Ghousia College of Engineering Department of Electronics and Communication

EC 56: Solid State Devices and Technology

Internal Exam-Solutions #1

Problem I.

- 1. For a germanium sample, at 300°K has a concentration of free electrons as $5.8 \times 10^{18} / cm^3$, and holes as $10.58 \times 10^{19} / cm^3$, with applied electric field of 2 V/cm. Take $n_i = 2.5 \times 10^{13} / cm^3$ at $300^{\circ}K$, $\mu_n = 3,800 \ cm^2/V$ -s, $\mu_p = 1,800 \ cm^2/V$ -s, $D_n = 99 \ cm^2/s$, $D_p = 47 \ cm^2/s$.
 - (a) Find the drift current due to electrons and holes. (4 Marks) **A:** $J_n = qn\mu_n\varepsilon = 1.6 \times 10^{-19} \times 5.8 \times 10^{18} \times 3800 \times 2 = 7052.8 \ A/cm^2$ $J_p = qp\mu_p\varepsilon = 1.6 \times 10^{-19} \times 10.58 \times 10^{19} \times 1800 \times 2 = 60940.8 \ A/cm^2$
 - (b) If there exists a gradient of concentration of holes and electrons with |dp/dx| = 2 × 10¹⁸ /cm⁴ and |dn/dx| = 5 × 10¹⁷ /cm⁴ respectively, then find diffusion current densities due to holes and electrons. (4 Marks)
 A: J_p = -qD_pdp/dx = -1.6 × 10⁻¹⁹ × 47 × 2 × 10¹⁸ = -15.04 A/cm² J_n = qD_ndn/dx = 1.6 × 10⁻¹⁹ × 99 × 5 × 10¹⁷ = 7.92 A/cm²
 - (c) Using the results obtained in (a) and (b) find the total current densities due to holes and electrons. (2 Marks) A: Total current density due to electrons = $qn\mu_n\varepsilon + qD_ndn/dx = 7052.8 + 7.92 = 7060.72$ A/cm^2

Total current density due to holes = $qp\mu_p\varepsilon - qD_pdp/dx = 60940.8 - 15.04 = 60925.76 \ A/cm^2$

2. An abrupt (or step-graded) p-n junction is formed with $N_A = 10^{16} / cm^3$ and $N_D = 4 \times 10^{18} / cm^3$ of circular cross-section, with diameter of 0.02 cm. Calculate the following, (i) $V_0 = \text{Contact}$ potential at open-circuited junction, (ii) depletion width W (iii) $x_{p_0} =$ depletion width on the p-side (iv) $Q^+ =$ total positive charge in the depletion region (v) $\varepsilon_0 =$ Electric field present at the junction. (vi) Draw the graph for $\rho_v =$ volume charge density. (vii) Draw the graph for electric field intensity ε . (viii) $x_{n_0} =$ depletion width on the n-side. Take $n_i = 1.5 \times 10^{10} / cm^3$, and $\epsilon_r = 11.8$. (2+2+2+2+2+2+1 Marks)

 $\mathbf{A:} (i) \ V_0 = V_T \ ln \frac{N_A N_D}{n_i^2} = 26 \times 10^{-3} \ ln \frac{10^{16} \times 4 \times 10^{18}}{(1.5 \times 10^{10})^2} = 0.85 \ V \ (ii) \ W = \left(\frac{2\epsilon_r \epsilon_0 V_0}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right)\right)^{\frac{1}{2}} = 3.34 \times 10^{-5} \ cm. \ (iii) \ x_{p_0} = \frac{N_D W}{N_A + N_D} = 3.331 \times 10^{-5} \ cm. \ (iv) \ Q^+ = q x_{p_0} N_A \times \pi (0.02/2)^2 = 6.655 \times 10^{-9} \ C \ (v) \ \varepsilon_0 = -\frac{q N_A x_{p_0}}{\epsilon_r \epsilon_0} = -5.06 \times 10^4 \ V/cm. \ (vi) \ and. \ (vii) \ graphs are shown in the Fig.1(a) \ and. \ (b). \ (viii) \ x_{n_0} = W - x_{p_0} = 3 \times 10^{-8} \ cm = 3^o A$

Problem II.

- (a) Define different modes of operation for BJT. (3 Marks)
 A: Refer to the lecture notes-6, (LN-6) table-1.
 - (b) For an npn transistor operated with collector base junction reverse-biased by at least few volts, with emitter open circuited. Determine the following, (i) Mode of operation, (ii) V_{EB}, (iii) collector and base currents, take I_{C0} = 10⁻¹⁵ A, I_{E0} = 2 × 10⁻¹⁵ A, α_F = 0.99. (*Hint:* Use reciprocity condition) (iv) Find β_F. (4+4+3+1 Marks).
 A: Refer to the LN-6 example problem. (iv) β_F = α_F/(1-α_F) = 49.74
- 2. (a) Write Continuity equation for holes. (1.5 Marks)A: Refer to LN-2, Eqn.(33)

- (b) Define Reverse saturation current (I_0) . (1.5 Marks) A: Refer to LN-4, Eqn.(17)
- (c) Draw Ebers-Moll equivalent of npn transistor and write the equations for I_E and I_C in terms of V_{BE} and V_{CE}. (3 Marks)
 A: Refer to LN-5, Fig.9, Eqns.(14) and (15)
- (d) Draw the equivalent DC model for the npn BJT with CE configuration, operating in the forward-active region. (1 Mark)
 A: Refer to LN-7, Fig.5(a)
- (e) Draw the *I-V* characteristics of the *p-n* junction and explain each region (forward and reverse bias) in the graph using diode equation. (3 Marks)
 A: Refer to LN-4, The Volt-Ampere Characteristics of Diode.

Figure 1: (a) Charge Density ρ_v (b) Electric Field Intensity (ε)