Ghousia College of Engineering Department of Electronics and Communication

EC 56: Solid State Devices and Technology

Assignment for Internal Exam #2

Problems

- 1. (a) Sketch the basic structure of the *n*-channel JFET.
 - (b) Draw the circuit symbol for the JFET
 - (c) Define pinch of voltage V_p and derive the expression for the pinch-off voltage V_p .
 - (d) An *n*-channel silicon JFET has $N_D = 5 \times 10^{15} \text{ cm}^{-3}$, $N_A = 10^{17} \text{ cm}^{-3}$, and $a = 1.2 \ \mu m$. Determine
 - i. built in voltage (V_0)
 - ii. the pinch-off voltage (V_p)

Take $\epsilon_r=11.8,\ \mu_n=1300\ cm^2/V-s,\ n_i=1.5\times 10^{10}\ cm^{-3},\ T=300^oK.$ Boltzmann constant $k=8.620\times 10^{-5}\ eV/^oK$

- 2. (a) Draw the low-frequency small-signal model of an FET and explain the significance of each element
 - (b) Define transconductance g_m and derive the expression for g_m
 - (c) Derive the expression for the figure of merit of JFET
 - (d) Derive an expression for the resistance of the channel in the *n*-channel JFET structure in terms of mobility of electrons, width of the depletion region and the cross-sectional area of the channel.
- 3. The base current pulse into the switching transistor is shown in the Fig.1(a). Given that as the input for the Fig.1(b), with $V_{CC} = 5.2 V$, $R_L = 1 k\Omega$, $\tau_B = 1 \mu s$, $W_B = 5 \mu s$, $D_p = 10 cm^2/s$, determine at $T = 300^{\circ} K$
 - (a) the turn-ON time
 - (b) the storage time
 - (c) Sketch the waveform of the collector current and identify the values at the critical points.
- 4. (a) Draw the hybrid π equivalent circuit (small signal equivalent) of the BJT
 - (b) Explain the origin (or physical process) which gives rise to each term in the hybrid π model.
 - (c) Draw the low-frequency equivalent circuit of the BJT
 - (d) Define the trans-conductance g_m and derive the expression for g_m
 - (e) Write an equation which relates g_m to the current gain β_o
 - (f) Derive the expression for the figure of merit of BJT
 - (g) Calculate the value of r_{π} for the BJT operating at $I_{CQ} = 2 \ mA$ and whose $\beta_o = 100$, at temperature $T = 300^o K$
- 5. (a) Sketch the cross-section of an NMOS enhancement transistor
 - (b) Sketch the output and transfer characteristics of an NMOS enhancement transistor
 - (c) Qualitatively explain the shape of output characteristics

- (d) Write the relations between I_D , V_{GS} , V_{DS} in ohmic and saturation regions.
- (e) Write the equation for the boundary between ohmic and saturation region.
- 6. (a) Derive an expression for the built-in voltage in terms of doping densities
 - (b) An abrupt *pn*-junction of germanium diode has $N_A = 10^{17} cm^{-3}$, $N_D = 10^{15} cm^{-3}$, $\epsilon_r = 15.8$ and $n_i = 2.5 \times 10^{13} cm^{-3}$. At a temperature of $300^{\circ}K$ at equilibrium determine
 - i. the built in voltage
 - ii. the width of the depletion region
 - iii. the electric field
- 7. (a) Define transition capacitance of the diode and derive the expression for C_T
 - (b) Define diffusion capacitance of the diode and derive the expression for C_D
 - (c) The zero voltage barrier height at an alloy-germanium pn-junction is 0.2 V. The concentration N_A of acceptor atoms in the p-side is much smaller than the concentration of donor atoms in the n-material, and $N_A = 3 \times 10^{20}$ atoms/ m^3 . Calculate the width of the depletion layer for an applied reverse voltage of
 - i. 10 V
 - ii. $0.1\ V$
 - iii. for forward bias of 0.1 V
 - iv. if the cross-section area of the diode is $1 mm^2$ evaluate the space-charge capacitance corresponding to the values of applied voltage in (i) and (ii)
- 8. (a) Consider a grown junction for which the uncovered charge density ρ varies linearly with distance. If $\rho = ax$, prove that the barrier voltage V_i is given by

$$V_j = \frac{aW^3}{12\epsilon}$$

- (b) Verify that the barrier capacitance C_T is given by $\epsilon A/W$
- 9. (a) Explain the switching characteristics of the BJT
 - (b) Explain why NMOS devices are preferred over PMOS transistor
 - (c) What is meant by channel-length modulation ?
 - (d) Prove that for an alloy *pn*-junction (with $N_A \ll N_D$), the width W of depletion layer is given by $(2 W)^{1/2}$

$$W = \left(\frac{2\epsilon\mu_p V_j}{\sigma_p}\right)^{1/2}$$

where V_j is the junction potential under the condition of an applied diode voltage V_d , σ_p is the conductivity on *p*-side, μ_p is the mobility of the holes.

- 10. (a) If the resistivity of the *p*-material is $3.5 \ \Omega cm$, the barrier height V_o is $3.5 \ V$, the applied reverse voltage is $5 \ V$, and the cross-section area is circular of $40 \ \mu m$ diameter, find C_T .
 - (b) Given a forward biased silicon diode I = 1 mA. If the diffusion capacitance is $C_D = 1 \mu F$, what is the diffusion length L_p ? Assume that the doping of *p*-side is much larger than that of *n*-side.

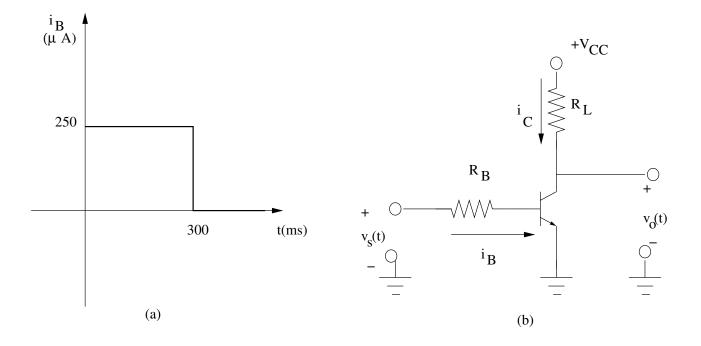


Figure 1: (a) Base Current i_B (b) BJT as the switch