result back

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 955

Metal Programming, Kernel Function

Compute command
• Two parameters, threadsPerGroup and numThreadgroups, determines number of

threads. ➔ equivalent to grid and thread block in CUDA. They are all 3-D variable.
• The total of all threadgroup memory allocations must not exceed 16 KB.

• Kernel function: sigmoid function

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 956

Example

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 957

Example

© 2024 CY Lin, Columbia UniversityE6893 Big Data Analytics – Lecture 958

GPU Programming with Python

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 959

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 960

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 961

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 962

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 963

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 964

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 965

© CY Lin, Columbia UniversityE6893 Big Data Analytics — Lecture 966

