o

COLUMBIA
UNIVERSITY

E6893 Big Data Analytics Lecture 3:

Big Data Analytics Algorithms and Stream Processing

Ching-Yung Lin, Ph.D.

Adjunct Professor, Dept. of Electrical Engineering and Computer Science

September 20, 2024

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Key Components of Spark MLIib

0

COLUMBIA
UNIVERSITY

MLlIlib: Main
Guide

¢ Basic statistics

e Pipelines

e Extracting, transforming
and selecting features

e Classification and
Regression

e Clustering

e Collaborative filtering

e Frequent Pattern Mining

e Model selection and tuning

e Advanced topics

2 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

Spark Clustering

K-means
o Input Columns
o Output Columns
Latent Dirichlet allocation (LDA)
Bisecting k-means
Gaussian Mixture Model (GMM)
o Input Columns
o Output Columns

3 E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

Content Analysis - Latent Dirichlet
Allocation (LDA) [Blei ¢t al. 2003]

Goal - categorize the documents into topics

O Each document is a probability distribution over topics
O Each topic is a probability distribution over words

0.8
\ DOCUMENT 1: river2 streamz2

river2 stream?
river2 stream?2

DOCUMENT 2: river2 stream?2 bank? river2 bank?2
stream? river2 bank?2 stream?2 bank?2

. \@ ,0& river2 stream? bank? stream? bank? river2
AN S ¥
sitea™ G

1 q
CY

’s Mixture

T
TOPIC 2 weights P(Wi)=EP§Wi |Z,' =])P,(<=])
=1

The probability of ith word in a given document

Mixture

components The probability of the word The probability of choosing a word from

W, under the jth topic 6 the jth topic in the current documenty!’
4 ! J : Y
E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University



Bayesian approach: use priors

INPUT: - i if]
N Ud 1 Mixture weights ~ Dirichlet( o)
ocument-word counts Mixture components ~ Dirichlet( )

* D documents, W words

OUTPUT: @

- likely topics for a document
P(Z|W)OCP(W|Z)P(Z) |
EI Ealgabmgters Ic.an be estimated by
ibbs Sampling @_O :
(i) T y WD
O Qutperform Latent Semantic : -
Analysis (LSA) and Probabilistic )+ Observations
LSA In various experiments [Blei T: number of topics
et al. 2003]

> © 2023 CY Lin, Columbia University

E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis



Spark ML Classification and Regression

0

COLUMBIA
UNIVERSITY

MLlIib: Main

Decision trees

Linear methods

Guide )
o Inputs and Outputs

e Basic statistics = |Input Columns
e Pipelines = Qutput Columns
e Extracting, transforming e Tree Ensembles

and selecting features o Random Forests
¢ Classification and » Inputs and Outputs

Regression » Input Columns
e Clustering = Output Columns (Predictions)
e Collaborative filtering o Gradient-Boosted Trees (GBTs)
e Frequent Pattern Mining » Inputs and Outputs
e Model selection and tuning = Input Columns
e Advanced topics = Qutput Columns (Predictions)

6 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



oo

CoOLUMBIA
UNIVERSITY

Traditional Content Clustering
. Clustering:

O Partition the feature space into segments
@ O based on training documents. Each
O 0 O segment represents a topic / category. (€
O O O OO Topic Detection)
O 0 “g
O O O Hard clustering: e.g., K-mean clustering
o Q) O

O O O : fwz _ —
258 d=Afy S fo k=2

fw] fwj . the frequency of the word w;

in a document

E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University



o

CoOLUMBIA
UNIVERSITY

Traditional Content Clustering

7 Clustering:
ki o Partition the feature space into segments
) O based on training documents. Each
Oé) O segment represents a topic / category. (€
O O Topic Detection)
00 Hard clustering: e.g., K-mean clustering
O
0 o

O PR ” fwz _ 9
02% @ d={f S s S} =2

f w; f W, . the frequency of the word w,

in a document

E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University



a0

CoOLUMBIA
UNIVERSITY

Traditional Content Clustering

A Clustering:
e o Partition the feature space into segments
) O based on training documents. Each
O(SD O segment represents a topic / category. (€
O O Topic Detection)
O O 0 OO
00 Hard clustering: e.g., K-mean clustering
@,
O o

O PR ” fwz _ 9
0Q % d={f S s S} =2

fw y fwj . the frequency of the word w,

in a document

Documents @ @ @

/ v Another representation
Words @ @ @ of clustering
Topics @ @ @ @ O : observations

E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University

X
—&

NOSS



a0

CoOLUMBIA
UNIVERSITY

Traditional Content Clustering

7 Clustering:
ki o Partition the feature space into segments
) O based on training documents. Each
O(SD O segment represents a topic / category. (€
O O Topic Detection)
O 0 0 9,
00 Hard clustering: e.g., K-mean clustering
O
O o

O PR ” fwz _ 9
0Q % d={f S s S} =2

fw p fwj . the frequency of the word w,

in a document
Words @ @ @ @ Another representation
of clustering (w/o showing
‘ / \ / the deterministic part)
LN ONONONONS
Q : observations

E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University



a0

CoOLUMBIA
UNIVERSITY

Traditional Content Clustering — soft clustering

Sy | Clustering:
OO Partition the feature space into segments
O) ) based on training documents. Each
o O (SDO segment represents a topic / category. (€
O 0O O OO Topic Detection)
OOO O Hard clustering: e.g., K-mean clustering
0> o =
O O 0% 0 o,
0P R d = Afus S} > 2
Soft clustering: e.g., Fuzzy C-mean
clusterin
fw; fw_ . the frequency of the word w, J
J P(Z|W=f))

in a document

11 E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University



Content Clustering based on Bayesian Network

Documents h(D) P(Z|D)

N
A
_S.C
N Ve U
N
N
N

hard clustering  soft clustering

PV | Z)

O : observations

Bayesian Network:

» Causality Network — models the causal relationship of attributes / nodes
+ Allows hidden / latent nodes

Hard clustering:
Hard clustering h(D =d) =argmax P(W =1, |Z) <= MLE

PW|Z) = P(Z|W)P(W) <= Bayes Theorem
12 P(Z)

E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University




a0

CoOLUMBIA
UNIVERSITY

Content Clustering based on Bayesian Network — Hard Clustering

()
—t

shown as

)

O : observations
_P(Z|W)P(W) _P(Z|W)P(W)

N: the number of words

P(W | Z) — (The number of topics (M) are
P(Z) f P(Z |W)dW pre-determined)
Major Solution 1 -- Dirichlet Process:
* Models P( W | Z) as mixtures of Dirichlet probabilities
« Before training, the prior of P(W|Z) can be a easy Topic-Word

Dirichlet (uniform distribution). After training, P(W|Z) will  distributions

still be Dirichlet. (€ The reason of using Dirichlet) v
N

M

Major Solution 2 -- Gibbs Sampling:

« A Markov chain Monte Carlo (MCMC) method for . _
_ _ ( ) Latent Dirichlet Allocation (LDA) (Blei 2003)
integration of large samples = calculate P(2)

E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University




o

COLUMBIA
UNIVERSITY

Content Clustering based on Bayesian Network — Soft Clustering

@

shown as

(@

O : observations

@.

N: the number of words

|
I
Document-Topic
distributions @7_ ] @
| A: the number of docs
Topic-Word @_ /ﬂ_» @
distributions N A | LDA (Blei 2003)

14

E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University



Some Insight on BN-based Content Clustering
Bayesian Network: P

» Models the *practical* causal O
L @©
relationships.. oo ©
O OO
. © o 0 9
Content Clustering.: 0.0 ©
- Because documents and wordsare 9@ o - -- - ¥
O O ~0©O W)
dependent, O % 8(8) O3 0 0
- only close documents in the o é)%o
feature space can be clustered f £, the frequency of the word w,

together as one topic. / ,
in a document

=Incorporating human factors can possibly *link* multiple
clusters together.

15 . . . .
E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University



Spark ML LDA code example X,

UNIVERSITY

import org.apache.spark.ml.clustering.LDA

// Loads data.
val dataset = spark.read.format("libsvm")
. load("data/mllib/sample_lda_libsvm_data.txt")

// Trains a LDA model.
val lda = new LDA().setK(10).setMaxIter(10)
val model = lda.fit(dataset)

val 11 = model. logLikelihood(dataset)

val 1p = model. logPerplexity(dataset)

println(s"The lower bound on the log likelihood of the entire corpus: $11")
println(s"The upper bound on perplexity: $ip")

// Describe topics.

val topics = model.describeTopics(3)

println("The topics described by their top-weighted terms:")
topics.show(false)

// Shows the result.
val transformed = model.transform(dataset)
transformed. show(false)

16 E6893 Big Data Analytics — Lecture 4: Real-Time Stream Analysis © 2023 CY Lin, Columbia University



Spark ML Classification and Regression

0

COLUMBIA
UNIVERSITY

MLlIib: Main

Decision trees

Linear methods

Guide )
o Inputs and Outputs

e Basic statistics = |Input Columns
e Pipelines = Qutput Columns
e Extracting, transforming e Tree Ensembles

and selecting features o Random Forests
¢ Classification and » Inputs and Outputs

Regression » Input Columns
e Clustering = Output Columns (Predictions)
e Collaborative filtering o Gradient-Boosted Trees (GBTs)
e Frequent Pattern Mining » Inputs and Outputs
e Model selection and tuning = Input Columns
e Advanced topics = Qutput Columns (Predictions)

17 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



Classification — definition ooy

UNIVERSITY

DEFINITION Computer classification systems are a form of machine learn-
ing that use learning algorithms to provide a way for computers to make
decisions based on experience and, in the process, emulate certain forms
of human decision making.

18 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

Classification example: using SVM to recognize a Toyota

Camry

Non-ML

Rule 1.Symbol has
something like
bull’s head

Rule 2.Big black
portion in front of
car.

Rule 3. .....?777?7

19

ML — Support Vector Machine

Feature
Space Positive SVs

Negative SVs

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

Classification example: using SVM to recognize a Toyota
Camry

ML — Support Vector Machine

Feature
Space

Negative SVs

20 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



When to use Big Data System for classification? &,

UNIVERSITY

System size in number
of examples

Choice of classification approach

< 100,000 Traditional, non-Mahout approaches should work very well. Mahout may
even be slower for training.

100,000 to 1 million Mahout begins to be a good choice. The flexible APl may make Mahout a
preferred choice, even though there is no performance advantage.

1 million to 10 million Mahout is an excellent choice in this range.

> 10 million Mahout excels where others fail.

21 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



The advantage of using Big Data System for classification

COLUMBIA
UNIVERSITY

Wall
clock
time

22

Scalable algorithm
(Mahout wins!)

Non-scalable algorithm

Number of training examples

Traditional
data mining
works here

Scalable solutions required

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



e %
How does a classification system work? Cotum

UNIVERSITY

-

Classification system

Training examples ) Training g
wnt: e::?;?;igce Prodictors algorithm Model :
and target
variables
Copy /
/
»
New ‘ Model . Emulated
examples | Predictors ' Estimated | decisions
variables . N target
only e variable

23 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Key terminology for classification

o

COLUMBIA
UNIVERSITY

24

Model

Training data

Test data

Training

Training example

Feature

Variable

Record
Field

Predictor variable

Target variable

Key idea Description

A computer program that makes decisions; in classification, the output of the
training algorithm is a model.

A subset of training examples labeled with the value of the target variable and
used as input to the learning algorithm to produce the model.

A withheld portion of the training data with the value of the target variable hidden
so that it can be used to evaluate the model.

The learning process that uses training data to produce a model. That model can
then compute estimates of the target variable given the predictor variables as
inputs.

An entity with features that will be used as input for learning algorithm.

A known characteristic of a training or a new example; a feature is equivalent to a
characteristic.

In this context, the value of a feature or a function of several features. This usage
is somewhat different from the use of variable in a computer program.

A container where an example is stored; such a record is composed of fields.
Part of a record that contains the value of a feature (a variable).

A feature selected for use as input to a classification model. Not all features

need be used. Some features may be algorithmic combinations of other features.

A feature that the classification model is attempting to estimate: the target vari-
able is categorical, and its determination is the aim of the classification system.

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



Input and Output of a classification model

0

COLUMBIA
UNIVERSITY

25

Learning
algorithm

Model

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



Four types of values for predictor variables &2,

UNIVERSITY

Continuous This is a floating-point value. This type of value might be a price, a weight, a time, or
anything else that has a numerical magnitude and where this magnitude is the key
property of the value.

Categorical A categorical value can have one of a set of prespecified values. Typically the set of
categorical values is relatively small and may be as small as two, although the set
can be quite large. Boolean values are generally treated as categorical values.
Another example might be a vendor ID.

Word-like A word-like value is like a categorical value, but it has an open-ended set of possible
values.

Text-like A text-like value is a sequence of word-like values, all of the same kind. Text is the
classic example of a text-like value, but a list of email addresses or URLs is also text-
like.

26 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Sample data that illustrates all four value types 2,

UNIVERSITY

Name 1) Value
from-address Word-like George <george@fumble-tech.com>
in-address-book? Categorical (TRUE, FALSE) TRUE
non-spam-words Text-like Ted, Mahout, User, lunch
spam-words Text-like available
unknown-words Continuous 0
message-length Continuous 31
27

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Supervised vs. Unsupervised Learning Coitman

UNIVERSITY

Classification algorithms are related to, but still quite different from, clustering algo-
rithms such as the k-means algorithm described in previous chapters. Classification
algorithms are a form of supervised learning, as opposed to unsupervised learning,
which happens with clustering algorithms. A supervised learning algorithm is one
that’s given examples that contain the desired value of a target variable. Unsupervised
algorithms aren’t given the desired answer, but instead must find something plausible
on their own.

Supervised and unsupervised learning algorithms can often be usefully combined.
A clustering algorithm can be used to create features that can then be used by a learn-
ing algorithm, or the output of several classifiers can be used as features by a cluster-
ing algorithm. Moreover, clustering systems often build a model that can be used to
categorize new data. This clustering system model works much like the model pro-
duced by a classification system. The difference lies in what data was used to produce
the model. For classification, the training data includes the target variables; for clus-
tering, the training data doesn’t include target variables.

28 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Work flow in a typical classification project L,

UNIVERSITY

Stage

1. Training the model Define target variable.

Collect historical data.

Define predictor variables.

Select a learning algorithm.

Use the learning algorithm to train the model.

2. Evaluating the model Run test data.
Adjust the input (use different predictor variables, different
algorithms, or both).

3. Using the model in production Input new examples to estimate unknown target values.
Retrain the model as needed.

29 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



%

CoOLUMBIA
UNIVERSITY

Example of fundamental classification algorithms:

* Naive Bayesian

« Complementary Naive Bayesian
 Stochastic Gradient Descent (SDG)
 Random Forest

» Support Vector Machines

30 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2022 CY Lin, Columbia University



Choose algorithm

o

COLUMBIA
UNIVERSITY

Size of data set

Small to medium
(less than tens of
millions of training
examples)

Medium to large
(millions to hundreds of
millions of training
examples)

Small to medium
(less than tens of
millions of training
examples)

Mahout algorithm

Stochastic gradient descent (SGD)
family:
OnlineLogisticRegression,
CrossFoldLearner,
AdaptiveLogisticRegression

Support vector machine
(SVM)

Naive Bayes

Complementary naive Bayes

Random forests

Execution
model

Sequential,
online,
incremental

Sequential

Parallel

Parallel

Parallel

Characteristics

Uses all types of predictor
variables; sleek and efficient
over the appropriate data
range (up to millions of train-
ing examples)

Experimental still; sleek and
efficient over the appropriate
data range

Strongly prefers text-like data;
medium to high overhead for
training; effective and useful
for data sets too large for SGD
or SVM

Somewhat more expensive to
train than naive Bayes; effec-
tive and useful for data sets
too large for SGD, but has
similar limitations to naive
Bayes

Uses all types of predictor
variables; high overhead for
training; not widely used (yet);
costly but offers complex and
interesting classifications,
handles nonlinear and condi-
tional relationships in data
better than other techniques

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



Stochastic Gradient Descent (SGD) &

COLUMBIA
UNIVERSITY

Both statistical estimation and machine learning consider the problem of minimizing an objective
function that has the form of a sum:

Qw) =3 Qi(w),

where the parameter ! is to be estimated and where typically each summand function Qi () is
associated with the 3-th observation in the data set (used for training).

« Choose an initial vector of parameters 14! and learning rate (v.
* Randomly shuffle examples in the training set.
* Repeat until an approximate minimum is obtained:

e« Forz = 1,2, ..., n,do:

cw = w — aVQ;(w).

Let's suppose we want to fit a straight line %y = 1!y 4+ WX to a training set of two-dimensional

points (;171‘ yl_), o (;rn, yn) using least squares. The objective function to be minimized is:
n n
Qw) =Y Qi(w) =" (wy + woz; — y)*.
i=1 i=1

The last line in the above pseudocode for this specific problem will become:

wy| _ |wr | Yoy 2wy + wax; — i)
»— — Q n a
wWs 2 it 2xi(wy + wezi — i)

<

32

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Characteristic of SGD oo

UNIVERSITY

THE SGD ALGORITHM

Stochastic gradient descent (SGD) is a widely used learning algorithm in which each
training example is used to tweak the model slightly to give a more correct answer for
that one example. This incremental approach is repeated over many training exam-
ples. With some special tricks to decide how much to nudge the model, the model
accurately classifies new data after seeing only a modest number of examples.
Although SGD algorithms are difficult to parallelize effectively, they’re often so fast
that for a wide variety of applications, parallel execution isn’t necessary.

Importantly, because these algorithms do the same simple operation for each
training example, they require a constant amount of memory. For this reason, each
training example requires roughly the same amount of work. These properties make
SGD-based algorithms scalable in the sense that twice as much data takes only twice as
long to process.

33

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

Support Vector Machine (SVM) "

UNIVERSITY

34

.
* o
o ° o AR °
\
o © ° o( .
O’v
o o .
o .
.
o o . o
o
o
o ¢ o
o o/
o ! >
o
o \ . "
© e O, .
(R - o ‘. 03
e (o] .
o o
o © \
o}
o o
°© o
(4]
e

nonlinear kernels

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Example SVM code in Spark 2,

UNIVERSITY

from pyspark.ml.classification import LinearSVC

# Load training data
training = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")

lsvc = LinearSVC(maxIter=10, regParam=0.1)

# Fit the model
lsvcModel = lsvc.fit(training)

# Print the coefficients and intercept for linear SVC

print("Coefficients: " + str(lsvcModel.coefficients))
print("Intercept: " + str(lsvcModel.intercept))

35 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

Naive Bayes ot
NIVERSITY
Training set:
sex  height (feet) weight (Ibs) foot size(inches) Classifier using Gaussian distribution assumptions:
male |6 180 12
male 5.92(5'11") 190 " cex mean variance mean variance mean (foot  variance (foot
male |5.58 (5'7") |170 12 (height) (height) (weight) (weight) size) size)
male 5.92 (5'11") [165 10 male |5.855 3.5033e-02 176.25 1.2292e+02 11.25 9.1667e-01
female 5 100 6 female |5.4175 9.7225e-02 132.5 5.5833e+02 7.5 1.6667e+00
female 5.5 (5'6") 150 8
female 5.42 (5'5") 130 7
female 5.75 (5'9") 150 9

P(male) p(height|/male) p(weight|male) p( footsize|male)
evidence

posterior(male) =

Test Set:

sex height (feet) weight (Ibs) foot size(inches)
evidence = P(male) p(height|/male) p(weight|male) p( footsize|male)

sample 6 130 8 +P( female) p(height| female) p(weight| female) p( footsize| female)

P(male) = 0.5

p(height|male) = exp

1
vV 2mo?
p(weight|male) = 5.9881 - 107°
p(foot size|male) = 1.3112-107°
posterior numerator (male) = their product = 6.1984 - 10~

(—(6 - ;1.)2) ~ 15789 P(female) = 0.5
202 o p(height|female) = 2.2346 - 10~
p(weight|female) = 1.6789 - 1072
p(foot size|female) = 2.8669 - 107
posterior numerator (female) = their product = 5.3778 - 10~*

==> female

36 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



® /)
Random Forest L

Random forests are an ensemble learning method for
classification (and regression) that operate by constructing a
multitude of decision trees at training time and outputting the class
that is the mode of the classes output by individual trees.

The training algorithm for random forests applies the general technique of bootstrap aggregating, or bagging, to
tree learners. Given a training set X = x, ..., x,, with responses Y =y, through y,, bagging repeatedly selects a
bootstrap sample of the training set and fits trees to these samples:

For b = 1 through B:

1. Sample, with replacement, 7 training examples from X, ¥; call these X}, Y}.
2. Train a decision or regression tree f3 on X, Y},

After training, predictions for unseen samples x' can be made by averaging the predictions from all the
individual regression trees on x":

" 1 B .
. ~ ' !
~— B Z folT')
b=1
or by taking the majority vote in the case of decision trees.

Random forest uses a modified tree learning algorithm that selects, at each candidate
split in the learning process, a random subset of the features.

37 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Adaboost Example

Adaboost [Freund and Schapire 1996]
= Constructing a “strong” learner as a
linear combination of weak learners

- Start with a uniform distribution (“weights’) over training examples
(The weights tell the weak learning algorithm which examples are important)

- Obtain a weak classifier from the weak learning algorithm, h.t:X%{—l 1}

- Increase the weights on the training examples that were misclassified

- (Repeat)
The final classifier is a linear combination of the weak classifiers

obtained at all iterations s
ffmal(x) = Sign(Eashs (x)) 38




Example — User Modeling using Time-Sensitive Adaboost

+ Obtain simple classifier on each feature, e.g., setting threshold on
parameters, or binary inference on input parameters.

+ The system classify whether a new document is interested by a person
via Adaptive Boosting (Adaboost):

= The final classifier is a linear weighted combination of single-
feature classifiers.

= Given the single-feature simple classifiers, assigning weights on
the training samples based on whether a sample is correctly or
mistakenly classified. <== Boosting.

= Classifiers are considered sequentially. The selected weights in People select apples
previous considered classifiers will affect the weights to be according to their
selected in the remaining classifiers. <== Adaptive. shapes, sizes, other

- According to the summed errors of each simple classifier, assigna  People’s interest, efc.
weight to it. The final classifier is then the weighted linear

combination of these simple classifiers. Each attribute is a
simple classifier used
« Our new Time-Sensitive Adaboost algorithm: in Adaboost.

= In the AdaBoost algorithm, all samples are regarded equally
important at the beginning of the learning process

= We propose a time-adaptive AdaBoost algorithm that assigns

larger weights to the latest training samples
39




Time-Sensitive Adaboost [Song, Lin, et al. 2005]

o In AdaBoost, the goal is to
minimize the energy function:

:vzlexp(—c,. zah (x,.))

= All samples are regarded

equally important at the
beginning of the learning

process

o Propose a time-adaptive
AdaBoost algorithm that
assigns larger weights to the
latest documents to indicate
their importance

2exp(—cis2as exp(—r-(t—ti))hs(xi,t))

o Weak learners

m linear classifiers
corresponding to the content,
community and dynamic
patterns

Algorithm: Time-Sensitive Adaboost
Given: (x,,¢.,1,) K ,(xy,cy.ty) where x, €X ,c, C{-11}, N

is the size of samples in the training set; current time ¢,and 7
Fors=1,..., S

Initialize D, (i) =1/(N -exp(z-(t - 1,))) .
Set the weight
h, according to its weighted error rate &,

a, =1ln(l_£‘)
2 £

s

a, of the current weak hypothesis

where ¢, = 2

D, (i)exp(-asc,. exp(—r-(t -t ))h, (x, ))

Update D, (i)= 7

where Z _is a normalization term.

End
Find weak hypothesis by: h, = argmine; .

h/cH

Output: the final hypothesis: H (x) = sign(F(x))

S

where F (x) = 2 ah (x).

S




Evaluate the model g_;;

UNIVERSITY

S Dbin/mahout runlogistic --input donut.csv --model ./model \
--auc --confusion

AUC = 0.57

confusion: [[27.0, 13.0], [0.0, 0.0]]

100% ¢ _ . False positive
- True positive
/ r (Type | error)
P(TP) ",”. r -7 ’ AUC (O ~ 1):
; - 1 — perfect
0 — perfectly wrong False negative True neaative
i
0.5 —random (Type Il error) J
0% P(FP) 100%

confusion matrix

Option What it does

--quiet Produces less status and progress output.

--auc Prints AUC score for model versus input data after reading data.
--scores Prints target variable value and scores for each input example.
--confusion Prints confusion matrix for a particular threshold (see --threshold).
--input <input> Reads data records from specified file or resource.

--model <model> Reads model from specified file.

41 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



. . ® /)
Confusion Matrix o

UNIVERSITY

a b c d e f <--Classified as

9 0 1 0 0 O | 10 a = one

0 9 0 0 1 0 | 10 b = two

0 0 10 0o o0 O | 10 c = three
0 0 1 8 1 0 | 10 d = four
1 1 0 0 7 1 | 10 e = five
0 0 0 0 1 9 | 10 f = six

Default Category: one: 6

BufferedReader in = new
BufferedReader (new FileReader (inputFile)); <1 Reads and
List<String> symbols = new ArrayList<String>(); remembers values
String line = in.readLine();
while (line != null) {
String[] pieces = line.split(",");
if (!symbols.contains(pieces[0])) {

symbols.add (pieces[0]);
}
line = in.readLine();

}
ConfusionMatrix x2 = new ConfusionMatrix(symbols, "unknown");

in = new BufferedReader (new FileReader (inputFile)) ; g - Counts the pairs
line = in.readLine() ;
while (line != null) {
String[] pieces = line.split(","); < Input contains target
String trueValue = pieces[0]; and model output
String estimatedValue = pieces[1l];
x2.addInstance (truevValue, estimatedvValue) ; < ngets true answer
line = in.readLine(); and score
}
System.out.printf ("$s\n\n", x2.toString());

42 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Average Precision — commonly used in sorted results Corwann

UNIVERSITY

0O < il baidu.com & ™ (0]
[ { unix - How4 Getting curl t... [ Graphen! A... l (2) LinkedIn | Graph Corr{ Con{ analytics -... \E ’ -
00
N )
Bai MW EE
% big data analytics BE—T
I TT & A 7] iR n&e jB) 2
WAL ES « AXER BXER

Big Data Analytics

01/19/17 1 Advanced Big Data Analytics to Build a Brain 01/26/17 2 Foundations
toward Human-Lik...

www.ee.columbia.edu > ~cylin» ...

What is big data analytics? - Definition from ...

This definition explains the meaning of big data analytics and how it can help
organizations to ...

searchbusinessanalytics.techtarget...

Big Data Analytics, Big Data Hadoop - Datameer

o— Datameer's end-to-end big data analytics platform for Hadoop
empowers businesses to directly integrate...

www.datameer.com T4}

big data application

big data a revolution

ice breaking

data mining

madilyn bailey

off license

sparknotes

return on assets

43 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

‘Average Precision’
is the metric that is
used for evaluating
‘sorted’ results.

— commonly used
for search &
retrieval, anomaly
detection, etc.

Average Precision
= average of the
precision values of
all correct answers
up to them,

==> |.e., calculating
the precision value
up to the Top n
‘correct’ answers.
Average all Pn.

© 2024 CY Lin, Columbia University



Classifiers that go bad 2,

UNIVERSITY

When working with real data and real classifiers it’s almost a rule that the first
attempts to build models will fail, occasionally spectacularly. Unlike normal software
engineering, the failures of models aren’t usually as dramatic as a null pointer deref-
erence or out-of-memory exception. Instead, a failing model can appear to produce
miraculously accurate results. Such a model can also produce results so wrong that it
seems the model is trying to be incorrect. It’s important to be somewhat dubious of
extremely good or bad results, especially if they occur early in a model’s development.

44 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



%

CoOLUMBIA
UNIVERSITY

» Atarget leak is a bug that involves unintentionally providing data about the target variable in
the section of the predictor variables.

« Don’t confused with intentionally including the target variable in the record of a training
example.

» Target leaks can seriously affect the accuracy of the classification system.

45 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

COLUMBIA

Example: Target Leak

private static final SimpleDateFormat ("MMM-yyyy") ;

// 1997-01-15 00:01:00 GMT
private static final long DATE_REFERENCE = 853286460;

long date = (long) (1000 *
(DATE_REFERENCE + target * MONTH + 1 * WEEK * rand.nextDouble()));

Reader dateString = new StringReader (df.format (new Date(date)));
countWords (analyzer, words, dateString);

This date field is chosen so that all the documents from the same news-
group appear to have come from the same month, but documents from different

newsgroups come from different months.

46 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Avoid Target Leaks

o

COLUMBIA
UNIVERSITY

Day 1
clicks
T —

|

Day 2
clicks
T —

Day 3
clicks
T —

Day 4

Extract
click
history
features

K-means
clustering

clicks

47

Cluster ID | Clicks >0

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

Don’t do this:
click-history clustering can
introduce a target leak in the
training data because the
target variable (Clicks > 0) is
based on the same data as
the cluster ID.

© 2024 CY Lin, Columbia University



o

Avoid Target Leaks — Il Couuma
Day 1
clicks ‘\‘
T —
Extract
Day 2 i - :
cligks = h?s“t(c:::y cil(ug;:z:; Cluster ID | Clicks > 0
e features
Day 3 _—
clicks A good way to
—— avoid a target leak: compute
click history clusters based on
Day 4 days 1, 2, and 3, and derive the
clicks target variable (Clicks > 0)
“— from day 4.

48 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

Spark ML Pipeline Example — classifier Corwmnia

o Logistic
PipelineModel [ Tokenizer ] =) [ HashingTF ] =) | Regression
(Transformer) Model

- l = B = 8 - 8
PipelineModel

.transform() Words Feature Predictions

text vectors

49 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



: % 0,
Spark Tokenizer Cotvmn

import org.apache.spark.ml.feature.Tokenizer

val tok = new Tokenizer()
// dataset to transform
val df = Seq(
(1, "Hello world!"),
(2, "Here is yet another sentence.")).toDF("id", "sentence")

val tokenized = tok.setInputCol("sentence").setOutputCol("tokens").transform(df)

scala> tokenized.show(truncate = false)

e E +———= —————————— -

|id |sentence | tokens |

s e e e e +

|1 |Hello world! | [(hello, world!] |

|2 |Here is yet another sentence.|[here, is, yet, another, sentence.]|

e R e ks

50 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Spark Tokenizer L2,

UNIVERSITY

from pyspark.ml.feature import Tokenizer, RegexTokenizer
from pyspark.sql.functions import col, udf
from pyspark.sql.types import IntegerType

sentenceDataFrame = spark.createDataFrame( [
(0, "Hi I heard about Spark"),
(1, "I wish Java could use case classes"),
(2, "Logistic,regression,models,are,neat")
1, ["id", "sentence"])

tokenizer = Tokenizer(inputCol="sentence", outputCol="words")

regexTokenizer = RegexTokenizer(inputCol="sentence", outputCol="words", pattern="\\W")
# alternatively, pattern="\\w+", gaps(False)

countTokens = udf(lambda words: len(words), IntegerType())

tokenized = tokenizer.transform(sentenceDataFrame)
tokenized.select("sentence", "words")\
.withColumn("tokens", countTokens(col("words"))).show(truncate=False)

regexTokenized = regexTokenizer.transform(sentenceDataFrame)
regexTokenized.select("sentence", "words") \
.withColumn("tokens", countTokens(col("words"))).show(truncate=False)

51 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

Vectorization of text .

UNIVERSITY

52

Vector Space Model: Term Frequency (TF)

For example, if the word horse is assigned to the 39,905™" index of the vector, the
word horse will correspond to the 39,905™ dimension of document vectors. A docu-
ment’s vectorized form merely consists, then, of the number of times each word
occurs in the document, and that value is stored in the vector along that word’s
dimension. The dimension of these document vectors can be very large.

Stop Words: a, an, the, who, what, are, is, was, and so on.

Stemming:

A stemmer for English, for example, should identify the string "cats" (and possibly "catlike", "catty" etc.) as based on the root "cat",
and "stemmer", "stemming", "stemmed" as based on "stem". A stemming algorithm reduces the words "fishing", "fished", and "fisher"
to the root word, "fish". On the other hand, "argue", "argued", "argues", "arguing", and "argus" reduce to the stem "argu" (illustrating
the case where the stem is not itself a word or root) but "argument" and "arguments" reduce to the stem "argument".

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Spark StopWordsRemover m

Examples

Assume that we have the following DataFrame with columns id and raw:

id | raw

@ | [I, saw, the, red, baloon]
1 | [Mary, had, a, little, lamb]

Applying StopWordsRemover with raw as the input column and filtered as the output column, we should get the following:

id | raw | filtered

I I
@ | [I, saw, the, red, baloon] | [saw, red, baloon]
1 | [Mary, had, a, little, lamb]|([Mary, little, lamb]

In filtered, the stop words “I”, “the”, “had”, and “a” have been filtered out.

53 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Spark StopWordsRemover 2,

UNIVERSITY

from pyspark.ml.feature import StopWordsRemover

sentenceData = spark.createDataFrame( [
(0’ [IIIII' Ilsawll’ Ilthell , ]| redll' llballoonll] ) ,
(1, ["Mary", "had", "a", "little", "lamb"])
1, ["id", "raw"])

remover = StopWordsRemover(inputCol="raw", outputCol="filtered")
remover.transform(sentenceData).show(truncate=False)

54

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Most Popular Stemming algorithms @

Lookup algorithms

A simple stemmer looks up the inflected form in a lookup table. The advantages of this approach is that it is
simple, fast, and easily handles exceptions. The disadvantages are that all inflected forms must be explicitly
listed in the table: new or unfamiliar words are not handled, even if they are perfectly regular (e.g. iPads ~ iPad),
and the table may be large. For languages with simple morphology, like English, table sizes are modest, but

Suffix-stripping algorithms

Suffix stripping algorithms do not rely on a lookup table that consists of inflected forms and root form relations.
Instead, a typically smaller list of "rules" is stored which provides a path for the algorithm, given an input word
form, to find its root form. Some examples of the rules include:

« if the word ends in 'ed', remove the 'ed'
« if the word ends in 'ing', remove the 'ing'
« if the word ends in 'ly', remove the 'ly'

55 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



a0

CoOLUMBIA
UNIVERSITY

It was the best of time. it was the worst of times. ==>

56

bigram

It was
was the
the best
best of
of times
times it
it was
was the
the worst
worst of
of times

Mahout provides a log-likelihood test to reduce the dimensions of n-grams

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



%
N-gram code example e

UNIVERSITY

from pyspark.ml.feature import NGram

wordDataFrame = spark.createDataFrame( [
(e, ["Hi", "I, "heard", "about", "Spark"l),
(z, ["1I", "wish", "Java", "could", "use", "case", "classes"]),
(2, ["Logistic", "regression", "models", "are", "neat"])

1, ["id", "words"])

ngram = NGram(n=2, inputCol="words", outputCol="ngrams")

ngramDataFrame = ngram.transform(wordDataFrame)
ngramDataFrame.select("ngrams").show(truncate=False)

57 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



® /)
Word2Vec L

The Word2VecModel transforms each document into a vector using the average of all words
in the document; this vector can then be used as features for prediction, document
similarity calculations, etc.

from pyspark.ml.feature import Word2Vec

# Input data: Each row is a bag of words from a sentence or document.
documentDF = spark.createDataFrame( [

("Hi I heard about Spark".split(" "), ),

("I wish Java could use case classes".split(" "), ),

("Logistic regression models are neat".split(" "), )
1, ["text"])

# Learn a mapping from words to Vectors.
word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="text", outputCol="result")

model = word2Vec.fit(documentDF)

result = model.transform(documentDF)
for row in result.collect():

text, vector = row
print("Text: [%s] => \nVector: %s\n" % (", ".join(text), str(vector)))

58 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



: %
Cou ntveCtorlzer CoOLUMBIA

UNIVERSITY

CountVectorizer and CountVectorizerModel aim to help convert a collection of text documents to vectors
token counts. When an a-priori dictionary is not available, CountVectorizer can be used as an Estimator tc
extract the vocabulary, and generates a CountVectorizerModel. The model produces sparse representation
the documents over the vocabulary, which can then be passed to other algorithms like LDA.

Examples

Assume that we have the following DataFrame with columns id and texts:

id | texts
|
0 | Array(llall, IlbII’ IICII)
1 I Array(llall' Ilbll' llbll' Ilcll' Ilall)

each row in texts is a document of type Array[String]. Invoking fit of CountVectorizer produces a CountVectorizerModel with
vocabulary (a, b, c). Then the output column “vector” after transformation contains:

id | texts | vector

| |

| Array("a", "b", "c") | (3,[0,1,2]1,[1.0,1.0,1.0])
1 | Array("a", "b", "b", “c", "a") | (3,[0,1,2],[2.0,2.0,1.0])

Each vector represents the token counts of the document over the vocabulary.

59 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

CountVectorizer o

UNIVERSITY

60

from pyspark.ml.feature import CountVectorizer

# Input data: Each row is a bag of words with a ID.
df = spark.createDataFrame( [

(0, "a b c".split(" ™)),

(1, "a b b c a".split(" "))
1, ["id", "words"])

# fit a CountVectorizerModel from the corpus.
cv = CountVectorizer(inputCol="words", outputCol="features", vocabSize=3, minDF=2.0)

model = cv.fit(df)

result = model.transform(df)
result.show(truncate=False)

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



* 7,
FeatureHasher .

UNIVERSITY

Feature hashing projects a set of categorical or numerical features into a feature vector of
specified dimension (typically substantially smaller than that of the original feature space). This is

done using the hashing trick to map features to indices in the feature vector.

The FeatureHasher transformer operates on multiple columns. Each column may contain either
numeric or categorical features. Behavior and handling of column data types is as follows:

*  Numeric columns: For numeric features, the hash value of the column name is used to map
the feature value to its index in the feature vector. By default, numeric features are not
treated as categorical (even when they are integers). To treat them as categorical, specify
the relevant columns using the categoricalCols parameter.

«  String columns: For categorical features, the hash value of the string “column_name=value”
is used to map to the vector index, with an indicator value of 1.0. Thus, categorical features
are “one-hot” encoded (similarly to using OneHotEncoder with dropLast=false).

* Boolean columns: Boolean values are treated in the same way as string columns. That is,
boolean features are represented as “column_name=true” or “column_name=false”, with an
indicator value of 1. 0.

Null (missing) values are ignored (implicitly zero in the resulting feature vector).

61 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University


https://en.wikipedia.org/wiki/Feature_hashing
https://spark.apache.org/docs/latest/ml-features.html#onehotencoder

® /)
FeatureHasher o

UNIVERSITY

Examples

Assume that we have a DataFrame with 4 input columns real, bool, stringNum, and string. These different data types as
input will illustrate the behavior of the transform to produce a column of feature vectors.

real| bool|stringNum|string

2.2| truej 1| foo
3.3|false| 2| bar
4.4|false| 3| baz
5.5|false| 4| foo

Then the output of FeatureHasher.transform on this DataFrame is:

real|bool |stringNum|string|features

2.2 |true |1 |foo | (262144, [51871, 63643,174475,253195]1,[1.0,1.0,2.2,1.0])
3.3 |false|2 |bar  |(262144, [6031, 80619,140467,174475]1,(1.0,1.0,1.0,3.3])
4.4 |false|3 |baz | (262144, [24279,140467,174475,196810]1,[1.0,1.0,4.4,1.0])
5.5 |false|4 |foo | (262144, [63643,140467,168512,174475],(1.0,1.0,1.0,5.5])

The resulting feature vectors could then be passed to a learning algorithm.

62 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Term Frequency — Inverse Document Frequency (TF-IDF) i,

UNIVERSITY

The value of word is reduced more if it is used frequently across all the documents in the dataset.

To calculate the inverse document frequency, the document frequency (DF) for
each word is first calculated. Document frequency is the number of documents the
word occurs in. The number of times a word occurs in a document isn’t counted in
document frequency. Then, the inverse document frequency or IDF; for a word, wj, 1s

IDF, = —
i~ DF,
N
W; = TF; - IDF;= TF;- or W. = TF; - logi

i" DF,

1

63 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



TF-IDF example N4

UNIVERSITY

doc <- ¢( "The sky is blue.", "The sun is bright today.",
"The sun in the sky is bright.", "We can see the shining sun, the bright sun.'

TF ## Docs
## Terms 1234
## blue 1000
## bright 0111
##  can 0001
##  see 0001
## shining 0 0 0 1
##  sky 1010
##  sun 0112
## today ©0 100

IDF (using the alternative formula)

# blue bright can see shining sky sun
## 0.6931472 0.0000000 0.6931472 0.6931472 0.6931472 0.2876821 0.0000000
# today

## 0.6931472

64 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



TF-IDF X,

UNIVERSITY

from pyspark.ml.feature import HashingTF, IDF, Tokenizer

sentenceData = spark.createDataFrame( [
(0.0, "Hi I heard about Spark"),
(0.0, "I wish Java could use case classes"),
(1.0, "Logistic regression models are neat")
1, ["label", "sentence"])

tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsData = tokenizer.transform(sentenceData)
hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20)

featurizedData = hashingTF.transform(wordsData)
# alternatively, CountVectorizer can also be used to get term frequency vectors

idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featurizedData)

rescaledData = idfModel.transform(featurizedData)

rescaledData.select("label"”, "features").show()

65 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Spark ML Pipeline Example Code | 2

UNIVERSITY
(Estimator) Tokenizer | ™) | HashingTF | = Regression
Logistic
- = - = - == | Regression

Pipeline.fit() Words Feature Model

text vectors

from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer

# Prepare training documents from a list of (id, text, label) tuples.
training = spark.createDataFrame( [

(0, "a bcde spark", 1.0),

(1, "b d", 0.0),

(2, "spark f g h", 1.0),

(3, "hadoop mapreduce", 0.0)
1, ["id", "text", "label"])

# Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
tokenizer = Tokenizer(inputCol="text", outputCol="words")

hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")

lr = LogisticRegression(maxIter=10, regParam=0.001)

pipeline = Pipeline(stages=[tokenizer, hashingTF, 1lr])

60 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

Spark ML Pipeline Example Code Il Covuia.

o Logistic

PipelineModel [ Tokenizer | =) [ HashingTF ] =) | Regression

(Transformer) Model

> -8 ~-28 8

PipelineModel

.transform() Raw Words Feature Predictions

text vectors

# Prepare test documents, which are unlabeled (id, text) tuples.
test = spark.createDataFrame( [

(4, "spark i j k"),

(5, "L mn"),

(6, "spark hadoop spark"),

(7, "apache hadoop")
1, ["id", "text"])

# Make predictions on test documents and print columns of interest.
prediction = model.transform(test)
selected = prediction.select("id", "text", "probability", "prediction")
for row in selected.collect():
rid, text, prob, prediction = row
print("(%d, %s) -—> prob=%s, prediction=%f" % (rid, text, str(prob), prediction))

67 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

Number of Training Examples vs Accuracy Corumaa
,8_ ]
@© . /o
o/
%} o 00 -
- © 7 (o)
Q
9 /
c
3
g S 00
Increase in average
percent correct with increasing
o _| number of training examples. The
o gray bar shows the reasonable
maximum performance level that
you can expect, based on the
o - best results reported in the

| I I I I | research literature.
0 2000 4000 6000 8000 10000

Training examples

68 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

69

Stream Analyses Technical Challenges

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



UNIVERST TY
Example IP Packet Stream Instantiation
— @
w @ @ [ 2 ®-@®
tcp <ﬁ:p /‘ R
ISR P ‘
p audlo ‘ ‘ ‘
. =
udp” P ‘\‘/‘
N @ /
Dataflow
Inputs Graph

By IBM Dense Information Gliding Team

70 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Semantic MM Filtering

. Advanced contenj

analysis

terest keyword

sSess Interest
Q@. Routing .F|Iter|ng
/ \

Packet content g Dataflow
/ Graph

sted
bams

analysis

per PE 200-500MB/s ~100MB/s
rates

71 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

CoLUMBIA
Resource-Accuracy Trade-Offs
R
X . .
> X’ Y”(X|q,R)
>

Y(X[d) —

Configurable Parameters of Processing Elements to maximize relevant information:
Y'(X]a,R)>Y'(X]q,R),
with resource constraint.

Required resource-efficient algorithms for:

Clasgifitca)\tion, routing and filtering of signal-oriented data: (audio, video and, possibly, sensor
ata

= Input data X — Queries q — Resource R
—  Y(X] q): Relevant information
- Y'(X]q,R) " Y(X]|q): Achievable subset given R

72 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



oo

COLUMBIA

UNIVERSITY

Example: Distributed Video Signal Understanding (Lin et al.)

TV broadcast,
VCR,
DVD discs,

smart sensors

(Distributed Smart Sensors) Block diagram of the

Video

1/2

1.5
Mbps

MPEG

(Server) Concept Detection
Processing Elements

PE1:9.2.63.66: 1220

- iii 9.2.63.66:1235

PE2: 9.2.63.67
PES5: 9.2.63.66: 1240

Sensor

User
Interests

Meta-
data

PE3 9.2.63.68

-6 9.2.63.66
-E7 9.2.63.66

- PE100: 9.2.63.66

Resource
Constraints

600
bps

X100 udp://@:1238

73

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

Semantic Concept Filters

2 | IBM ESPS Multimedia Semantic Routing - Microsoft Internet Explorer

E .g . Fie Edt View Favorites Tools Help
A - / »

QsBack - © - x| [ €0 JOsearch ¢ Favorites @ Meda &) v & - Links 4] Search the Web with Lycos
Address Q]http://alishan.watson.ibm.com/ogi-bin/MWSR/showClassiﬁcationResuk.pl?Fi‘E:CFZfE_v; BlGo | Googler ‘ .V] & Sear ”
-~

) [m] X

3
o

»

ESPS Multimedia Semantic Classifiers

Basketball

| Bl s
007 26.31

ratory Stream Processing Systems Ji

WEADLIVE (AA) Alcon 0060 7384
N (AAILY, Altse Comiii .20 2000

7 A
IO

Branew b, Mastmedn ~ Foiih

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

74

© 2024 CY Lin, Columbia University



%

CoOLUMBIA
UNIVERSITY

. Obj(eSc\t}K/?:)Real-time classification of instances using Support Vector Machines
S

« Computationally efficient and reasonably accurate solutions

» Techniques capable of adjusting tradeoff between accuracy and speed based on
available computational resources

>\ >‘ —~ >‘ //
Q Q Q
S [ae] S
S S S
= = =
Q Q Q
Q (&) Q
< < / <
-—‘—-'/
Resource Resource Resource
SVM Objective Achieved

73 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

SVM formulation

= Given:
— Training instances{x,,;} with labels Y
= Objective :

— Find maximum margin hyperplane separating positive
and negative training instances

®)
o © © ®)
‘/ego °o .20
O ‘ OOO..
®)
e\° 5 Og
O~ O
®)

76 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



77

= Score of unseen instance U;j : W -¢(u;)
= In terms of Lagrangian multipliers

> oyik(zi, uj)
= Computational Cost : O(n.,d)

— Tgqy: Number of support vectors

- d :Dimensionality of each data instance

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



zZ8
B E
o
=B
=

78

Number of support vectors grows quasi-linearly
with size of training set [Tipping 2000]

Inner product with each support vector of
dimensionality d expensive

— Example TREC2003

Human : 19745 support vectors
Face :18090

High data rates(10Gbits/sec) means large number
of abandoned data

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



79

Processing Power 1 Ghz
10000 support vectors
1000 / 2 features per instance

Order of at least 107 operations required per
stream per sec

Translates to less than 100 instances evaluated
per sec with only one classifier

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



oo

CoLumBIA
UNIVERSITY

Accuracy -- Average Precision

0.8

0.6

0.4

0.2

80

B $
‘ *
0 0.25 0.5 0.75 1

Complexity -- Feature Dimension Ratio

Experimental Results for Weather_News
Detector

Model Selection based on the Model
Validation Set

E.g., for Feature Dimension Ratio 0.22, (the
best selection of features are: 3 slices, 1
color, 2 texture selections), the accuracy is
decreased by 17%.

E6893 Big Data Analytics — Lecture 3: Big

Feature Dimension

Slice Color Texture Ratio AP
3 3 3 1 0.7861
3 3 2 0.666666667 0.7861
3 2 3 0.666666667 0.7757
2 3 3 0.666666667 0.5822
3 2 2 0.444444444 0.7757
2 3 2 0.444444444 0.5822
2 2 3 0.444444444 0.5235
3 3 1 0.333333333 0.4685
3 1 3 0.333333333 0.6581
1 3 3 0.333333333 0.1684
2 2 2 0.296296296 0.5235
3 2 1 0.222222222 0.427
3 1 2 0.222222222 0.6581
2 3 1 0.222222222 0.1241
2 1 3 0.222222222 0.3457
1 3 2 0.222222222 0.1684
1 2 3 0.222222222 0.1065
2 2 1 0.148148148 0.0699
2 1 2 0.148148148 0.3457
1 2 2 0.148148148 0.1065
3 1 1 0.111111111 0.3219
1 3 1 0.111111111 0.0314
1 1 3 0.111111111 0.07
2 1 1 0.074074074 0.0318




%

CoOLUMBIA
UNIVERSITY

81

0.9

o=

S

S 0.675

[a

Q

on

s

;tg 0.45

; A

Q

£ 0225

54

-, s e e ettt
0 0.25 0.5 0.75 ]

Complexity -- Number of Support Vectors

Proposed Novel Reduction Methods:
Ranked Weighting
P/N Cost Reduction
Random Selection
Support Vector Clustering and Centralization

Experimental Results on Weather News Detectors show that complexity can be at 50%
for the cost of 14% decrease on accuracy

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



a0

CoOLUMBIA
UNIVERSITY

Weighted Clustering Approach

= Basic steps
— Cluster support vectors

— Use cluster center as representative for all support
vectors in cluster

— Determine scalar weight associated with each cluster
center

— Use only cluster centers to score new instances

82 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

Cluster center weight (contd.)

= Choosey ; minimizing square of difference in scores
overall +; and d

= Sub-cases:

83 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



a0

CoOLUMBIA
UNIVERSITY

84

= For every support vector in cluster
— Distance Az’ known
— Two weights computed
= Cumulative effect of all support vectors in clusters additive

— Az’ because of various support vectors added up at center
to simulate effect of all support vectors

WAV sorted, weight arrays rearranged

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Experiments

» Datasets

» TREC video datasets (2003 and
2005)

» 576 features per instance

e > 20000 test instances
overall

* MNist handwritten digit dataset

(RBF kernel) AP L K222

» 576 features

» 60000 training instances,
10000 test instances

1.0

* Performance metrics

» Speedup achieved over
evaluation with all support
vectors — T

» Average precision achieved RECALL

PRECISION
(=]
W

85 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



COLUMBIA
UNIVERSITY

Results (Mnist 0-4)

0.9875
S ¢ 0
S = 1
.§ 2
o > 3
t 0.975 e 4
g
g
<
0.9625
0.95

0 75 150 225 300
Speedup Ratio

86 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Results (Mnist 5-9)
L \\_\
S 0.925 ®5
"2
2 = 6
@ 7
o 085 8
g @ 9
Q
& 0.775
0.7
10 100 1000
Speedup Ratio
87

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



a0

CoOLUMBIA
UNIVERSITY

Speedup

10000

1000

100

10

HHHHH

Studio-Setting  Crowd

Concept

0.9
[0 AP _fast
AP original
S 0.675
»
o
g
o 045 H
()
(2}
o
2
g 0225
, L0 0l m
Human Outdoors Sport-Event Crowd People-Event
Concept
88

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



[ Techniques presented demonstrate reasonable
performance in terms of both speedup and
average precision over multiple concepts in
datasets

J Speedups

= MNist : All concepts at least 50 times faster with AP
within 0.04 of original

= TREC 2003: Eight out of nine concepts speedup greater
than 80 times with AP within 0.05 of original

= TREC 2005: APs in some cases along with speedup
respectable

J APs of most concepts close to original APs

89 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Spark Streaming 2,

UNIVERSITY

e Basic Concepts
o Linking
o Initializing StreamingContext
o Discretized Streams (DStreams)
o Input DStreams and Receivers
o Transformations on DStreams
o Qutput Operations on DStreams
o DataFrame and SQL Operations
o MLIlib Operations
o Caching / Persistence
o Checkpointing
o Accumulators, Broadcast Variables, and Checkpoints
o Deploying Applications
o Monitoring Applications
e Performance Tuning
o Reducing the Batch Processing Times
o Setting the Right Batch Interval
o Memory Tuning
e Fault-tolerance Semantics

90 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Spark Streaming

Kafka

Flume "\Z HDFS
HDFS/S3 Spr K  Databases

Kinesis Stf (C4 Qming ' Dashboards

Twitter

91 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



o

Spark Streaming Sgﬁg?;;y
input data batches of batches of
stream Spark input data Spark processed data
Streaming Engine /L1l

92 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Spark Streaming

o

COLUMBIA
UNIVERSITY

Streaming Data _ -~
Sources %

/ Parquet

e - -

Static Data .~

rrrrrrr

Sources -~ HBASE

/
; . mongo
|
A
\ A, elasticsearch

\

93

- ———

AW YLUCEN

Machine Learning

MLIib ]

/
7
-

i

L
— " -~

[ Spark Streaming

J

00

Spark SQL]

SQL + DataFrames

. ,.
A . PostgreSQL P

e - -

Eimuras Muarnziow NF Cnarlr CrroaminAa

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

Data Storage
et ~ Systems

~ .
~

I‘ n.r-ncme.\
T AT¥ HBASE |

© memsql .
33 kafka

/
_.! elasticsearch -

. -
~ .

I

- -

.

https://www.edureka.co/blog/spark-streaming/

© 2024 CY Lin, Columbia University



Spark Streaming Example 2,

UNIVERSITY

First, we import StreamingContext, which is the main entry point for all streaming functionality. We create a local StreamingContext with two
execution threads, and batch interval of 1 second.

from pyspark import SparkContext
from pyspark.streaming import StreamingContext

# Create a local StreamingContext with two working thread and batch interval of 1 second
sc = SparkContext("local[2]", "NetworkWordCount")
ssc = StreamingContext(sc, 1)

Using this context, we can create a DStream that represents streaming data from a TCP source, specified as hostname (e.g. localhost) and port
(e.g. 9999).

# Create a DStream that will connect to hostname:port, like localhost:9999
lines = ssc.socketTextStream("localhost", 9999)

This lines DStream represents the stream of data that will be received from the data server. Each record in this DStream is a line of text. Next, we
want to split the lines by space into words.

# Split each line into words
words = lines.flatMap(lambda line: line.split(" "))

# Count each word in each batch
pairs = words.map(lambda word: (word, 1))
wordCounts = pairs.reduceByKey(lambda x, y: x + y)

# Print the first ten elements of each RDD generated in this DStream to the console

wordCounts.pprint()

P | LUUUV DY VAW MUy UL — LOVWUIG V. DY Al MITIdly uud muywviiia ning Y VLT Wi Il WVIUILINIA Ulll'wlolty



Spark Streaming Example 2,

UNIVERSITY

$ ./bin/spark-submit examples/src/main/python/streaming/network_wordcount.py localhost 9999

Then, any lines typed in the terminal running the netcat server will be counted and printed on screen every second. It will look something like the
following.

Scala Java Python

# TERMINAL 1:
# Running Net

: # TERMINAL 2: RUNNING network_wordcount.py
ca

¢ e a $ ./bin/spark-submit examples/src/main/python/streaming/network_wordcount.py local
ne host 9999

hello world

Time: 2014-10-14 15:25:21

(hello,1)
(world,1)

95 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



. . ® /)
Discretized Streams o

UNIVERSITY

RDD @ time 1 RDD @ time 2 RDD @ time 3 RDD @ time 4

datafrom | __ ' datafrom | datafrom | datafrom =D

DStream ===« ° : . .
timeOto 1l time 1to 2 time 2to 3 time3to4

96 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Discretized Streams

o

COLUMBIA
UNIVERSITY

lines
DStream

words
DStream

97

lines from lines from
timeOto1l time 1to 2
flatMap
operation
words from words from
timeOto1l time 1to 2

lines from
time 2to 3

words from
time 2to 3

lines from
time3to4

words from
time3to4

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms

© 2024 CY Lin, Columbia University



. . ® /)
Discretized Streams o

UNIVERSITY

Events

@

DStream
RDD RDD RDD RDD

@

*®
& & %‘.’—* Receiver
® O

®

4

Batch Batch

https://www.edureka.co/blog/spark-streaming/

98 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



DStream Transforms

80

R
COLUMBIA
UNIVERSITY

99

DStream 1
/ < O\

Transform

DStream 2
( < L\

k Drop split

point

https://www.edureka.co/blog/spark-streaming/

E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



Output DStreams 2,

UNIVERSITY

Transformed Output
DStream DStream
Output

mEn mEn

Operations

https://www.edureka.co/blog/spark-streaming/

100 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



DStreams Caching 2,

UNIVERSITY

% kafka 'nputData SpQI’K Batches Of

Input Data

Stream Streaming
7 b FEE] mmn)

https://www.edureka.co/blog/spark-streaming/

101 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



DStreams Example — Twitter Sentiment Analysis B,

UNIVERSITY

//Import the necessary packages into the Spark Program
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.SparkContext._

ihbort java.io.File

object twitterSentiment {

def mainCargs: Array[String]) {
if (args.length < 4{ {

System.err.println("Usage: TwitterPopularTags <consumer key> <consumer secret>
%ystem.ex1t(1)

"

+ "<access token> <access token secret>

StreamingExamples.setStreamingLogLevels() S

//Passing our Twitter keys and tokens as arguments for authorization

val Array(consumerKey, consumerSecret, accessToken, accessTokenSecret) = args.take(4)
val filters = args.takenght(args.length - 4)

// Set the system properties so that Twitter4j library used by twitter stream
// Use them to generate OAuth credentials
System.setProperty("twitter4j.oauth.consumerKey", consumerKey)
é&étem.setProperty("twitter4j.oauth.accessTokenSecret", accessTokenSecret)

val sparkConf = new SparkConF(%.setAppName("twitterSentiment").setMaster("local[Z]")

val ssc = new Streaming Contex .
val stream = TwitterUtils.createStream(ssc, None, filters)

https://www.edureka.co/blog/spark-streaming/

1 02 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



DStreams Example — Twitter Sentiment Analysis B,

UNIVERSITY

//Input DStream transformation using flath?
val tags = stream.flatMap { status => Get Text From The Hashtags }

//RDD transformation using sortBy and then map function
tags.countByValue()

.foreachRDD { rdd => )

vg} now = Get current time of each Tweet

r

.sortBy(_._2)

.map(x => (x, now)) ) )

//Sav1n% our output at ~/twitter/_ directory
.saveAsTextFile(s"~/twitter/$now")

//DStream transformation using filter and map functions

val tweets = stream.filter {t => )

val tags = t. Split On Spaces .filter(_.startsWith("#")). Convert To Lower Case
tags.exists { x => true 3

val data = tweets.map { status => )

val sentiment = Sent1mentAnaI¥51$Ut115.detectSentlment(status.getText)
val tagss = status.getHashtagEntities.map(_.getText.tolLowerCase)
(status.getText, sentiment.toString, tagss.toString())

data.print() ) ) ) ) )
/Saving our output at ~/ with filenames starting like twitters
data.saveAsTextFiles("~/twitters","20000")

ssc.start() =
ssc.awaitTermination()

}

https://www.edureka.co/blog/spark-streaming/

1 03 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



DStreams Example — Twitter Sentiment Analysis

%

COLUMBIA
UNIVERSITY

Results:

The following are the results that are displayed in the Eclipse IDE while running the Twitter Sentiment Streaming program.

<terminated> maprs$ [Scala Application] /usr/lib/jvm/java-8-openjdk-i386/bin/java (09-Feb-2017, 11:56:26 AM)
debug: weighted: 1.0

Time: 1486621640000 ms

(HZ. ¥BAFMEBL-XT)—R8. 18FERTMA https://t.co/DUSQoZAp2S +FME #1W #72— #15 #mR #1M NEGATIVE, (Ljava.lang.String;@la25ec3)
(RT @bts_bighit: [§E] Q. §E= ¥ XjACh

Ofo]: FolR~ WMEH!s I MBH! - SYSAUC FEHSH= A 220}y

£712XE0{RIE https://t.co/OHDWR2smt4

#ShortyAwards https://t._.- [Ljava.lang.String;@121986a)

(RT @MukePL: Jezeli na tym zdjeciu widzisz swéj $wiat to daj RT. = #oneDbestfans & #5S0Sbestfans = https://t.co/rn2EmNvjFp JNEGATEVE, [Ljava.lang.String;@1c3681d)
(RT @Horocasts: #Cancer most enduring quality is an unexpected silly sense of hu.or.-IL)ava.lang.Strmg;@lnelaZ)

(I'm listening to "A Song For Mama" by @BoyzIIMen on @PandoraMusic. #pandora https://t.co/nnsmscv-(Ljava.lanq.String;@SfM‘)

(‘Greenwashing’ Costing Walmart $1 Million https://t.co/D8X02RZMnP #Biodegradability #Compostability Cbiobased-.[Ljava.lang.S(ring;@lSlleZS)

(RT @camilasxdinah: Serayah representando a las camilizers cuando un hombre se le acerca a Camila #CamilaBestFans https://t.co/SlquoSRGn_.(Ljava.1ang.String;@78:835)
(RT @CamilaVoteStats: #CamilaBestFans https://t.co/qsLxPpD1n JNEUFRAL] (Ljava.lang.String;@16e7255)

(@tos AWM https://t.co/6rKl8risb3 #Tre JNEGATIVE, [Ljava.lang.String;@la3fe)

(Ilmar pro Marcos: "Vai dormir puta.. Bebe e fica ai com o cu quente.” KKKKKKKKKKKKKKKKKKKKKKKKK #88817 JNEGATIVE, [Ljava.lang.String;@1516ece)

Adding annotator tokenize

[£2 Markers [T] Properties # Servers ¥ Data Source Explorer & Snippets © Console 33  [¥) Scala Interpreter (TwitterStreaming) - X% .‘.@ dP® ~B8-yNv=0

All the tweets are categorized into Positive, Neutral and Negative according to the
sentiment of the contents of the tweets

I Positive
I Neutral
I Negative

https://www.edureka.co/blog/spark-streaming/

104 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



%

CoOLUMBIA
UNIVERSITY

See TA’s instruction:
Task 1: Clustering (35%)
Task 2: Classification (35%)

Task 3: Hadoop System Monitoring (30%)

105 E6893 Big Data Analytics — Lecture 3: Big Data Analytics Algorithms © 2024 CY Lin, Columbia University



O Start finding your teammates.

O Proposal (11/8/24) — preparing about 5-7 pages of slides

(each item 1/5 of the proposal score):

=  Goal — novel? challenging?

= Data — 3Vs? New dataset? Existing dataset?

= Methods — planning of methodologies and algorithms?
Feasible?

=  System — an overview of system. What will be
implemented?

= Schedule — what to achieve by what time, and by whom?

106 EE6893 Big Data Analytics — Lecture 3 © 2023 CY Lin, Columbia University



Graphen Core

Full-brain Al Platform and Knowledge
Agents empower leaders across
industries.

re

O]

g
%

Graphen Automotive

Advanced Al Car Doctor and
Assistant.

N
£

Graphen Finance

Utilize Al to predict risks, monitor
operations, and find leads.

DY

&

Graphen Robotics

4
4

Smarter Al Machines for Humans.

DTN
.

4

q
4

Graphen Drugomics

Al understanding and simulating Life
Functions to develop drugs.

V4
%

Graphen Energy

Al helps energy providers realize
smart grids with sustainable energy.

a0

CoOLUMBIA
UNIVERSITY

Graphen Genomics

Making human knowing Biologically
Digitzed-Self, and enabling
Personalized Treatment.

1Y

—_ 2~

Graphen Security

Foundations help organizations with
self-defense Al cybersecurity.

g
4

EEG893 Big Data Analytics — Lecture 3

© 2023 CY Lin, Columbia University



3

Examples of Project Areas in Advanced Big Data Analytics CoLumsia

UNIVERSITY

A1: Deep Video Understanding (Visual + Knowledge) — Face Recognition, Feeling
Recognition, and Interaction

A2: Deep Video Understanding (Language + Knowledge) — Speech Recognition,
Gesture Recognition, and Feeling Recognition

A3: Deep Video Understanding — Event and Story Understanding
A4: Humanized Conversation — Personality-Based Conversations
AS5: Autonomous Robot Learning of Physical Environment

A6: Autonomous Task Learning via Mimicking

A7: Digital Human - Creation and Facial Expression

A8: Digital Human - Action

A9: Digital Human - Text-to-Audio, Lip Sync, and Audio-to-Text
A10: Human and Digital Human Interactions

A11: Feeling and Art Recognition

A12: Creative Writing & Story Telling

A13: Knowledge Learning & Construction

A14: Dreams — Simulating Brain functions while sleeping

A15: Self-Consciousness, Ethics, and Morality

108 E6895 Advanced Big Data Analytics — Lecture 1: Overview © 2022 CY Lin, Columbia University



o

COLUMBIA
UNIVERSITY

Digital Human Examples

8 Mark Zuckerberg @
on Monday

' Efz}
152
r 3
’ N { 7 ~.
B =

109 E6895 Advanced Big Data Analytics — Lecture 1 © CY Lin 2023, Columbia University


https://www.graphen.ai/products/Ava.html

Examples of Project Areas in Advanced Big Data Analytics Cotumaia

B1: Market Intelligence — Constructing Financial Knowledge Graphs

B2: Market Intelligence — Company Environmental, Societal, and Governance
Performance

B3: Market Intelligence — Event Linkage and Impact Prediction

B4: Market Intelligence — Alpha Generation from Alternative Sources

B5: Advance KYC — Customer Profiling based on Personality, Needs, and Value
B6: Advanced KYC — Customer Behavior Prediction

B7: Investment Strategy — Al Trader (Foreign Exchange)

B8: Investment Strategy — Al Trader (Stock Markets)

B9: Investment Strategy — Automatic Dynamic Asset Allocation

B10: Customer Interaction — Customer Communication Strategies

B11: Customer Interaction — Insurance Product Sales & Marketing Strategy
B12: Automatic Story Telling for Marketing

B13: Automatic Market Competition Analysis

B14: Automatic Consumer Sales Leads Finding

B15: Human Capital Growth Recommendations

110 E6895 Advanced Big Data Analytics — Lecture 1 © CY Lin 2023, Columbia University



o

COLUMBIA
UNIVERSITY

Real-Time Fraud Analysis Examples

UEERERES e TesEcaor DEVANEE v Q
w—T—_ SR XA ABEW ZRE GPER BN TRME REAL FEAY  MENFEGUR (MENAEGES SRER ABmE Rt WOERR EEAR nawEEm
/ \ et 'h‘nun wabe: e 2118 BT 0 TV 708 e o 8187070062134 = Lo Gy ey 010610 50455
/
/ 16, Doribir 714 ™ AT TS W o R & RESS 406 LES  Fdson Greng
wlt_sbt_10121402656_wa bt e ERIEA Ay I6E mwwmsEn ™ T " LR 0o a2 LG e W10/ 04
e n-ne JRS4OY 1BI00MMENETE TV »iine uA “n 7,88 (& L L Eckan Churg 20010610 122142
ne E S L e ] Fae EOEIIE T am nams 2 0,70 ¥ -1 A W 2001 0,1 04 017
e 21 BemEs  MAR ™ s ATen em e mEY
- !
/ e nwB 2ennsea 1 s EER 0NN W i " =3 TSI sonmn wnn 2 LMME Fetan (hang
wallel “:{‘ 23231 willet \ e 2140 9 181E00 ™ Bias L 3 £5E 2B E=Y
0wk Vi

wabat_she_191;

ol ot_xhe_191Z0E0361_wlet

el xbt_191001308_waliet

Crypto Currencies

Credit Cards

111 E6895 Advanced Big Data Analytics — Lecture 1 © CY Lin 2023, Columbia University



Examples of Project Areas in Advanced Big Data Analytics Cotumnia

C1: Precision Health — Gene and Protein Analysis of Network, Pathway, and
Biomarkers

C2: Large-Scale System for Human Genome Analysis
C3: Secure Patient Data

C4: Medical Image Analysis

C5: Drugable Targets for Precision Medicine

C6: Virus Mutations and Function Prediction

C7: Microbe and Disease Knowledge Graph

C8: Disease Symptoms Knowledge Graphs

C9: Virtual Doctor

C10: Knowledge Graphs for Gene Interaction and Disease Similarity
C11: Biomedical Knowledge Construction and Extraction
C12: Generating Gene Therapy

C13: Molecular Drug Synthesis

C14: Protein Interaction Predictor

C15: Aging Impacts

112 E6895 Advanced Big Data Analytics — Lecture 1 © CY Lin 2023, Columbia University



oo

COLUMBIA
UNIVERSITY

Digital Biology Examples

https://www.graphen.ai/products/atom.html

113

Biological Materials Digitalize Bioinformation

Digit Annotation Molecular Graph

Information L |)"' _l;"ly
unit :

DNA/RNA

DNA /RNA
Sequence

: CGDGVNLTITRTQLPFTRGV
FUflCtlon (YPDLMFQKVHSIQDLFTES
Unit :

Protein Protein

Sequence
Cell embf'::: Y n ' P sow UraCil
Behavi : IEGFR ‘ ¥ RN E:-.:.‘a
enavior Sos /. | 1| MR N
Unit : P /\* -
Pathway Nudieus 9 i
Network

Alanine

E6895 Advanced Big Data Analytics — Lecture 1

Atomotive Forces

Quantum Physics

@,
\— Atom Network

© CY Lin 2023, Columbia University



3

Examples of Project Areas in Advanced Big Data Analytics CoLumsia

UNIVERSITY

D1: Distributed Solar Power Load Forecasting and Predictive Maintenance
D2: Distributed Wind Power Load Forecasting and Predictive Maintenance
D3: Power Flow Optimization

D4: Smart Grid Pricing Strategy

D5: Cybersecurity of Smart Grid

D6: Stimulating Crop Growth

D7: Electronic Car Sensing and Predictive Maintenance

D8: Autonomous Driving

D9: Smart City of Connected Cars

D10: Social Policy Monitoring

D11: International Relationships and Policy Monitoring

D12: Mobile Cognition

D13: Al Chip Design

D14: Visual Exploration in Immersive Environment

D15: Computer Vision Enhanced Immersive Environment

114 E6895 Advanced Big Data Analytics — Lecture 1 © CY Lin 2023, Columbia University



o

COLUMBIA
UNIVERSITY

FRARR CLETY
4.6 0
RMEISTHRRE AR
Omw 90.0

RUERRRAID 20

 Renewable Energy Prediction
 Power System Anomaly Detection
* Predictive Maintenance

« Dispatching System

BRAZABATNTR

EHRTHRE

SERNREE:084

115

E6895 Advanced Big Data Analytics — Lecture 1

9/20/2022

© CY Lin 2023, Columbia University


https://www.youtube.com/watch?v=9PTlqCCMX-0

o

COLUMBIA
UNIVERSITY

Questions?

116 E6893 Big Data Analytics — Lecture 3: Analytics Algorithms © 2023 CY Lin, Columbia University



