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Lecture-2
Conduction Phenomenon in Semiconductors

Property Ge Si
Atomic Number 32 14
Atomic Weight 72.6 28.1
Density, g/cm3 5.32 2.33
Dielectric Constant (relative) 16 12
Atoms/cm3 4.4 × 1022 5.0 × 1022

EGO, eV, at 0 K 0.785 1.21
EGO, eV, at 300 K 0.72 1.1
ni at 300 K, cm−3 2.5 × 1013 1.5 × 1010

Intrinsic resistivity at 300 K, Ω − cm 45 230,000
µn, cm2/V − s at 300 K 3,800 1,300
µp, cm2/V − s at 300 K 1,800 500
Dn, cm2/s = µnVT 99 34
Dp, cm2/s = µpVT 47 13

Table 1: Properties of Germanium and Silicon

1. Intrinsic Semiconductors: Silicon, Germanium, and Gallium Arsenide are
the three most widely used semiconductors. Because of the predominance of
silicon devices, we confine our discussion to it. The crystal structure of sili-
con consists of a regular repetition in three dimensions of a unit cell having
the form of a tetrahedron with an atom at each vertex. A two-dimensional
symbolic representation of this structure is illustrated in figure-1. Silicon has
a total of 14 electrons in its atomic structure, four of which are valence elec-
trons, so that the atom is tetravalent. The inert ionic core of the silicon atom
has a charge of +4 measured in units of electronic charge. The binding forces
between neighboring atoms result from the fact that each valence electron of a
silicon atom is shared by one of its four nearest neighbors. This covalent bond
is represented in figure-1 by the two lines which join each ion to each of its
neighbors. The valence electrons serve to bind one atom to the next and this
results in these electrons being tightly bound to the nucleus. Hence, in spite
of the availability of four valence electrons, the crystal has low conductivity.

Hole: At very low temperature (say, 0 Ko) the ideal structure is shown in
the figure-1 and the crystal behaves as on insulator, since no free carriers of
electricity are available. At a very low temperature (say, 0 Ko) the ideal struc-
ture shown in figure-1 is approached, and the crystal behaves as an insulator.
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Figure 1: Crystal Structure of germanium, in two dimensions

Since no free carriers electricity are available. At room temperature, however,
some of the covalent bonds will be broken because of the thermal energy sup-
plied to the crystal, and conduction is made possible. Here an electron, which
usually forms part of a covalent bond, is pictured as being dislodged and is
thus free to wander in a random fashion throughout the crystal. The energy
EG required to break such a covalent bond is about 1.1 eV for silicon at room
temperature. The absence of the electron in the covalent bond is represented
by the small circle in figure-2 and such an incomplete covalent bond is called
a hole. The importance of the hole is that it may serve as a carrier of elec-
tricity comparable in effectiveness with the free electron. Contribution of hole
to the conductivity is explained as follows: When the bond is incomplete, hole
exists. An electron moving from a bond to fill a hole leaves a hole in its initial
position. Hence we say that hole effectively moves in the direction opposite to
that of electron. This phenomenon is illustrated in the figure-3.
The crystal structure displayed in figure-2 assumes a pure sample of germa-

nium; that is, the sample contains no foreign atoms. Such pure crystals are
called intrinsic semiconductors.Breaking of a covalent bond results in both
a free electron and a hole. Consequently, the hole concentration p and electron
concentration n must be equal and hence we have

n = p = ni (1)

where ni is called intrinsic concentration.
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Figure 2: Germanium Crystal with a broken covalent bond
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Figure 3: The mechanism by which a hole contributes to the conductivity
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Q: An intrinsic silicon bar is 3mm long has a rectangular cross section 50×100
µm. At 300 K, determine the electric field intensity in the bar and the voltage
across the bar when a steady current of 1 µA is measured.
A: The field intensity can be obtained from the current density and conduc-
tivity as

ε =
J

A
=

I

A
×

1

σ
=

I

A
ρ

using the value of ρ given in table-1, we obtain

ε =
10−6

50 × 10−6 × 100 × 10−6
× 2.3 × 105 × 10−2

⇒ ε = 4.6 × 105 V/m

Therefore the voltage across the bar is

Vbar = εL = 4.6 × 105 × 3 × 10−3 = 1380 V

2. Extrinsic Semiconductors: If, to a intrinsic silicon or germanium, there
is added a small percentage of trivalent or prevalent atoms, a doped, impure,

or extrinsic semiconductor is formed. The usual level of doping is in the range
of 1 impurity atom for 106 to 108 silicon atoms.

(a) n-type Semiconductor: Figure-4, depicts the crystal structure obtained
when silicon is doped in the pentavalent impurity. Four of five valence
electrons occupy covalent bonds, and fifth will be nominally unbounded
and will be available as a carrier of current. The energy required to de-
tach the fifth electron from the atom is of the order of only 0.05 eV for
silicon. Suitable pentavalent impurities are antimony, phosphorus, and
arsenic. Such impurities donate excess electron carriers and are referred
to as donor, or n-type, impurities.
If intrinsic semiconductor material is doped with n-type impurities, not
only does the number of electrons increase, but the number of holes de-
creases below that which would be available in the intrinsic semiconduc-
tor. The number of holes decreases because the larger number of elec-
trons present causes the rate of recombination of electrons with holes to
increase. Consequently, the dominant carriers are the negative electrons
and doping with donors results in an n-type semiconductor.

(b) p-type Semiconductor: Boron, gallium, and indium are trivalent atoms
which, when added to intrinsic semiconductors, provide electrons to fill
only three covalent bonds. The vacancy that exists in the fourth bond
constitutes a hole as illustrated in figure-5. This type of impurity makes
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Figure 4: Germanium atom displaced by the pentavalent atom

positive carriers available because it creates holes which can accept elec-
trons. Thus trivalent impurities are called acceptors and form p-type
semiconductors in which holes are the predominant carrier.

3. Mass Action Law: We noted previously that the addition of n-type impu-
rities causes the number of holes to decrease. Similarly, doping with p-type
impurities decreases the concentration of free electrons below that in the in-
trinsic semiconductor. A theoretical analysis leads to the result that, under
thermal equilibrium, the product of the free negative and positive concentra-
tions is a constant independent of the amount of donor and acceptor impurity
doping. This relationship is called the mass-action law and is given by

np = n2

i (2)

4. Charge Densities in Semiconductor: Let ND be the concentration of
donor atoms and NA the concentration of acceptor atoms. Since these im-
purities are practically all ionized, they produce positive-ion and negative-ion
densities of ND and NA, respectively. To maintain the electric neutrality of
the crystal, the total positive charge density must equal the concentration of
negative charges as expressed in below equation,

ND + p = NA + n (3)
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Figure 5: Germanium atom displaced by the trivalent atom

Let us now consider an n-type material having NA = 0. Since the number of
electrons is much greater than the number of holes in an n-type semiconductor
(n > p), eqn.(3) reduces to

ND ≈ n (4)

In an n-type material the free-electron concentration is approximately equal to

the density of donor atoms. The concentration of holes in the n-type semicon-
ductor is obtained by substituting eqn.(4) in eqn.(2). Thus

pn =
n2

i

ND

(5)

where pn is the concentration of holes in the n-type semiconductor. Similarly,
in a p-type semiconductor, with ND = 0, we have

NA ≈ p (6)

np =
n2

i

NA

(7)

where np is the concentration of electrons in the p-type semiconductor.
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5. Electrical Properties of Semiconductors:

(a) Conductivity: In the case of extrinsic semiconductor the current density
is the sum of densities due to electrons and hole. Let µn and µp are the
mobilities of electrons and holes respectively. Then using the eqn.(30) in
Lecture notes-1, the total current density is given by J

J = (nµn + pµp)qε = σε (8)

where n= concentration of free-electrons, p=concentration of holes, σ=conductivity.
Hence

σ = (nµn + pµp)q (9)

For a pure semiconductor, n = p = ni is the intrinsic concentration, the
above eqns., reduces as

J = ni(µn + µp)qε = σε (10)

where
σ = ni(µn + µp)q (11)

Q: An n-type silicon sample is 3 mm long and has a rectangular cross
section 50×100 µm . The donor concentration at 300 K is 5×1014 cm−3

and corresponds to 1 impurity atom for 108 silicon atoms. A steady
current of 1 µAexists in bar. Determine the electron hole concentrations,
the conductivity, and the voltage across the bar.
A: From the eqns.(4) and (5), and using the values of ni and µn in the
table-1, we obtain

n = ND = 5 × 1014 cm−3

and

p =
(1.45 × 1010)2

5 × 1014
= 4.2 × 105 cm−3

As n � p, only electron concentration need to be considered in the
eqn.(8), so that the conductivity is

σ = qnµn = 1.6 × 10−19 × 5 × 1014 × 1.5 × 103 = 0.12(Ω − cm)−1

The voltage across the bar, obtained as

Vbar =
IL

Aσ
=

10−6(0.3)

(5 × 10−3)(10−2) × 0.12
= 0.05 V

(b) Dependence of Intrinsic Concentration on Temperature: With increasing
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temperature, the density of hole-electron pairs increases and, correspond-
ingly, the conductivity increases. It is found that the intrinsic concentra-
tion ni varies with T as

n2

i = A0T
3e−

EG0

kT (12)

where EG0 is the energy gap at 0oK in eV as given in Table-1, k is
the Boltzmann constant in eV/oK, and A0 is a constant dependent on
temperature.

(c) Energy Gap: The forbidden energy gap EG in a semiconductor depends
upon temperature, and it is found that,

EG = 1.21 − 3.6 × 10−4T for Silicon (13)

and at room temperature (300oK), EG = 1.1 eV and similarly for germa-
nium,

EG = 0.785 − 2.23 × 10−4T (14)

and hence at room temperature, EG = 0.72 eV

(d) Mobility: This parameter µ varies as T−m over a temperature range of
100 to 400oK. For silicon, m = 2.5 (2.7) for electrons (holes), and for
germanium, m = 1.66 (2.33) for electrons (holes). The mobility is also
found to be a function of electric field intensity and remains constant only
if ε < 103 V/cm in n-type silicon. For 103 < ε < 104 V/cm, µn varies
approximately as ε−1/2. For higher fields, µn is inversely proportional to
ε and the carrier speed approaches the constant value of 107 cm/s.

6. Conductivity Modulation: From the eqn.(11), we see that the conductivity
of the semiconductor is proportional to the concentration of free carriers, σ may
be increased by increasing n or p. The two most important methods for varying
n or p are to change the temperature or to illuminate the semiconductor and
thereby generate new hole-electron pairs.

(a) Thermistor: The conductivity of germanium (silicon) is found from eqn.(12)
to increase approximately 6(8) percent per degree increase in tempera-
ture. Such a large change in conductivity with temperature places a lim-
itation upon the use of semiconductor devices in some circuits. On the
other hand, for some applications it is exactly this property of semicon-
ductors that is used to advantage. A semiconductor used in this manner
is called a thermistor. Such devices are used in thermometry, microwave-
frequency power, as a thermal relay, and in control devices actuated by
changes in temperature.
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(b) Photoconductors: If radiation falls upon a semiconductor, its conductiv-
ity increases. This photoconductive effect is explained as follows: Radi-
ant energy supplied to the semiconductor ionizes covalent bonds; that is,
these bonds are broken, and hole-electron pairs in excess of those gener-
ated thermally are created. These increased current carriers decrease the
resistance of the material, and hence such a device is called a photore-

sistor, or photoconductor. The minimum energy of photon required for
intrinsic excitation is the forbidden-gap energy EG (eV) of the semicon-
ductor material. The wavelength λc of a photon whose energy corresponds
to EG is given with E2 − E1 = EG. If λc is expressed in microns and EG

in electron volts, then

λc =
1.24

EG

(15)

7. Diffusion: In addition to conduction current, the transport of charges in
a semiconductor may be accounted for by a mechanism called diffusion, not
ordinarily encountered in metals. Figure-6 , shows the concentration p of
holes varies with distance x in the semiconductor, and hence there exists a
concentration gradient dp/dx. This implies that if we draw a vertical line
across, the density of the carriers on the left side is greater than that of the right
side. Hence due to this gradient there will be net transport of the charge in the
positive direction of x-axis. The diffusion current density Jp is proportional to
the concentration gradient, and is given by,

Jp = −qDp
dp

dx
(16)

where Dp (square meters per second) is called the diffusion constant for holes.
Since p in the figure-6 decreases with increasing x, then dp/dx is negative (since
the slope is negative). The minus sign in the eqn.(16) is needed so that Jp

is positive in the positive X direction. Similarly the diffusion current-density
with p replaced by n, and minus sign replaced by plus sign, we get Jn.

(a) Einstein Relationship: The relationship between the diffusion current den-
sity (D) and mobility (µ) is given by the Einstein equation,

Dn

µn
=

Dp

µp
= VT (17)

where VT is the “volt-equivalent of temperature,” defined by

VT =
kT

q
=

T

11, 600
(18)
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p(x)
p(0)

x=0 x

Jp

Figure 6: A nonuniform concentration p(x) results in a diffusion current Jp

where k1. At room temperature (300oK), VT = 0.026V .

8. Total Current: Now the total current density is given by sum of diffusion
current and conduction current. Thus the eqn.(8) is given by

J = Jn + Jp (19)

where Jn and Jp are given by the following two equations,

Jn = qµnnε + qDn
dn

dx
(20)

Jp = qµppε − qDp
dp

dx
(21)

9. Continuity Equation: The concentrations of carriers in semiconductor ma-
terial will vary with time. In general, the carrier concentration in the body
of semiconductor is function of both time and distance. We now derive the
differential equation, which governs this relationship. This is called the conti-
nuity equation, which is based on the fact that charge can neither be created
nor destroyed.
Consider the infinitesimal element of volume of area A and length dx as shown

1k = 1.6× 10−19k is the Boltzmann constant in J/oK, where k is in eV/0K
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in the figure-7. Let p be the average hole concentration (m−3). Assume that
the hole current Ip is a function of one-dimension say x. As indicated in the
figure-7, let the current entering the volume at x is Ip at time t and leaving at
x + dx is Ip + dIp at the same time t.

Ip = current entering at x at time t (22)

Ip + dIp = current leaving at x + dx at the same time t (23)

⇒ there must be ‘dIp’ of more coulombs per second (C/s = A) leaving the

p holes/m3

Area A

x x+dx

I + dI
p p

I
p

Figure 7: Law of Conservation of Charge

volume than entering it. (if dIp > 0)
Hence decrease in number of coulombs per second within the volume is dIp.
From the definition of current we have,

Ip =
Npq

t
(24)

⇒
dIp

q
=

dNp

t
(25)

= decrease in the number of holes per second

where Np represents the number of holes in the infinitesimal volume Adx, thus

we have hole concentration present in the volume as dp = dNp

Adx
.

From the eqn.(25), we can decrease in the hole concentration (number of hole
per unit volume) per second, due to the current dIp by dividing both sides of
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the eqn(25) with Adx

⇒
1

Adx

dIp

q
=

1

Adx

dNp

t

=

(

dNp

Adx

)

(

1

t

)

=
dp

t
(26)

= decrease in the hole concentration per second

⇒
dp

t
=

1

q

dIp

A

dx

=
1

q

dJp

dx
(27)

Let p0 represents the hole concentration present under thermal equilibrium
and τp be the average time the hole will exist before it recombines. This is
called mean lifetime of the hole (respectively for electron).
Thus the equation,

g =
p0

τp
(28)

= increase in the hole concentration per second
p

τp

= decrease in hole concentration per second due to (29)

recombination

Finally as we know that charge can neither be created nor destroyed, the
increase in the concentration of holes per second is given by

dp

dt
=

(

increase in hole
concentration/second

)

−

(

decrease in hole
concentration/second

)

(30)

Therefore substituting the eqns.(26), (27), (28) and (29) in the eqn.(30) we
get,

dp

dt
=

(

p0

τp

)

−

(

p

τp

−
1

qA

dIp

dx

)

(31)

=
p0 − p

τp
−

1

q

dJp

dx
(32)

More precisely as p is a function of both x and t the derivatives in the above
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equation become partial derivatives, thus we have

∂p

∂t
=

p0 − p

τp

−
1

q

∂Jp

∂x
(33)

The eqn.(33) is called the law of conservation of charge or the continuity

equation for charge. This law applies equally well for electrons, and the cor-
responding equation is obtained by replacing p with n in the eqn.(33).

10. Injected Minority-Carrier Charge: Consider the physical situation pic-
tured in figure-8(a). A long semiconductor bar is doped uniformly with donor
atoms so that the concentration n = ND is independent of position. Radiation
falls upon the end of the bar at x = 0. Some of the photons are captured by
the bound electrons in the covalent bonds are broken and hole-electron pairs
are generated. Let us investigate how the steady-state minority-carrier con-
centration p varies with the distance x into the specimen.
We shall make the reasonable assumption that the injected minority concen-
tration is very small compared with the doping level; that is, p′ � n, where p′
is the concentration of holes when the specimen is radiated to light source. The
statement that the minority concentration is much smaller than the majority
concentration is called the low-level injection condition. Since the drift current
is proportional to the concentration [eqn.(8)] and since p = p′ + p0 � n, we
shall neglect the hole drift current (but not the electron drift current ) and
shall assume that Ip is due entirely to diffusion. This assumption is justified
at the end of this section. The controlling differential equation for p can be
derived as follows,
In the continuity eqn.(32) if dp/dt = 0, i.e., for steady state, then it becomes,

⇒
1

q

dJp

dx
=

p0 − p

τp
(34)

substituting eqn.(16), in above we have,

1

q

d

dx

(

−qDp
dp

dx

)

=
p0 − p

τp

⇒ −Dp
d2p

dx2
=

p0 − p

τp

⇒
d2p

dx2
=

p − p0

τpDp

(35)
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Let us define “diffusion length” for holes Lp as

Lp = (Dpτp)
1

2 (36)

Substituting eqn.(36) in eqn.(35) we have

d2p

dx2
=

p − p0

L2
p

(37)

Radiation

x=0 Distance, x

A

n = ND

n−type

p(x)

Distance

p’(0)

0 x

p0

 0p(x)=p  + p’(0)e−x/Lp

p’(x)

Injected or excess hole concentration

Figure−(a)

Figure−(b)

Figure 8: Law of Conservation of Charge

Having obtained the second order differential equation, we can now obtain the
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solution2 of p(x) this by solving this equation. This is done as follows,

⇒
d2p

dx2
−

p

L2
p

= −
p0

L2
p

⇒

(

D2 −
1

L2
p

)

p = −
p0

L2
p

(38)

where

D2 =
d2

dx2

and
(

D2 −
1

L2
p

)

is called axillary equation (A.E) Therefore the solution of p(x) is given by

p(x) =

(

Complementary
function (C.F)

)

+

(

Particular
solution (P.S)

)

(39)

C.F is obtained by equating A.E to zero, and thus we have,

⇒

(

D2 −
1

L2
p

)

= 0

⇒ D = ±
1

Lp

⇒ C.F = c1e
−x/Lp + c2e

x/Lp (40)

where c1, c2 are constants, which can be obtained from the initial conditions.
The particular solution is given by,

P.S =
− p0

L2
p
e0

D2 − 1

L2
p

substituting D = 0 in the above equation we have,

⇒ P.S = p0 (41)

2For more details on solving the ordinary second order nonhomogeneous differential equations,

please refer to page-101, Chapter-2, of “Advanced Engineering Mathematics”, Erwin Kreyszig, 8th

edition
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Substituting eqn.(40) and (41) in eqn.(39), we get

p(x) = c1e
−x/Lp + c2e

x/Lp + p0 (42)

In the above equation, as the limx→∞, the second term of p(x) approaches to
infinity, making p(x) → ∞, which is impractical. Hence, c2 must be equal to
zero. Therefore eqn.(42) becomes,

p(x) = c1e
−x/Lp + p0 (43)

Observing the above equation at x = 0 we get c1 = p(0) − p0. Thus we have,

p(x) = p0 + {p(0) − p0}e
−x/Lp (44)

(a) Diffusion Currents: In the diffusion current equation Ip(x) = AJp(x) ,
substituting eqn.(16) we get,

Ip = A

(

−qDp
dp

dx

)

⇒ Ip(x) = A

(

−qDp
d

dx

(

p0 + {p(0) − p0}e
−x/Lp

)

)

⇒ Ip(x) = A

(

−qDp{p(0) − p0}e
−x/Lp

(

−1

Lp

))

⇒ Ip(x) =
AqDp

Lp
{p(0) − p0}e

−x/Lp (45)

where Ip is the minority hole diffusion current. Let In(x) be the majority
electron diffusion current in the specimen, then we have

In(x) = A

(

qDn
dn

dx

)

(46)

Assuming the change in the majority carriers equals to the change in the
minority carriers at low-level injection. Thus we have,

n − n0 = p − p0 (47)

Differentiating both sides with respect to x we have,

dn

dx
=

dp

dx
(48)
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substituting this in eqn.(46), we get

In(x) = AqDn
dp

dx

= AqDn

(

−1

AqDp
Ip(x)

)

by sub. eqn.(16)

⇒ In(x) = −
Dn

Dp
Ip(x) (49)

(b) Drift Current: Since the specimen taken is an open circuited bar, the
sum of all currents must be equal to zero, (i.e sum of hole and electron
currents). Thus we have

pI  (x)

I (x)
n

nd
I  (x)

pd
I  (x)

where ’d’ stand for drift current

Figure 9: Direction of diffusion and drift currents in the specimen

Ip(x) + Ipd(x) + Ind(x) + In(x) = 0 (50)

Let us assume that Ipd(x) is very small and hence can be neglected
(Ipd(x) ≈ 0). However we will justify the assumption, by the end of this
section. Substituting eqn.(49), in eqn.(50) we get, electron drift current
as

Ind(x) =

(

Dn

Dp

− 1

)

Ip (51)

Thus must exist an electric field ε in the bar, in order for the drift current
to exist. This electric field is created by the injected carriers. From the
eqns.(30) of lecture notes-1, we have,

Ind = (nqµnε)A

=

(

Dn

Dp
− 1

)

Ip from eqn.(51)
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⇒ ε =
1

nqµnA

(

Dn

Dp
− 1

)

Ip (52)

Let us now verify the assumption. The hole drift current is given by,

Ipd = Aqpµpε

=
p

n

µp

µn

(

Dn

Dp

− 1

)

Ip (53)

since p � n, then Ipd � Ip. The hole drift current is negligible compared
with hole diffusion current, thus justifying the assumption that the in-
jected minority-carrier current, under low-level injection is essentially a
diffusion current.


