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Start Your Final Project Planning
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O Start finding your teammates.

O Proposal (11/8/24) — preparing about 5-7 pages of slides

(each item 1/5 of the proposal score):

=  Goal — novel? challenging?

= Data — 3Vs? New dataset? Existing dataset?

= Methods — planning of methodologies and algorithms?
Feasible?

=  System — an overview of system. What will be
implemented?

= Schedule — what to achieve by what time, and by whom?
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Graphen Core

Full-brain Al Platform and Knowledge
Agents empower leaders across
industries.
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Graphen Automotive

Advanced Al Car Doctor and
Assistant.
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Graphen Finance

Utilize Al to predict risks, monitor
operations, and find leads.
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Graphen Robotics
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Smarter Al Machines for Humans.
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Graphen Drugomics

Al understanding and simulating Life
Functions to develop drugs.
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Graphen Energy

Al helps energy providers realize
smart grids with sustainable energy.
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Graphen Genomics

Making human knowing Biologically
Digitzed-Self, and enabling
Personalized Treatment.
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Graphen Security

Foundations help organizations with
self-defense Al cybersecurity.
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Examples of Project Areas in Advanced Big Data Analytics CoLumsia

UNIVERSITY

A1: Deep Video Understanding (Visual + Knowledge) — Face Recognition, Feeling
Recognition, and Interaction

A2: Deep Video Understanding (Language + Knowledge) — Speech Recognition,
Gesture Recognition, and Feeling Recognition

A3: Deep Video Understanding — Event and Story Understanding
A4: Humanized Conversation — Personality-Based Conversations
AS5: Autonomous Robot Learning of Physical Environment

A6: Autonomous Task Learning via Mimicking

A7: Digital Human - Creation and Facial Expression

A8: Digital Human - Action

A9: Digital Human - Text-to-Audio, Lip Sync, and Audio-to-Text
A10: Human and Digital Human Interactions

A11: Feeling and Art Recognition

A12: Creative Writing & Story Telling

A13: Knowledge Learning & Construction

A14: Dreams — Simulating Brain functions while sleeping

A15: Self-Consciousness, Ethics, and Morality
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Digital Human Examples

8 Mark Zuckerberg @
on Monday
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https://www.graphen.ai/products/Ava.html

Examples of Project Areas in Advanced Big Data Analytics Cotumaia

B1: Market Intelligence — Constructing Financial Knowledge Graphs

B2: Market Intelligence — Company Environmental, Societal, and Governance
Performance

B3: Market Intelligence — Event Linkage and Impact Prediction

B4: Market Intelligence — Alpha Generation from Alternative Sources

B5: Advance KYC — Customer Profiling based on Personality, Needs, and Value
B6: Advanced KYC — Customer Behavior Prediction

B7: Investment Strategy — Al Trader (Foreign Exchange)

B8: Investment Strategy — Al Trader (Stock Markets)

B9: Investment Strategy — Automatic Dynamic Asset Allocation

B10: Customer Interaction — Customer Communication Strategies

B11: Customer Interaction — Insurance Product Sales & Marketing Strategy
B12: Automatic Story Telling for Marketing

B13: Automatic Market Competition Analysis

B14: Automatic Consumer Sales Leads Finding

B15: Human Capital Growth Recommendations
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Real-Time Fraud Analysis Examples
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Crypto Currencies

Credit Cards
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Examples of Project Areas in Advanced Big Data Analytics Cotumnia

C1: Precision Health — Gene and Protein Analysis of Network, Pathway, and
Biomarkers

C2: Large-Scale System for Human Genome Analysis
C3: Secure Patient Data

C4: Medical Image Analysis

C5: Drugable Targets for Precision Medicine

C6: Virus Mutations and Function Prediction

C7: Microbe and Disease Knowledge Graph

C8: Disease Symptoms Knowledge Graphs

C9: Virtual Doctor

C10: Knowledge Graphs for Gene Interaction and Disease Similarity
C11: Biomedical Knowledge Construction and Extraction
C12: Generating Gene Therapy

C13: Molecular Drug Synthesis

C14: Protein Interaction Predictor

C15: Aging Impacts
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Digital Biology Examples

https://www.graphen.ai/products/atom.html
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Biological Materials Digitalize Bioinformation

Digit Annotation Molecular Graph

Information L |)"' _l;"ly
unit :
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Quantum Physics
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Examples of Project Areas in Advanced Big Data Analytics CoLumsia

UNIVERSITY
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D1: Distributed Solar Power Load Forecasting and Predictive Maintenance
D2: Distributed Wind Power Load Forecasting and Predictive Maintenance
D3: Power Flow Optimization

D4: Smart Grid Pricing Strategy

D5: Cybersecurity of Smart Grid

D6: Stimulating Crop Growth

D7: Electronic Car Sensing and Predictive Maintenance

D8: Autonomous Driving

D9: Smart City of Connected Cars

D10: Social Policy Monitoring

D11: International Relationships and Policy Monitoring

D12: Mobile Cognition

D13: Al Chip Design

D14: Visual Exploration in Immersive Environment

D15: Computer Vision Enhanced Immersive Environment
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Link Big Data / Graph Analytics
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First Reported Social Network Analysis

Ehe New Jork Times.

Copyright, 1033, by The New York Times Company.
NEW YQRK, THURSDAY, APRIL 8, 1988,
] . 1 ]

EMOTIONS HAPPED.
BY NEW GEOGRAPHY

Charts Seek to Portray tﬁ_g;
Psychological Currents of"
Human Relationships.

TWO CENTS !

FIRST STUDIES EXHIBITED

Colored Lines Show Likes and’
Dislikes of Individuals
and of Groups.

MANY MISFITS REVEALED-

Dr. J. L. Moreno Calculates There
Are 10 to 15 Milllon Isolated
Individuals In Nation.

15

A new science, named psycholog-
ical geography, which aims to chart
the emotional currents, cross-cur-
rents and under-currents of hm
relationships in a community, was
introduced here yesterday at the

scientific exhibit of the Medical

Soclety of the State of New York,
which opens its 127th annual meet-
ing here today at the Waldorf-
Astoria.

The first series of maps of the
new human geography were shown

by Dr, Jacob L. Moreno of New
ork, consultinf ?sychiatrist of the
National Committee of Prisons and
Prison Labor and director of re-
gsearch, New York State Training
School for Girls, Hudson, N. Y.
The maps represent studies of the
forces of attraction and repuilsion
of individuals within a group to-
ward one another and toward the
group, as well as the attitude of
the oup as a whole toward its
individual members, and of one
group toward another group.
Emotions are
these psychological maps by var-
jous colored lines. Red stands for
liking, black for disliking, If indi-
vidual A likes B a red line with an
arrow points from A to B. If B
reciprocates a similar red line
points from him. If he dislikes A

!this is indicated by & black line

with an arrow pointing toward A.
If B is merely indifferent the feel-
ing is shown by a blue line.

Group of 500 Girls Studied.

represented on.
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Mathematics Awareness Month April 2004
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American Mathematical Association
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Graph Definitions and Concepts

= A graph:

G =(V,E)

=\ = \Vertices or Nodes

» E = Edges or Links —

= The number of vertices: “Order”
N, =V
N, =|E|

18 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University



Subgraph

= A graph H is a subgraph of another graph G, if:

VH g VG and EH Q EG

-3

1 9 © 2024 Columbia University



Multi-Graph vs. Simple Graph

= Loops:

= Multi-Edges:

20

<P
<P

© 2024 Columbia University



Directed Graph vs. Undirected Graph

» Directed Edges = Arcs:

{“»V} o

= Mutual arcs:

21

© 2024 Columbia University



Adjacency

=y and v are adjacent if joined by an edge in E:

*—e

u
v

» Two edges are adjacent if joined by a common endpoint in V:
€

e
A

| ———>

22 © 2024 Columbia University



Incident and Degree

= Avertex yEJ isincidenton anedgee& E ifvis an
endpoint of e.

RS

» The degree of a vertex v, say d,, is defined as the number of

edges incident on v.
v '
d =

23 © 2024 Columbia University

2



Degree Sequence

= The degree sequence of a graph G is the sequence formed
by arranging the vertex degrees d, in non-decreasing order.

{2,2,2,2,3,3,3,3,3,3,4,4,4}

= The sum of the elements degree sequence equals to twice
the number of edges in the graph (i.e. twice the size of the

graph).

24 © 2024 Columbia University



In-degrees and out-degrees

= For Directed graphs:

In-degree = 8

25

Out-degree = 8

© 2024 Columbia University
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« Awalk on a graph G, from v, to v,, is an alternating
sequence:

{vo,el,vl,ez,...,vl_l,el,vl}

» The length of this walk is /.

= A walk may be:
—Trail --- no repeated edges
—Path --- trails without repeated vertices.

s
~<p

| ———>

© 2024 Columbia University



Circuit, Cycle, and Acyclic

= Circuit: A trail for which the beginning and ending vertices

are the same.
circuit
—

» Cycle: a walk of length at least three, the beginning node =
ending node, all other nodes are distinct

= Acycle: graph contains no cycle

27 © 2024 Columbia University



Reachable, Connected, Component

» Reachable: A vertex v in a graph G is said to be reachable
from another vertex u if there exists a walk from u to v.

» Connected: A graph is said to be connected if every vertex is
reachable from every other.

» Component: A component of a graph is a maximally
connected subgraph.

A\ '<I>§ S

28 © 2024 Columbia University



Connection in a digraph

» \Weakly connected: If its underlying graph is connected after
stripping away the direction.

» Strongly connected: every vertex is reachable from every
other vertex by a directed walk.

A\ '<I>§ S

29 © 2024 Columbia University



Distance

» Distance of two vertices: The length of the shortest path
between the vertices.

» Geodesic: another name for shortest path.

» Diameter: the value of the longest distance in a graph

A\ '<I>§ S

30 © 2024 Columbia University



Decorated Graph

= Weighted Edges

31

0.2

0.8

0.8

© 2024 Columbia University



Families of Graphs

» Complete Graph: every vertex is linked to every other
vertex.

= Clique: a complete subgraph.

N

32 © 2024 Columbia University
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Regular Graph

» Reqgular Graph: a graph in which every vertex has the same
degree.

a 3-reqular graph

33 © 2024 Columbia University
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Tree and Forest

» [ree: a connected graph with no cycle.

» Forest: a disjoint union of trees is called a forest.

34 © 2024 Columbia University



Labels in a directed tree

35

= Root

= Ancestor

= Descendant
= Parent

= Children

= |_eaf: a vertex without children

© 2024 Columbia University



Rooted Tree vs Directed Acyclic Graph (DAG)

» DAG: Directed Acycle Graph. Underlining undirected graph
has cycle.

36 © 2024 Columbia University



Bipartite Graph

» Bipartite Graph: Vertices are partitioned into two sets. Edges
link only between these two sets.

) @ s

37 © 2024 Columbia University
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Recommendation Technique — Collaborative Filtering Corumia

UNIVERSITY

Customers who bought this item also bought
Bayesian Statistics : An Introduction (A Hodder Arnold P
Markov Chain Monte Carlo in Practice by W.R. Gilks
M c Statistical M is (Spri T in Stati
Bayes and Empirical Bayes Methods for Data Analysis, Set
The Elements of Statistical Learning by T. Hastie

Customers who bought this item also bought
Theoretical Neuroscience: Computational and Mathematic:
Dayan
Biophysics of Computation : Information Processing in Sir

Neuroscience Series) by Christof Koch

‘\‘ _a—niaion]:&ﬁ' l Cg;;ﬂ: mesfféﬂal 320 | Your Account | ¥ cart | vour Lsts 3 | Help | 'if
Gift Tdeas | Tntermational | New Releases | Top Selers | Today's Deals | Sel Your Stuff
Amazon.com 3 @ ﬁ‘gm AP
Hello, Ching Yung Lin. We have recommendations for you. (If you're not Ching Yung Lin, click here.) Make this
Recommended for you
Your @D seikes
N Favorites
—_—
- Recommendation sBooks .
.
Featured Stores Spikes [Reprint] Paperback by Spiking Neuron Models Methods in Neuronal Modeling
« Apparel & Fred Rieke Paperback by Wulfram 2nd Edition Hardcover by
ssories (Why is this recommended to me?) Gerstner Christof Koch
« Beauty (Why is this recommended to me?) (Why is this recommended to me?)

38

+ DVD's TV Central > See more Recommendations
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» The fundamental connectivity of a graph G may be
captured in an N, xN, binary symmetric matrix 4
with entries:

1, ifi{i,ji€kL
710, otherwise

"

39 © 2024 Columbia University



Property Graph 2,

UNIVERSITY

Property Graph Vertex Table

Id Property (V)

3 (rxin, student)

7 (jgonzal, postdoc)

5 (franklin, professor)
2 (istoica, professor)

Edge Table

Srcld Dstld Property (E)
3 7 Collaborator
5 3 Advisor
2 5 Colleague
5 7 PI

40 EE6893 Big Data Analytics — Lecture 4 © 2024 CY Lin, Columbia University



Spark GraphX

o

COLUMBIA
UNIVERSITY

e The Property Graph
o Example Property Graph
e Graph Operators
Summary List of Operators
Property Operators
Structural Operators
Join Operators
Neighborhood Aggregation
= Aggregate Messages (aggregateMessages)
= Map Reduce Triplets Transition Guide (Legacy)
» Computing Degree Information
= Collecting Neighbors
o Caching and Uncaching
Pregel API
Graph Builders
Vertex and Edge RDDs
o VertexRDDs
o EdgeRDDs
Optimized Representation
Graph Algorithms

[e]

o

o

o

o

o PageRank

o Connected Components
o Triangle Counting

41 EE6893 Big Data Analytics — Lecture 4

raph A
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GraphX Graph Operations 2,

UNIVERSITY

// Information about the Graph ======

. e

In-degree = 8 Out-degree = 8

// Views of the graph as collections ==:
val vertices: VertexRDD[VD]

val edges: EdgeRDD[ED]

val triplets: RDD[EdgeTriplet[VD, ED]]

Vertices: % Edges: Triplets:

val numEdges: Long

val numVertices: Long

val inDegrees: VertexRDD[Int]
val outDegrees: VertexRDD[Int]
val degrees: VertexRDD[Int]

42 EE6893 Big Data Analytics — Lecture 4 © 2024 CY Lin, Columbia University



Degree Distribution Example: Power-Law Network Um“

A. Barbasi and E. Bonabeau, “Scale-free Networks”, Scientific American 288: p.50-59, 2003.

Random Network Scale-Free Network

Bell Curve Distribution of Node Linkages Power Law Distribution of Node Linkages

— Typical node

Number of Nodes
Number of Nodes

Number of Nodes
(log scale)

Number of Links Number of Links Number of Links (log scale)

Dk =e_m°% Pk =C-kTe™
' Newman, Strogatz and Watts, 2001

43 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University



Another example of complex network: Small-World Network L

UNIVERSITY

Six Degree Separation:

adding long range link, a regular graph can be transformed into a small-world network,
in which the average number of degrees between two nodes become small.

from Watts and Strogatz, 1998

e B LA 1
L m]

Regular Small-world :. d ]

oslL ° C(p)/ C(0) © ]

L L .

- D -

06| -

I . ]

04l . s J

L L(p)/ L(O . 1

a5k (p)/ L(O) . B

L Y 4

* . . . f ]

ol ol NN | R i

p=0 » p=1 0.0001 0.001 0.01 0.1 1

Increasing randomness

C: Clustering Coefficient, L: path length,
(C(0), L(0) ): (C, L) as in a regular graph
(C(p), L(p)): (C,L) in a Small-world grapt
with randomness p.

44 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University



Some examples of Degree Distribution Coitmins

(a) scientist collaboration: biologists (circle) physicists (square), (b) collaboration of move
actors, (d) network of directors of Fortune 1000 companies

frequency

45 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University



Basic graph algorithms in GraphX L2,

UNIVERSITY

// Basic graph algorithms
def pageRank(tol: Double, resetProb: Double = 0.15): Graph[Double, Double]
def connectedComponents(): Graph[VertexId, ED]

def triangleCount(): Graph[Int, ED]

def stronglyConnectedComponents(numIter: Int): Graph[VertexId, ED]

46 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University
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“There is certainly no unanimity on exactly what centrality is or its conceptual foundations,
and there is little agreement on the procedure of its measurement.” — Freeman 1979.

Degree (centrality)
Closeness (centrality)
Betweeness (centrality)
Eigenvector (centrality)

47 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University
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Network Analysis Example Centrality Ranking in Large Networks =,

UNIVERSITY

[Acciaiuoli] [ Salviati |

| Pazzi |
[15th Century Florentine Family]
V=15 |E| = 19
Degree : Easy
Closeness : Easy

Betweenness : Easy

“Who are the most
important actors?”

Degree: # of neighbor
Closeness: avg. shortest path
length
Betweenness: # of times a node
sits between shortest path

Measuring the financial
company value
Network attack monitoring

V] = Billions |E| = Billions

O(|E)) Degree : Easy

o1v13) Closeness : Hard

O(IVi2log|V])

For 2 Billon Edges,
- standard closeness: 30,000 years © CY Lin, Columbia University
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Closeness o

UNIVERSITY

Closeness: A vertex is ‘close’ to the other vertices

1
E _,dist(v,u)

Cer (V) =

where dist(v,u) is the geodesic distance between vertices v and u.

N
o

49 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University



a0

CoOLUMBIA
UNIVERSITY

Betweenness measures are aimed at summarizing the extent to which a vertex is located
‘between’ other pairs of vertices.

Freeman’s definition:
o (s,t|v)

s=t=vel O (Sa t)

cp(v) =

Calculation of all betweenness centralities requires
calculating the lengths of shortest paths among all pairs of vertices
Computing the summation in the above definition for each vertex

50 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University



Betweenness ==> Bridges 2,

UNIVERSITY

Connections between different divisions

|
- L _

>

Example: Healthcare experts in the U.S. Key social bridges

51 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University
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Try to capture the ‘status’, ‘prestige’, or ‘rank’.
More central the neighbors of a vertex are, the more central the vertex itself is.

c; (V) =a Cpi(U)
{u,viek

The vector c, =(c;Q),...,c (N, ))T is the solution of the

eigenvalue problem:

-1
A Cp = Cp;

52 E6893 Big Data Analytics — Lecture 4 Graph Analytics © 2024 CY Lin, Columbia University



PageRank Algorithm (Simplified) 2,

UNIVERSITY

A
ID =2
0.0561 0.056
0.159 0.069
0.036
0.056 N
ID=6 ID=1 ID =3
0.060 0.280 0.069 0.139
0.069 /0.046
0.04 0.05%
0.036
0.056
N
ID=5
0.03
0.036
0.184
0.046
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Graph Partitioning
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54

Edge Cut

E6893 Big Data Analytics — Lecture 4
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Vertex Cut
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Distributed Graph Computation in GraphX S
Vertex Table Routing Edge Table
Property Graph (RDD) Table (RDD)
(RDD)

l/

)

o

\ 2D Vertex Cut Heuristic

x ¥

w Part. 2

55 E6893 Big Data Analytics — Lecture 4 © CY Lin, Columbia University
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Network Analysis -- Effectiveness & Efficiency (GBase) Gk

Run time in seconds

Example -- we proposed two new centralities (" effective closeness’ and
‘LineRank’), and efficient large scale algorithms for billion-scale graphs.
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(a) Closeness: running time vs. edges (c) Effective Closeness: running time vs. edges

Scalability Results

(Near-linear scalability)

For 2 Billon Edges,

- standard closeness: 30,000 years
- effective closeness: ~ 1 day !
1,000,000 times faster!

Kang, Tong, Sun, Lin, and Faloutsos,

“GBase: A Scalable and general graph

management system”, KDD 2011
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(b) DBLP Authors: LineRank vs. Degree

Analysis of Real-World Graph
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Graph Database — RDF and SPARQL
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Example: Graph Technology for Financial Service Sectors o0
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over 2 Petabyte
omlime and

é Petabyte
of-Flime storage

evem+ts per

Populanty Changes

oversee™d
more Bl

QFirms
4,\0

B!
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+ Graph Database is much more efficient than traditional

relational database - How does FINRA analyze ~50B
events per day TODAY? - Build a
graph of market order events from

SWISS LEAKS multiple sources [ref]

The leaked HSBC files offer a rare glimpse inside
one of the world's most private banking systems
Vore tan $100°%Mon om 106,000 chents of 201 countries

O e - How did journalists uncover the Swiss
S Hat s s A s i Mt Leak scandal in 2014 and also Panama
Papers in 2016? -- Using graph
database to uncover information
Data Heis eals thousands of accounts in more than 20
HSBC(C's - countries with links through millions

Swiss Lenks: Murky Cushi Sheltered

by Bank Secrecy Of f’les [rel J
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https://www.youtube.com/watch?v=xbQQnU1OfGY
http://www.bobsguide.com/guide/news/2016/Apr/7/could-graph-databases-become-the-next-essential-investigative-tool/?utm_source=bobsguide+Members+List&utm_campaign=de7d9393ef-bobsguide_Weekly_Top_Reads&utm_medium=email&utm_term=0_72e1ba23ef-de7d9393

RDF and SPARQL e o

UNIVERSITY

“ ORIGINAL ARTICLE |

WHAT DO RDF
AND SPARQL
BRING TO

BIG DATA
PROJECTS?

Bob DuCharme
TopQuadrant, Charlottesville, Virginia

Photo Credit, Erich Bremer: http://www.ebremer.com/nexus/2011-05-15
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Resource Description Format (RDF) 7

COLUMBIA
UNIVERSITY

61

A W3C standard since 1999
Triples

Example: A company has nine of part p1234 in stock, then a simplified triple
representing this might be {p1234 inStock 9}.

Instance ldentifier, Property Name, Property Value.

In a proper RDF version of this triple, the representation will be more formal. They
require uniform resource identifiers (URIs).

://foobarco.net/data/>.
//foobarco.net/vocab/>.

fbd:pl234 fbv:inStock "9".
fbd:pl234 fbv:supplier "Joe’s Part Company".

E6893 Big Data Analytics — Lecture 4: Linked Big Data Analytics © 2024 CY Lin, Columbia University



An example complete description 2,
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@prefixfbd:<http://foobarco.net/data/>.
@prefixfbv:<http://foobarco.net/vocab/>.

fbd:pl1234 fbv:inStock"9".

fbd:p1234 fbv:name "Blue reverse flange".

fbd:pl234 fbv:supplier £bd:s9483.

fbd:s9483 fbv:name "Joe's Part Company".

fbd:s9483 fbv:homePage "http://www.joespartco.com".
fbd:s9483 fbv:contactName "Gina Smith".

fbd:59483 fbv:contactEmail "gina.smith@joespartco.com".
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Virtually any RDF software can parse the lines shown above as self-contained, working
data file.

You can declare properties if you want.
The RDF Schema standard lets you declare classes and relationships between
properties and classes.

The flexibility that the lack of dependence on schemas is the first key to RDF's
value.

Split trips into several lines that won't affect their collective meaning, which makes
sharding of data collections easy.
Multiple datasets can be combined into a usable whole with simple
concatenation.

For the inventory dataset's property name URIs, sharing of vocabulary makes easy to
aggregate.

E6893 Big Data Analytics — Lecture 4: Linked Big Data Analytics © 2024 CY Lin, Columbia University



SPARQL - Query Langauge for RDF 2,

UNIVERSITY

The following SPQRL query asks for all property names and values associated with the
fbd:s9483 resource:

PREFIX fbd: <http://foobarco.net/data/>

SELECT ?property ?value
WHERE {fbd:s9483 ?property ?value.}

The heart of any SPARQL query is the WHERE clause, which
specifies the triples to pull out of the datasef. Various options
for the rest of the query tell the SPARQL processor what to do
with those triples, such as sorting, creating, or deleting triples.
The above query’s WHERE clause has a single triple pattern,
which resembles a triple but may have variables substituted
for any or all of the triple’s three parts. The triple pattern
above says that we're interested in triples that have fbd:s9483
as the subject and—Dbecause variables function as wildcards—
anything at all in the triple’s second and third parts.
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The SPAQRL Query Result from the previous example 2,
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| property | value |
|<http://foobarco.net/vocab/contactEmails "gina.smith@joespartco.com" |
|<http://foobarco.net/vocab/contactName> "Gina Smith" |
|<http://foobarco.net/vocab/homePage > "http://www.joespartco.com" |
|<http://foobarco.net /vocab/name> "Joe's Part Company" |
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Another SPARQL Example 2

UNIVERSITY

What is this query for?

66

PREFIX fbd: <http://foobarco.net/data/>
PREFIX fbv:<http://foobarco.net/vocab/>

SELECT ?flangeContactEmail
WHERE

{
?part fbv:name "Blue reverse flange".
?part fbv:supplier ?supplier.
?supplier fbv:contactEmail ?flangeContactEmail.

Data

@prefixfbd:<http://foobarco.net/data/>.
@prefixfbv:<http://foobarco.net/vocab/>.
fbd:p1234 fbv:inStock "9".

fbd:pl234 fbv:name "Blue reverse flange".
fbd:p1234 fbv:supplier £bd:s9483.
fbd:s9483 fbv:name "Joe’s Part Company".

fbd:s9483 fbv:homePage "http://www.joespartco.com".
fbd:s9483 fbv:contactName "Gina Smith".
fbd:s9483 fbv:contactEmail "gina.smith@joespartco.com".

E6893 Big Data Analytics — Lecture 4: Linked Big Data Analytics © 2024 CY Lin, Columbia University



Open Source Software — Apache Jena 2
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¥ Apache Jena fHome X Download MIlean~ @Ask ™l Getinvolved ~

+ Apache Jena

A free and open source Java framework for building Semantic Web and Linked Data applications.

¥ Get started now! & Download

RDF Triple store OWL

RDF API TDB Ontology API
Interact with the core API to create and read Resource Persist your data using TDB, a native high performance Work with models, RDFS and the Web Ontology
Description Framework (RDF) graphs. Serialise your triple store. TDB supports the full range of Jena APIs. Language (OWL) to add extra semantics to your RDF
triples using popular formats such as RDF/XML or Turtle. data.
ARQ (SPARQL Fusel Infi API

Q ( Q ) Expose your triples as a SPARQL end-point accessible nierence
Query your RDF data using ARQ, a SPARQL 1.1 over HTTP. Fuseki provides REST-style interaction with Reason over your data to expand and check the content
compliant engine. ARQ supports remote federated your RDF data. of your triple store. Configure your own inference rules or
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Graph Database — Property Graphs
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Reference L2
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Duplicate Slide

Databases

. Ian Robinson,
O’REILLY Jim Webber & Emil Eifrem
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A usual example
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User

UserlD | User | Address Phone Email Alternate

1 Alice | 123 Foo St. | 12345678 | alice@example.org | alice@neodj.org

2 Bob | 456 Bar Ave. bob@example.org

99 Zach | 99 South St. zach@example.org

Order Lineltem

OrderID | UserlD < OrderID | ProductID | Quantity

1234 1 1234 765 2

5678 1 1234 987 1

5588 99 5588 765 1
Product
ProductID | Description Handling
3N strawberry ice cream | freezer
765 potatoes
987 dried spaghetti

Figure 2-1. Semantic relationships are hidden in a relational database

E6893 Big Data Analytics — Lecture 4: Linked Big Data Analytics
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Query Example - |
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PersonFriend

PersonlD

FriendID

1

2

2

1

2

99

Person

D Person
1 Alice

2 Bob

99 Zach

99

Figure 2-2. Modeling friends and friends-of-friends in a relational database

Asking “who are Bob’s friends?” is easy, as shown in Example 2-1.

Example 2-1. Bob’s friends

SELECT pl1.Person

FROM Person p1 JOIN PersonFriend
ON PersonFriend.FriendID = p1.ID

JOIN Person p2

ON PersonFriend.PersonID = p2.ID
WHERE p2.Person = 'Bob'

E6893 Big Data Analytics — Lecture 4: Linked Big Data Analytics

© 2024 CY Lin, Columbia University



Query Examples - Il & 1l 2
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Example 2-2. Who is friends with Bob?

SELECT pl.Person
FROM Person p1 JOIN PersonFriend
ON PersonFriend.PersonID = p1.ID
JOIN Person p2
ON PersonFriend.FriendID = p2.ID
WHERE p2.Person = 'Bob'

Example 2-3. Alice’s friends-of-friends

SELECT p1.Person AS PERSON, p2.Person AS FRIEND OF FRIEND
FROM PersonFriend pfl JOIN Person pl
ON pf1.PersonID = p1.ID
JOIN PersonFriend pf2
ON pf2.PersonID = pfl.FriendID
JOIN Person p2
ON pf2.FriendID = p2.ID
WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID K\\

Computational intensive
72 E6893 Big Data Analytics — Lecture 4: Linked Big Data Analytics © 2024 CY Lin, Columbia University



Graph Database Example 2
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FRIEND_OF

FRIEND_OF

FRIEND_OF

user: Bob

FRIEND_OF

4
FRIEND_OF
A

FRIEND_OF

10 ON3IY

user: Grace user: Davina

r 3
MARRIED_TO FRIEND_OF
) 4 )\ 4

FRIEND_OF
—»{ user: Edward

user: Fred

user: Ingrid

Figure 2-5. Easily modeling friends, colleagues, workers, and (unrequited) lovers in a

graph
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Execution Time in the example of finding extended friends (k.
Neo4i)

Partner and Vukotic’s experiment seeks to find friends-of-friends in a social network,
to a maximum depth of five. Given any two persons chosen at random, is there a path
that connects them that is at most five relationships long? For a social network con-
taining 1,000,000 people, each with approximately 50 friends, the results strongly sug-
gest that graph databases are the best choice for connected data, as we see in Table 2-1.

Table 2-1. Finding extended friends in a relational database versus efficient finding in

Neo4j
Depth RDBMS execution time (s) Neo4j execution time (s) Records returned
2 0.016 0.01 ~2500
30.267 0.168 ~110,000
4 1543.505 1.359 ~600,000
5 Unfinished 2132 ~800,000
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Modeling Order History as a Graph
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user: Alice

MOST_RECENT

£,
&

order: 1234
date: 20120808
status: delivered

PREVIOUS

CONTAINS

description:
strawberry ice description:
cream brussels sprouts

handling: freezer

status: dispatched

order: 5678
date: 20120816

CONTAINS

id: cdef
description:
espresso beans

Figure 2-6. Modeling a user’s order history in a graph
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A query language on Property Graph — Cypher 2,

UNIVERSITY

Figure 3-1. A simple graph pattern, expressed using a diagram

This pattern describes three mutual friends. Here’s the equivalent ASCII art represen-
tation in Cypher:

(a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
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Cypher Example 2
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Like most query languages, Cypher is composed of clauses. The simplest queries consist
of a START clause followed by a MATCH and a RETURN clause (we’ll describe the other
clauses you can use in a Cypher query later in this chapter). Here’s an example of a
Cypher query that uses these three clauses to find the mutual friends of user named

Michael:

START a=node:user(name="'Michael")
MATCH (a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
RETURN b, ¢
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Other Cypher Clauses 2,

UNIVERSITY

WHERE
Provides criteria for filtering pattern matching results.

CREATE and CREATE UNIQUE
Create nodes and relationships.

DELETE
Removes nodes, relationships, and properties.

SET
Sets property values.

FOREACH
Performs an updating action for each element in a list.

UNION
Merges results from two or more queries (introduced in Neo4j 2.0).

WITH
Chains subsequent query parts and forward results from one to the next. Similar
to piping commands in Unix.
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Property Graph Example — Shakespeare
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firstname: William
i lastname: Shakespeare
BORN_IN
WROTE_PLAY WROTE_PLAY
year: 1610 year: 1599
title: The Tempest title: Julius Caesar
1 4
PRODUCTION_OF PRODUCTION_OF
1 L
name: The Tempest name: Julius Caesar name: Billy
- I
T T WROTE_REVIEW
PRODUCED PRODUCED ‘
1 1
rating: 5
name: RSC review: This was...
PERFORMANCE_OF PERFORMANCE_OF
| REVIEW_OF
date: 20061121 date: 20120729 |« J
BASED_IN !
VENUE VENUE
4 v
STR
name: Theatre Royal | = — - - = LI | name: Grey Street
]
ary
v L \ 4
flame: S;’:.?m upon | COUMIRL _p|  name: England name: Newcastle
' !
COUNTRY COUNTY
' 1
1
e - | name: Tyne and Wear (€ - - — - - -

Figure 3-6. Three domains in one graph
Eb8Y3 Big Data Analytics — Lecture 4: Linked Big

Data Analytics
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Creating the Shakespeare Graph 2
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CREATE (shakespeare { firstname: 'William', lastname: 'Shakespeare' }),
(juliusCaesar { title: 'Julius Caesar' }),
(shakespeare)-[:WROTE_PLAY { year: 1599 }]->(juliusCaesar),
(theTempest { title: 'The Tempest' }),
(shakespeare)-[:WROTE_PLAY { year: 1610}]->(theTempest),
(rsc { name: 'RSC' }),

(productionl { name: 'Julius Caesar' }),
(rsc)-[:PRODUCED]->(productioni),
(production1)-[:PRODUCTION_OF]->(juliusCaesar),
(performancel { date: 20120729 }),

(review)-[:RATED]->(performancel),
(theatreRoyal { name: 'Theatre Royal' }),
(performancel)-[:VENUE]->(theatreRoyal),

80

(performancel)-[:PERFORMANCE_OF]->(productionl),
(production2 { name: 'The Tempest' }),
(rsc)-[:PRODUCED]->(production2),
(production2)-[:PRODUCTION_OF]->(theTempest),
(performance2 { date: 20061121 }),
(performance2)- [ :PERFORMANCE_OF]->(production2),
(performance3 { date: 20120730 }),
(performance3)-[:PERFORMANCE_OF]->(productionl),
(billy { name: 'Billy' }),

(review { rating: 5, review: 'This was awesome!' }),

(billy)-[:HROTE_REVIEW]->(review),

E6893 Big Data Analytics — Lecture 4: Linked Big Data Analytics

(performance2)-[:VENUE]->(theatreRoyal),
(performance3)-[:VENUE]->(theatreRoyal),
(greyStreet { name: 'Grey Street' }),
(theatreRoyal)-[:STREET]->(agreyStreet),
(newcastle { name: 'Newcastle' }),
(greyStreet)-[:CITY]->(newcastle),
(tyneAndWear { name: 'Tyne and Wear' }),
(newcastle)-[:COUNTY]->(tyneAndWear),
(england { name: 'England’ }),
(tyneAndWear)-[:COUNTRY]->(england),
(stratford { name: 'Stratford upon Avon' }),
(stratford)-[:COUNTRY]->(england),
(rsc)-[:BASED_IN]->(stratford),
(shakespeare)-[:BORN_IN]->stratford

© 2024 CY Lin, Columbia University



Query on the Shakespeare Graph 2
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START theater=node:venue(name='Theatre Royal'),
newcastle=node:city(name="'Newcastle'),
bard=node:author(lastname="'Shakespeare')

MATCH (newcastle)<-[:STREET|CITY*1..2]-(theater)
<-[:VENUE]-()-[:PERFORMANCE_OF]->()-[:PRODUCTION_OF]->
(play)<-[w:WROTE_PLAY]-(bard)

WHERE w.year > 1608

RETURN DISTINCT play.title AS play

Adding this WHERE clause means that for each successful match, the Cypher execution
engine checks that the WROTE_PLAY relationship between the Shakespeare node and the
matched play has a year property with a value greater than 1608. Matches with a
WROTE_PLAY relationship whose year value is greater than 1608 will pass the test; these
plays will then be included in the results. Matches that fail the test will not be included

in the results. By adding this clause, we ensure that only plays from Shakespeare’s late
period are returned:

Frmmmmm s -
| play I
oo s -
| "The Tempest" |
Frmmmmm e -
1 row
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Another Query on the Shakespeare Graph 2
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START theater=node:venue(name='Theatre Royal'),
newcastle=node:city(name="Newcastle'),
bard=node:author(lastname="'Shakespeare')

MATCH (newcastle)<-[:STREET|CITY*1..2]-(theater)
<-[:VENUE]-()-[p:PERFORMANCE_OF]->()-[:PRODUCTION_OF]->
(play)<-[:WROTE_PLAY]-(bard)

RETURN  play.title AS play, count(p) AS performance_count

ORDER BY performance_count DESC

The RETURN clause here counts the number of PERFORMANCE_OF relationships using the
identifier p (which is bound to the PERFORMANCE_OF relationships in the MATCH clause)
and aliases the result as performance _count. It then orders the results based on per
formance_count, with the most frequently performed play listed first:

frmmemeeeeeeeeeeeeeeeeeeeeeeeeeee———- +
| play | performance_count |
Frmmemmeeeeeeeeeeeeeeeeeeeeeeee————- +
| "Julius Caesar" | 2 |
| "The Tempest" | 1 |
T R +
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Building Application Example — Collaborative Filtering 2
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other readers who
reader like the same book
books other readers
have liked
LIKE\ LIKES UKES\
reader who
likes a book another
book

Figure 4-1. Data model for the book reviews user story

Because this data model directly encodes the question presented by the user story, it
lends itself to being queried in a way that similarly reflects the structure of the question

we want to ask of the data:
START reader=node:users(name={readerName})
book=node|: books(isbn={bookISBN})

MATCH reader-[:LIKES]->book<-[:LIKES]-other_readers-[:LIKES]->books
RETURN books.title
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Chaining on the Query 2,
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START bard=node:author(lastname="'Shakespeare')
MATCH (bard)-[w:WROTE_PLAY]->(play)

WITH play

ORDER BY w.year DESC

RETURN collect(play.title) AS plays

Executing this query against our sample graph produces the following result:

T R r T T T T T TP EREPE +
| plays |
L T L LT T T T TSRS +
| ["The Tempest","Julius Caesar"] |
T R CE LT TR +
1 row
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Example — Email Interaction Graph
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email
contents

email
contents

email
contents

email
contents

Figure 3-10. A graph of email interactions

85

E6893 Big Data Analytics — Lecture 4: Linked Big Data Analytics

START bob=node:user(username="'Bob")
MATCH (bob)-[:SENT]->(email)-[:CC]->(alias),
(alias)-[:ALIAS_OF]->(bob)

RETURN email

What's this query for?

© 2024 CY Lin, Columbia University



How to make graph database fast?
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Alice Davina
—»| Alice Charlie
—»| Alice Bob
Bob Alice
Bob Charlie
Bob Davina
Charlie Bob
Charlie Davina
Charlie Alice
Davina Charlie
Davina Bob
Davina Alice
name: Alice name: Bob name: Charlie

A 4

name: Davina

Figure 6-1. Nonnative graph processing engines use indexing to traverse between nodes

E6893 Big Data Analytics — Lecture 4: Linked Big Data Analytics
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Use Relationships, not indexes, for fast traversal 2,
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FRIEND

FRIEND

FRIEND FRIEND FRIEND

name: Alice name: Bob name: Charlie name: Davina

FRIEND
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Storage Structure Example Cotvmns
inUse
nextRelld nextPropld
1 5 9
Relationship (33 bytes)
inUse firstPrevRelld secondNextRelld
firstNode secondNode  relationshipType firstNextRelld  secondPrevRelld nextPropld
1 5 9 13 17 21 25 29 33

Figure 6-4. Neo4j node and relationship store file record structure
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An experiment B,

Dataset: 12.2 million edges, 2.2 million vertices

Goal: Find paths in a property graph. One of the vertex property is call TYPE. In this scenario, the user
provides either a particular vertex, or a set of particular vertices of the same TYPE (say, "DRUG"). In
addition, the user also provides another TYPE (say, "TARGET"). Then, we need find all the paths from
the starting vertex to a vertex of TYPE “TARGET”. Therefore, we need to 1) find the paths using graph
traversal; 2) keep trace of the paths, so that we can list them after the traversal. Even for the shortest
paths, it can be multiple between two nodes, such as: drug->assay->target , drug->MOA->target

Avg time (100 tests)

First test (cold- Requested depth Requested full

start) 5 traversal depth traversal
NativeStore C++ 39 sec 3.0 sec 4.2 sec
NativeStore JNI 957 sec 4.0 sec 6.2 sec
Neo4j (Blueprints 2.4) 105 sec 5.9 sec 8.3 sec
Titan (Berkeley DB) 3861 sec 641 sec 794 sec
Titan (HBase) 3046 sec 1597 sec 2682 sec

First full test - full depth 23. All data pulled from disk. Nothing initially cached.
Modes - All tests in default modes of each graph implementation. Titan can only be run in
transactional mode. Other implementations do not default to transactional mode.
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= Native store represents graphs in-memory and on-disk
— Organizing graph data for representing a graph that stores both graph structure and
vertex properties and edge properties
— Caching graph data in memory in either batch-mode or on-demand from the on-disk
streaming graph data
— Accepting graph updates and modifying graph structure and/or property data accordingly
and incorporating time stamps
« Add edge, remove vertex, update property, etc.
— Persisting graph updates along with the time stamps from in-memory graph to on-disk
graph
— Performing graph queries by loading graph structure and/or property data
» Find neighbors of a vertex, retrieve property of an edge, traverse a graph, etc.

Graph data graph engine «——iTime stamp control |

:Graph queries i- In-memory cached graph |

\ 4

Ion-disk persistent graph I
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On-Disk Graph Organization cg-;’

= Native store organizes graph data for representing a graph with both structure and the
vertex properties and edge properties using multiple files in Linux file system
— Creating a list called ID — Offset where each element translates a vertex (edge) ID into
two offsets, pointing to the earliest and latest data of the vertex/edge, respectively
— Creating a list called Time_stamp — Offset where each element has a time stamp, an
offset to the previous time stamp of the vertex/edge, and a set of indices to the adjacent

edge list and properties
— Create a list of chained block list to store adjacent list and properties

Use multiple property files to
separate properties that are
not typically used together

ID — Offset Time stamp — Offset AdjEIDs  Vertex/Edge property files

On-disk persistent graph:

TS, |prev| X [idx |id

VID | idx | idx + EE]

TS, Lprev | idx |idx |idx
ﬁiding window
/ life span »

Compact data

l
— TS, |prev | X [idx |idx

| Time Stamps |

Incomplete Delta file support
property support

XpT pejaleq

Property bundle:
aggregate properties
with close affinity
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Impact from Storage Hardware

o

COLUMBIA
UNIVERSITY

» Convert csv file (adams.csv 20G) to datastore e TYPE1 | TYPE2 | TYPE3 | TYPE4
— Similar performance: 7432 sec versus 7806 sec
— CPU intensive
» Average CPU util.: 97.4 versus 97.2 13.79 636 19-93 244
— 1/O pattern 4
» Maximum read rate: 5.0 vs. 5.3 SSD offers consistently higher
« Maximum write rate: 97.7 vs. 85.3 performance for both read and
write
Accumulated Disk R/W Size /
45000 I _
40000 Queries
35000 e Type 1: find the most recent URL
and PCID of a user
30000 — HDDRead| e Type 2: find all the URLs and PCIDs
2 25000 HDD Write e Type 3: find all Eclje most recent
20000 SSD Read properties |
15000 7 | sspwrite e Type 4: find all the historic propert
5000 |—
0 -
N © ©® O N & © © © N ¥ ©
AR R R R R R R EER
- « N O M < < © ©O© M~
Time (sec)
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Impact from Storage Hardware — 2 2,

UNIVERSITY

e Dataset: Knowledge Repository
e 138614 Nodes, 1617898 Edges

OS buffer is flushed before test

e Processing 320 queries in parallel
e In memory graph cache size: 4GB
SSD (default value)

M/S

M 1thread
M 4thread
M 8thread

1thread

M/S

M 4thread
m 8thread

35
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