Assignment-2¹ Conduction Phenomenon is Semiconductors

Prerequisite for solving the below problems is thorough understanding of Lecture notes-1 and 2. All the constants are given in table-1 of the lecture notes-1 and -2. Any missing data may be suitably assumed and stated.

$$n = \frac{dv}{AM} = \frac{A_0 dv \times 10^3}{A}$$

where d = density, kg/m^3 ; v = valence, free electrons per atom; A = atomic weight; M= weight of atom of unit weight, kg; $A_0 =$ Avogadro's number, molecules/mole.

- 1. (a) Using the above mentioned formula, calculate the concentration of atoms in Germanium, taking monatomic germanium. (v = 1)
 - (b) Find the resistivity of intrinsic germanium at $300^{\circ}K$.
 - (c) If a donor-type impurity is added to the extent of 1 part in 10^8 germanium atoms, find the resistivity.
 - (d) If germanium were a monovalent metal, find the ratio of its conductivity to that of the n-type semiconductor in the part (c).
- 2. (a) Find the concentration of holes and electrons in p-type germanium at $300^{\circ}K$ if the conductivity is $100 \ (\Omega cm)^{-1}$.
 - (b) Repeat (a) for *n*-type silicon if the conductivity is $0.1 \ (\Omega cm)^{-1}$
- 3. Consider intrinsic germanium at room temperature $(300^{\circ}K)$. By what percent does the conducitvity increase per degree rise in temperature.
- 4. The hole concentration in a semiconductor specimen is shown in Figure-1.
 - (a) Find an expression for and sketch the hole current density $J_p(x)$ for the case in which there is no externally applied eletric field.
 - (b) Find an expression for and sketch the built-in electric field that must exist if there is to be no net hole current associated with the distribution shown.
 - (c) Find the value of the potential between the points x = 0 and x = W if $p(0)/p_0 = 10^3$
- 5. Repeat problem-3 for intrinsic silicon.

¹Due date: 4th September 2006, 3:30 pm. To be submitted in the Office.

Figure 1: Concentration of holes in the specimen

- 6. A sample of germanium is doped to the extent of 10^{14} donor atoms/ cm^3 and 7×10^{13} acceptor atoms/ cm^3 . At the temperature of the sample the resitivity of pure (intrinsic) germanium is $60 \ \Omega cm$. If the applied electric field is 2 V/cm, find the total conduction current density.
- 7. (a) Consider the step-graded germanium semiconductor of Figure-2 with $N_D = 10^3 N_A$ and with N_A corresponding to 1 acceptor atom per 10^8 germanium atoms. Calculate the contact difference of potential V_0 at room temperature.
 - (b) Repeat part (a) for silicon p-n junction.

Figure 2: Concentration of holes in the specimen