OSI Model

Protocols

- Define a set of rules for communication.
 - Specify the meaning and format of messages
 - Define exchange rules
 - Exception handling
 - duplicated information
 - bit corruption (chksum errors)
 - lost information
 - out of order packets

Protocols - cont.

- Other functions
 - identify different sources/destinations
 - separate applications
 - handle multiple instances of the same application on one machine
- A *family* of protocols shares all these tasks
 - Protocol suite/stack
 - Assign functions to different protocols (layers)

Protocol Stacks

- "Goal": one protocol per layer
- Layers interact and cooperate with each other
 - the data is passed from one layer to the next
 - each layer adds its own information (HDR)
 when the data is sent, and removes it when the data is received
 - lower layers provide services for the upper layers
 EE156 Computer Network Architecture

Protocol Stacks - cont.

Protocol Stacks - cont.

Layer 1 - Physical

- Defines the physical interfaces between devices
 - including the rules for raw bit-stream transmission (1011010110)
- Mechanical -- physical properties
- **Electrical** -- representation of bits (voltage levels) and transmission rates

Layer 1 - cont.

- **Functional** -- functions performed by individual circuits
- **Procedures** -- sequence of events
- Examples: EIA-232-E (RS-232 or V.24/V.28), RJ-11, RJ-45

Layer 2 - Data Link

- Physical link reliability and controls access to the media
- Error detection
 - error free transmission over the link
 - several data links may exist between endpoints
 - higher layers also have error control functions
 - use of CRC (cyclic redundancy check) to verify integrity

Layer 2 - cont.

- Error control
 - error detection
 - positive acknowledgment
 - retransmission after timeout
- Structured Frames
 - control flags
 - source/destination addresses
 - FCS (frame check sequence) for CRC

Layer 2 - cont.

- Examples:
 - HDLC: High-Level Data Link Control
 - LAPB: Link Access Procedure, Balanced
 - LAPD: Link Access Procedure, D-Channel
 - PPP: Point to Point Protocol
 - LLC: Logical Link Control

Layer 3 - Network

- Packet forwarding -- routing function
 - routed protocols: IP, IPX, AppleTalk
 - routing protocols: RIP, OSPF, NLSP
 - connectionless
- This is the highest layer at which network entities typically interact
 - higher layers use *end-to-end* protocols

EE156 Computer Network Architecture

Layer 4 - Transport

- In general, provides for reliable exchange of information between end systems
 - connection oriented: ensures error-free, in sequence delivery with no loss or duplication
 - mechanisms for retransmission, acknowledgment, timeouts, etc.
- Examples: TCP (connection-oriented), UDP (connectionless)

Layer 5 - Session

- Controls communications between applications in end systems
 - **Dialog discipline** -- full-duplex, half duplex
 - User/application/session differentiation
- Usually, this is not a standalone function.

Layer 6 - Presentation

- Data representation
 - format (ASCII, for example)
 - compression
 - encryption

Layer 7 - Application

- Specific application programs
- Examples: file transfer, e-mail, telnet, etc.

OSI vs TCP/IP

