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GPU

2001: NVIDIA’s GeForce 3 series made probably the most breakthrough in GPU 
technology  

    — the computing industry’s first chip to implement Microsoft’s then-new Direct 
8.0 standard; 

    — which required that the compliant hardware contain both programmable 
vertex and programmable pixel shading stages 

Early 2000s: The release of GPUs that possessed programmable pipelines 
attracted many researchers to the possibility of using graphics hardware for 
more than simply OpenGL or DirectX-based rendering. 

     
       — The GPUs of the early 2000s were designed to produce a color for every 

pixel on the screen using programmable arithmetic units known as pixel 
shaders. 

     — The additional information could be input colors, texture coordinates, or 
other attributes 
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2006:  GPU computing starts going for prime time 
   — Release of CUDA 
   — The CUDA Architecture included a unified shader pipeline, allowing each 

and every arithmetic logic unit (ALU) on the chip to be marshaled by a 
program intending to perform general-purpose computations. 

CUDA
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Medical Imaging 
Computational Fluid Dynamics 
Environmental Science 

Examples
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GPU on an Intel MacBook

GT 750M: 
— 2 * 192 CUDA cores 
— max thread number: 2 * 2048
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GPU on an M1 MacBook
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Amazon AWS
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Compiler

CUDA supports most Windows, Linux, and Mac OS compilers 

For Linux: 
   Red Hat  
   OpenSUSE 
   Ubuntu 
   Fedora
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GPU Architecture

GPU Architecture 
built by several streaming multiprocessors (SMs) 

In each SM: 
CUDA cores 
Shared Memory/L1 Cache 
Register File 
Load/Store Units 
Special Function Units 
Warp Scheduler 

In each device: 
L2 Cache

Kepler Architecture, K20X
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Blocks and Threads
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2D hierarchy of blocks and threads
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CUDA C

Hello World!!

Host: CPU and its memory 
Device: GPU and its memory
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A Kernel Call

nvcc handles compiling the function kernel() 
it feeds main() to the host compiler
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Passing Parameters
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Parallel Programming in CUDA C
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Traditional C way
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Executing on each of the two CPU cores
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GPU way — I
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GPU way — II
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GPU way — III
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GPU Blocks
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GPU Threads — I
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GPU Threads — II
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GPU Architecture

GPU Architecture 
built by several streaming multiprocessors (SMs) 

In each SM: 
CUDA cores 
Shared Memory/L1 Cache 
Register File 
Load/Store Units 
Special Function Units 
Warp Scheduler 

In each device: 
L2 Cache

Kepler Architecture, K20X
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Example: deviceQuery

Understand the hardware constraint via deviceQuery (in example code of CUDA toolkit)
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Example: Matrix Addition on CPU

Problem: Sum two matrices with M by N size. 
Cmxn = Amxn + Bmxn  

In traditional C/C++ implementation: 
• A, B are input matrix, N is the size of A and B. 
• C is output matrix 
• Matrix stored in array is row-major fashion
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Example: Matrix Addition on GPU - 2D grid with 2D blocks

Problem: Sum two matrices with M by N size. 
Cmxn = Amxn + Bmxn  

CUDA C implementation: 
• matA, matB are input matrix, nx is column size, and ny is row size 
• matC is output matrix
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Example: Matrix Addition on GPU - 2D grid with 2D blocks

Data accessing in 2D grid with 2D blocks arrangement (one green block is one thread block)

bl
oc

kD
im

.y

blockDim.x

threadIdx.x

threadIdx.y
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Example: Matrix Addition on GPU - 1D grid with 1D blocks

Data accessing in 1D grid with 1D blocks arrangement (one green block is one thread block)

blockDim.x

(ix, iy)
threadIdx.x

iy
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Example: Matrix Addition on GPU - 2D grid with 1D blocks

Data accessing in 2D grid with 1D blocks arrangement (one green block is one thread block)

blockDim.x
1

(ix, iy)
threadIdx.x
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Example: Matrix Transpose on CPU

Problem: Transpose one matrix with M by N to one matrix with N by 
Amxn = Bnxm  

In traditional C/C++ implementation: 
• in is input matrix, nx is column size, and ny is row size. 
• out is output matrix 
• Matrix stored in array is row-major fashion
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Example: Matrix Transpose on GPU



© 2016 CY Lin, Columbia UniversityE6895 Advanced Big Data Analytics – Lecture 833

Example: Matrix Transpose on GPU
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Example: Concurrent Processing

Concurrent handle data transfer and computation 
For NVIDIA GT 650M (laptop GPU), there is one copy engine. 
For NVIDIA Tesla K40 (high-end GPU), there are two copy engines 

The latency in data transfer could be hidden during computing 
To handle two tasks, which both are matrix multiplications. 

Copy two inputs to GPU, copy one output from GPU

No concurrent processing Concurrent processing
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Outline

NVIDIA GPU Architecture
Execution Model
Resource Allocation
Memory Type
Concurrent Processing

Applications on NVIDIA GPU:
Mandatory Component in Machine Learning:

Matrix Multiplication with Addition (Y = ATB + C)

GPU Architecture on iPhone/iPad
Execution Model
Metal Programming Examples for Data-Parallel Computation on GPU

Sigmoid Function
Sobel Operators for Image Processing

35
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Execution Model - Warp Concept

NVIDIA GPU groups 32 threads into one warp, and then execute warps sequentially.
Number of concurrent warps are based on the number of warp scheduler. (Kepler has 4 

warp scheduler)
Relationship between logical view and hardware view

Inefficient way to allocate a thread block: thread number in one block is not multiples of 32.
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Execution Model - Warp Divergence

GPU has light-weight control module, complicated control flow will hurt the performance of GPU.
In the same warp, e.g., if you allocate 16 threads to do A task; and 16 threads to do B task.

A and B will be executed serially. 

Example: simpleDivergence.cu
• Test with optimization (-O2) and without optimization (-g)
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Execution Model - Warp Divergence

Compilation — turn off the optimization
nvcc -g -G -o simpleDivergence simpleDivergence.cu

Execute through nvprof to extract profiling information 
nvprof --metrics branch_efficiency --events branch,divergent_branch ./

simpleDivergence
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Resource Allocation

A warp is consisted of
Program counters
Registers
Shared memory

If a thread use lots of resource, fewer threads will be allocated in one SM.
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Occupancy

Toolkit, CUDA Occupancy Calculator:
in /usr/local/cuda/tools/CUDA_Occupancy_Calculator.xls

It could assist in measuring the occupancy of your configuration
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Occupancy, Memory Load Efficiency, Memory Load 
Throughput

View number of registers, set the constraints on number of registers per thread
nvcc -g -G -arch=sm_30 --ptxas-options=-v --maxrregcount=31 -o sumMatrix 

sumMatrix.cu

Check occupancy, memory load efficiency, memory load throughput to explore the suitable 
configuration of size of thread block

nvprof --metrics gld_throughput,gld_efficiency,achieved_occupancy ./sumMatrix dimX dimY

do example on sumMatrix.cu with dim of thread block {4,4}, {4,8}, {8,4}, {8,8}, {16,16}, {32,32}
{16,16} is the fast one.
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Memory Type

1. Register
• per thread, An automatic variable in kernel function, 

low latency, high bandwidth
2. Local memory

• per thread, variable in a kernel but can not be fitted in 
register

3. Shared memory (__shared__)
• all threads, faster than local and global memory, share 

among thread blocks
• Use for inter-thread communication, 64KB, 

physically shared with L1 cache
4. Constant memory (__constant__)

• per device, read-only memory
5. Texture memory

• per SM, read-only cache, optimized for 2D spatial 
locality

6. Global memory
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Memory Type
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Concurrent Processing

Concurrent handle 
• Data transfer + computation
For NVIDIA GT 750M (laptop GPU), there is one copy engine.
For NVIDIA Tesla K40 (high-end server GPU), there are two copy engines

• Computation + computation is possible if your computation resource is enough.

Check example, sumMatrixOnGPUStream.cu and sumMatrixOnGPUNoStream.cu
Goal: Compute two matrix addition (C1 = A1 + B1 and C2 = A2 + B2)

The latency in data transfer could be hidden during computing
or concurrent computation.
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Concurrent Processing

Sequential processing

Concurrent processing (data transfer + computation)

Concurrent processing (computation + computation)
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Application: Neural Network

In neural network, the most important operation is inner-product
a=f(xTw+b)
x is a matrix that records the input which is fed to neural network
w is a matrix that records the weights of network connection
b is a matrix that records the bias of network connection
f is an activation function that used to activate the neuron
a is output

GPU is more suitable for such 
intensively regular operations.
Example, xTw+b
cuBLAS (GPU) vs. OpenBLAS (CPU)

GPU computation includes data transfer
between host and device.

 

x
w
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Reference

Check all metrics and events for nvprof, it will also explain the meaning of options
nvprof --query-metrics
nvprof --query-events  

Professional CUDA C Programming
http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-

Programming.productCd-1118739329,descCd-DOWNLOAD.html
source code are available on the above website

GTC On-Demand:
http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php

Developer Zone:
http://www.gputechconf.com/resource/developer-zone

NVIDIA Parallel Programming Blog:
http://devblogs.nvidia.com/parallelforall

NVIDIA Developer Zone Forums:
http://devtalk.nvidia.com

http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-Programming.productCd-1118739329,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-Programming.productCd-1118739329,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-CUDA-C-Programming.productCd-1118739329,descCd-DOWNLOAD.html
http://on-demand-gtc.gputechconf.com/gtcnew/on-demand-gtc.php
http://www.gputechconf.com/resource/developer-zone
http://devblogs.nvidia.com/parallelforall
http://devtalk.nvidia.com
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GPU on iOS devices
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GPU Programming in iPhone/iPad - Metal

Metal provides the lowest-overhead access to the GPU, enabling developers to maximize the 
graphics and compute potential of iOS apps.* 

Metal could be used for: 

Graphic processing ➔ openGL 

General data-parallel processing ➔ open CL and CUDA

*: https://developer.apple.com/metal/

https://developer.apple.com/metal/
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Fundamental Metal Concepts

• Low-overhead interface 
• Memory and resource management 
• Integrated support for both graphics and compute operations 
• Precompiled shaders
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GPU Programming in iPhone/iPad - Metal

Programming flow is similar to CUDA 

Copy data from CPU to GPU 

Computing in GPU 

Send data back from GPU to CPU 

Example: kernel code in Metal, sigmoid function:

source: http://memkite.com

thread_id for data parallelization

kernel code
device memory

http://memkite.com
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Metal Object Relationships
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Metal Command Buffers with Multiple Threads
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Metal Programming Model

It integrates the support for both graphics and compute operations. 
Three command encoder: 

Graphics Rendering: Render Command Encoder 
Data-Parallel Compute Processing: Compute Command Encoder 
Transfer Data between Resource: Blitting Command Encoder 

Multi-threading in encoding command is supported 
Typical flow in compute command encoder 

Prepare data 
Put your function into pipeline 
Command encoder 
Put command into command buffer 
Commit it to command queue 
Execute the command 
Get result back
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Metal Programming, Kernel Function

Compute command 
• Two parameters, threadsPerGroup and numThreadgroups, determines number of 

threads. ➔ equivalent to grid and thread block in CUDA. They are all 3-D variable. 
• The total of all threadgroup memory allocations must not exceed 16 KB. 

• Kernel function: sigmoid function
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Example
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Example
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GPU Programming with Python
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