

Introduction of Generative AI and Large Langue Models

Prof. Ching-Yung Lin Nov 10, 2023

Overview of Large Language Models

THE EVOLUTION OF NATURAL LANGUAGE PROCESSING

The Evolution of LLMs

- 1. In 2017, Google released the "Transformer Model", which can be used in question-answering systems, reading comprehension, sentiment analysis, instant translation of text or speech, and more
- 2. In 2018, OpenAl proposed "GPT" and Google proposed the "BERT" model, widely used in search engines, speech recognition, machine translation, question-answering systems, and more.
- 3. From 2018 to 2022, most of the research focused on BERT-related algorithms, when GPT performance was inferior to BERT
- In 2023, ChatGPT (GPT3.5) was proposed by OpenAI, which significantly improves NLU's ability to understand most texts and surpasses humans in some area

The speed of development of Generative AI

The blessings of scale

Al training runs, estimated computing resources used Floating-point operations, selected systems, by type, log scale

Sources: "Compute trends across three eras of machine learning", by J. Sevilla et al., arXiv, 2022; Our World in Data

Quick learners

The speed at which artificial intelligence models master benchmarks and surpass human baselines is accelerating. But they often fall short in the real world.

(GRAPHIC) K. FRANKLIN/SCIENCE; (DATA) D. KIELA ET AL., DYNABENCH: RETHINKING BENCHMARKING IN NLP, DOI:10.48550/ARXIV.2104.14337

Generative AI Basics

CREATING ARTIFICIAL CREATIVITY

Generative AI Application

Multi-Model

EECS E6893 BIG DATA ANALYTICS

Generative AI Methodology

Variational AutoEncoder (VAE)

Diffusion Denoise Model

Generative Adversarial Network (GAN)

EECS E6893 BIG DATA ANALYTICS

What is Generative AI

Artificial intelligence systems that can produce high quality content, specifically text, images, and audio.

Socialleworsthatption

Write three captions for a social post about our new line of sunglasses for robots

- 1. "Shine bright, even if your eyes are digital! Introducing our latest sunglasses line for robots."
- 2. "Because even bots deserve to look cool in thesun! #RobotChic"

3. "Future's so bright, our robots need shachestk out our new evewear collection now."

C G Regenerate

Write three captions for a social post about our line of sunglasses for robots

ChatGPT/OpenAl

Bard Experiment

Bard/Gooale

Give me three ideas for t-shirt graphics that would appeal to llamas.

```
View other drafts 🗸 🗸
                         •
```

- Sure, here are three ideas for t-shirt graphics that would appeal to llamas:
 - 1. A cartoon llama with a funny expression, such as a surprised llama, a grumpy llama, or a silly llama.
 - 2. A llama doing something that is typically associated with llamas, such as eating grass, spitting, or being majestic.

	Prompts
N	Microsoft Bing
	Find me some recipes for snacks for hungry pirates
\checkmark	Searching for: snacks for hungry pirates
\checkmark	Generating answers for you
Sur	re! Here are some fun and tasty pirate-themed snacks that u can prepare for hungry pirates:
1.	Pirate Mix: This snack includes pirate pegleg pretzel sticks. Gorilla Munch cannonballs, and "gold" "fish" whole

grain Goldfish crackers

Bing Chat/Microsoft

Multimedia Generation

A beautiful, pastoral mountain scene. Landscape painting style (Midjourney)

Two cute kittens playing (DALL-E)

Generating Text using Large Language Models

Text generation process

LLMs are built by using supervised learning $(A \rightarrow B)$ to repeatedly predict the next word.

My favorite food is a bagel with cream cheese

Input (A)	Output (B)
My favorite food is a	bagel
My favorite food is a bagel	with
My favorite food is a bagel with	cream
My favorite food is a bagel with cream	cheese

When we train a very large AI system on a lot of data (hundreds of billions of words), we get a Large Language Model like ChatGPT.

What is the capital of South Africa?

South Africa has three capital cities:

- 1. Pretoria (administrative capital)
- 2. Cape Town (legislative capital)
- 3. Bloemfontein (judicial capital)

What does LLM stand for?

LL.M. stands for "Legum Magister" in Latin, which translates to "Master of Laws" in English. What about in the context of AI?

In the context of AI, LLM refers to "Large Language Model". Rewrite this for clarity:

Students all around the world are realizing learning has to happen not just in school but throughout life including after arodustion Students worldwide understand that learning extends beyond school and continues throughout life. Write a 300 word story involving trucks for a 3 year old to encourage them to brush their teeth Once upon a time in a town called Toothville, there lived a happy tow truck named Timmy.

One day Timmy noticed that his shiny bumper had a dull spot. Worried, he went to the doctor [...]

Examples of tasks LLM can carry out

Writing

Suggest three names for our new analytics platform

Sure, here are three ideas:

...

web

1. NexaInsight

2. Quantivue

3. AnalytiSphere

Is there parking for staff?

Yes, employees can park on levels 1 and 2 of the offic You can get a sticker at

Reading

I love my new llama T-shirt! The fabric is so soft.

Complaint: NO Department: Apparel

I wore my llama T-shirt to a friend's wedding, and now they're mad at me for stealing the show Complaint: YES Department: Apparel

₀¢ app

Chatting

Welcome to BettaBurgers!

I'd like a cheeseburger for delivery!

Awesome. Anything else?

That's it thanks!

Ok, it'll be there in 20 minutes. Enjoy!

Give me three quotes that Shakespeare wrote about Beyonce

- 1. Her vocals shine like the sun.
- 2. All hail the queen, she is most worthy of love.
- 3. Such a voice, so electric and alive, none else can compare!

X Hallucination

List two court cases tried in California about Al

 Waymo v. Uber – Theft of trade secrets related to autonomous driving
 Ingersoll v. Chevron – Patent infringement of oil field machine learning technology

🗱 Hallucination

Hallucinations have had serious consequences

The ChatGPT Lawyer Explains Himself

In a cringe-inducing court hearing, a lawyer who relied on A.I. to craft a motion full of made-up case law said he "did not comprehend" that the chat bot could lead him astray.

The New York Times

Input / Output Length is Limited

Many LLMs can accept a prompt of up to only a few thousand words.

- The total amount of context you can give it is limited
- Some LLMs have longer context limits up to 100,000 words
- An LLM's context length is the limit on the total input+output size

Not Understanding Structured Data

Home prices

size (square feet)	price (1000\$)
523	100
645	150
708	200
1034	300
2290	350
2545	4 <u>4</u> 0 B

Use supervised learning $(A \rightarrow B)$

Purchases on website

user ID	time	price (\$)	purchased
4783	Jan 21 08:15.20	7.95	yes
3893	March 3 11:13:.5	10.00	yes
8384	June 11 14:15.05	9.50	no
0931 Aug 2 20:30.55		12.90	_yęs_
-	Α	-	В

An LLM can reflect the biases that exist in the text it learned from.

Some LLMs can output toxic or other harmful speech, but most models have gotten much safer over time.

An LLM's knowledge of the world is frozen at the time of its training

• A model trained on data scraped from internet in January 2022 has no information about more recent events

What was the highest grossing film of 2022?

As of January 2022, I don't have data on the highestgrossing movie for that year.

Avatar: The Way of Water

Examples of Generated Images

A picture of a woman smiling

A futuristic city scene

A cool, happy robot

Image Generation

Image generation from Text

Key Technics behind Large Language Models and Generative AI

HANDS-ON LEARNING WITH PRACTICE PROJECTS

ChatGPT

EECS E6893 BIG DATA ANALYTICS

https://Rage/it26.ai/chatgpt/

Software dev job	ChatGPT would be hired as L3 Software Developer at Google: the role pays \$183,000/year.
Politics	ChatGPT writes several Bills (USA).
MBA	ChatGPT would pass an MBA degree exam at Wharton (UPenn).
Accounting	GPT-3.5 would pass the US CPA exam.
Legal	GPT-3.5 would pass the bar in the US.
Medical	ChatGPT would pass the United States Medical Licensing Exam (USMLE).
AWS certificate	ChatGPT would pass the AWS Certified Cloud Practitioner exam.
IQ (verbal only)	ChatGPT scores IQ=147, 99.9th %ile.
SAT exam	ChatGPT scores 1020/1600 on SAT exam.

Attention Experiment

Ulric Neisser Attention Experiment

Attention Model [Bengio_2015]

Attention-Based Models for Speech Recognition

Jan Chorowski University of Wrocław, Poland jan.chorowski@ii.uni.wroc.pl

Dmitriy Serdyuk Université de Montréal Kyunghyun Cho Université de Montréal Yoshua Bengio Université de Montréal CIFAR Senior Fellow

Dzmitry Bahdanau

Jacobs University Bremen, Germany

Abstract

Recurrent sequence generators conditioned on input data through an attention mechanism have recently shown very good performance on a range of tasks including machine translation, handwriting synthesis [1, 2] and image caption generation [3]. We extend the attention-mechanism with features needed for speech recognition. We show that while an adaptation of the model used for machine translation in [2] reaches a competitive 18.7% phoneme error rate (PER) on the TIMIT phoneme recognition task, it can only be applied to utterances which are roughly as long as the ones it was trained on. We offer a qualitative explanation of this failure and propose a novel and generic method of adding location-awareness to the attention mechanism to alleviate this issue. The new method yields a model that is robust to long inputs and achieves 18% PER in single utterances and 20% in 10-times longer (repeated) utterances. Finally, we propose a change to the attention mechanism that prevents it from concentrating too much on single frames, which further reduces PER to 17.6% level.

2015年, Bengio 's Model focuses on every phenon' s recogniztion is the combined weights.

$$\alpha_{i} = Attend(s_{i-1}, \alpha_{i-1}, h)$$
$$g_{i} = \sum_{j=1}^{L} \alpha_{i,j} h_{j}$$
$$y_{i} \sim Generate(s_{i-1}, g_{i}),$$

h : Input
α_i: Attention Weight
y_i: Output

Transformer [Vaswani_2017]

2017年, 8 Google researchers proposed Transformer Neuron Networks based on Attention, which was adopted by ChatGPT.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com
 Noam Shazeer*
 Niki Parmar*
 Jakob Uszkoreit'

 Google Brain
 Google Research
 Google Research

 noam@google.com
 nikip@google.com
 usz@google.com

Llion Jones* Google Research llion@google.com
 Aidan N. Gomez*[†]
 Łukasz Kaiser*

 University of Toronto
 Google Brain

 aidan@cs.toronto.edu
 lukaszkaiser@google.com

Illia Polosukhin^{* ‡} illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanism, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU core of 1.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

Cited 66157 (2023/2/21)

Jakob Uszkoreit proposed replacing RNNs with selfattention and started the effort to conclusion this idea.

Noam Shazeer proposed scaled dot-product attention, multi-head

attention and the

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

representation.

EECS E6893 BIG DATA ANALYTICS

Transformer

 Transformer is a Deep Learning Model based on Self-Attention

• **Transformer** encodes and decodes data with different weights.

Examples of transformer language models include: GPT (GPT-1, GPT-2, GPT-3, ChatGPT) and BERT models (BERT, RoBERTa, ERNIE).

BERT AI Models

EECS E6893 BIG DATA ANALYTICSp://pelhans.com/202

Transformer

Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information EECS E6893 BIGrDATAGANALY TICS017). Page 32

Transformer

Transformer Attention

Scaled Dot-Product Attention

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Transformer Attention

Q

		K					
		k 1	k ₂	k 3	k ₄	k 5	<i>k</i> ₆
	weights	Columbia	university	students	are	great	!
q_1	副	1	0.5	0.2	0	0.3	0.2
q ₂	大	0.5	1	0.2	0.1	0.3	0.1
q ₃	醫学	0.2	0.2	1	0	0.5	0.2
q ₄	生	0.3	0.3	0.8	0.5	0.5	0.6
q 5	很	0	0.1	0	1	0.5	0
q ₆	棒	0.3	0.3	0.5	0.5	1	0.8
q ₇	!	0.2	0.1	0.2	0	0.8	1

EECS E6893 BIG DATA ANALYTICS

Transformer multi-head attention

Multi-Head Attention

Transformer Translation

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Madal	BLEU		Training C	Training Cost (FLOPs)		
Model	EN-DE	EN-FR	EN-DE	EN-FR		
ByteNet [15]	23.75					
Deep-Att + PosUnk [32]		39.2		$1.0\cdot10^{20}$		
GNMT + RL [31]	24.6	39.92	$2.3\cdot10^{19}$	$1.4\cdot10^{20}$		
ConvS2S [8]	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot10^{20}$		
MoE [26]	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$		
Deep-Att + PosUnk Ensemble 32		40.4		$8.0\cdot10^{20}$		
GNMT + RL Ensemble [31]	26.30	41.16	$1.8\cdot10^{20}$	$1.1\cdot 10^{21}$		
ConvS2S Ensemble [8]	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$		
Transformer (base model)	27.3	38.1	3.3	$\cdot 10^{18}$		
Transformer (big)	28.4	41.0	2.3	$\cdot 10^{19}$		

Bilingual Evaluation Understudy Score · BLEU is an evaluation to see how close the translation is to real human being.

Transformer Translation

Transformer uses 6 layers of encoder and decoder to achieve the same quality of SOTA **English-German** and English-French translation.

EECS E6893 BIG DATA ANALYTICS

Page 38

BERT Introduction

o 2018 Google' BERT has 24 層 Transformer Encoder

 BERT' s original model is based on Wikipedia and booksorpus, using unsupervised training to create BERT.

• At Stanford's Machine Reasoning Test SQuAD1.1 beats human performance.

Google NLU English was replaced from seq2seq to BERT

BERT Introduction

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language

{jacobdevlin,mingweichang,kentonl,kristout}@google.com

Abstract

We introduce a new language representation model called **BERT**, which stands for **B**idirectional Encoder **R**epresentations from **T**ransformers. Unlike recent language representation models (Peters et al., 2018a; Radford et al., 2018), BERT is designed to pretrain deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be finetuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial taskspecific architecture modifications. There are two existing strategies for applying pre-trained language representations to downstream tasks: *feature-based* and *fine-tuning*. The feature-based approach, such as ELMo (Peters et al., 2018a), uses task-specific architectures that include the pre-trained representations as additional features. The fine-tuning approach, such as the Generative Pre-trained Transformer (OpenAI GPT) (Radford et al., 2018), introduces minimal task-specific parameters, and is trained on the downstream tasks by simply fine-tuning *all* pretrained parameters. The two approaches share the same objective function during pre-training, where they use unidirectional language models to learn general language representations.

cs.CL] 24 May 2019

In 2018's BERT Comprehension test outperformed human

SQuAD1.1 Leaderboard

Since the release of SQuAD1.0, the community has made rapid progress, with the best models now rivaling human performance on the task. Here are the ExactMatch (EM) and F1 scores evaluated on the test set of v1.1.

Rank	Model	EM	F1
	Human Performance	82.304	91.221
	Stanford University		
	(Rajpurkar et al. '16)		
1	BERT (ensemble)	87.433	93.160
Oct 05, 2018	Google A.I.		
2	BERT (single model)	85.083	91.835
Oct 05, 2018	Google A.I.		
2	nlnet (ensemble)	85.356	91.202
Sep 09, 2018	Microsoft Research Asia		
2	ninet (ensemble)	85.954	91.677
Sep 26, 2018	Microsoft Research Asia		

EECS E6893 BIG DATA ANALYTICS

Page 41

BERT understand's language's meaning

Tenney, I., Das, D., & Pavlick, E. (2019). BERT rediscovers the classical NLP pipeline. EECS E6893 BIG DATA ANALYSICS

Attention to Transformer

encoder self attention

1. Multi-head Attention

decoder self attention

1. Masked Multi-head Attention

2. Query=Key=Value

encoder-decoder attention

- 2. Encoder Self attention=Key=Value
- 3. Decoder Self attention=Query

Transformer to GPT

Transformer

Input -> Encoder -> Latent Feature + Masked Output -> Decoder -> Output

GPT

Input -> Decoder(with Casual mask) -> shift Output

EECS E6893 BIG DATA ANALYTICS

GPT Evolution

Not only Bigger and Bigger

As the model and dataset get larger, it will know more and more

"GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model." From Language Models are Few-Shot Learners (2020)

45

GPT Evolution

Thinking and Answering policy optimization **Reinforcement Learning from Human Feedback**

What is Next?

Summarization and Organization

Like LARVIS

In Iron Man

The no longer future will come true

https://agentgpt.reworkd.ai/zh