

High Performance Communication Networks

Introduction, Part I

Part I: Introduction

Chapter goal:

- get context, overview, "feel" of networking
- more depth, detail later in course
- approach:
 - descriptive
 - use Internet as example

Overview:

- what's the Internet
- what's a protocol?
- network edge

today

- network core
- access net, physical media
- performance: loss, delay
- protocol layers, service models
- backbones, NAPs, ISPs
- history
- ATM network

What's the Internet: "nuts and bolts" view

- millions of connected computing devices: hosts, end-systems
 - PC's, workstations, servers
 - PDA's, phones, toasters running network apps
- communication links
 - fiber, copper, radio, satellite
- routers: forward packets (chunks) of data through network

What's the Internet: "nuts and bolts" view

- protocols: control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- communication infrastructure enables distributed applications:
 - WWW, email, games, databases,e-commerce, voting,
 - more?
- communication services provided:
 - connectionless
 - connection-oriented

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions

... specific msgs sent

... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: Other human protocol?

A closer look at network structure:

- network edge: applications and hosts
- network core:
 - routers
 - network of networks
- access networks, physical media: communication links

The network edge:

end systems (hosts):

- run application programs
- e.g., WWW, email
- at "edge of network"

client/server model

- client host requests, receives service from server
- e.g., WWW client (browser)/ server; email client/server

peer-peer model:

- host interaction symmetric
- e.g.: teleconferencing

Network edge: connection-oriented service

Goal: data transfer between end sys.

- handshaking: setup (prepare for) data transfer ahead of time
 - Hello, hello back human protocol
 - set up "state" in two communicating hosts
- TCP Transmission Control Protocol

 Internet's connectionoriented service

TCP service [RFC 793]

- reliable, in-order bytestream data transfer
 - loss: acknowledgements and retransmissions
- flow control:
 - sender won't overwhelm receiver
- congestion control:
 - senders "slow down sending rate" when network congested

Network edge: connectionless service

Goal: data transfer between end systems

- same as before!
- UDP User Datagram Protocol [RFC 768]: Internet's connectionless service
 - unreliable data transfer
 - no flow control
 - no congestion control

App's using TCP:

 HTTP (WWW), FTP (file transfer), Telnet (remote login), SMTP (email)

App's using UDP:

 streaming media, teleconferencing, Internet telephony

The Network Core

- mesh of interconnected routers
- <u>the</u> fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

Network Core: Circuit Switching

network resources (e.g., bandwidth) divided into "pieces"

- pieces allocated to calls
- resource piece idle if not used by owning call (no sharing)
- dividing link bandwidth into "pieces"
 - frequency division
 - time division

TDM:

All slots labelled are dedicated to a specific sender-receiver pair.

Network Core: Packet Switching

each end-end data stream divided into *packets*

- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed,

Bandwidth division into "pieces"

Dedicated allocation
Resource reservation

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - transmit over link
 - wait turn at next link

Network Core: Packet Switching

Packet-switching versus circuit switching: human restaurant analogy

other human analogies?

Network Core: Packet Switching

Packet switching versus circuit switching

Packet switching allows more users to use network!

- 1 Mbit link
- each user:
 - 100Kbps when "active"
 - active 10% of time

- 10 users
- packet switching:
 - with 35 users, probability
 10 active less that .004

Is packet switching a "slam dunk winner?"

- Great for bursty data
 - resource sharing
 - no call setup
- Excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps

still an unsolved problem (chapter 6)

Packet-switched networks: routing

- <u>Goal</u>: move packets among routers from source to destination
 - we'll study several path selection algorithms (chapter 4)
- datagram network:
 - destination address determines next hop
 - routes may change during session
 - analogy: driving, asking directions
- virtual circuit network:
 - each packet carries tag (virtual circuit ID), tag determines next hop
 - fixed path determined at call setup time, remains fixed thru call
 - routers maintain per-call state

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Residential access: point to point access

- Dialup via modem
 - up to 56Kbps direct access to router (conceptually)
- ISDN: intergrated services digital network: 128Kbps all-digital connect to router
- ADSL: asymmetric digital subscriber line
 - up to 1 Mbps home-to-router
 - up to 8 Mbps router-to-home

Residential access: cable modems

- HFC: hybrid fiber coax
 - asymmetric: up to 10Mbps upstream, 1 Mbps downstr
- network of cable and fibe attaches homes to ISP router
 - shared access to router among home
 - issues: congestion, dimensioning
- deployment: available via cable companies, e.g., MediaOne

Institutional access: local area networks

- company/univ local area network (LAN) connects end system to edge router
- Ethernet:
 - shared or dedicated cable connects end system and router
 - 10 Mbs, 100Mbps, Gigabit Ethernet
- deployment: institutions, home LANs soon
- LANs: chapter 5

Wireless access networks

- shared wireless access network connects end system to router
- wireless LANs:
 - radio spectrum replaces wire
 - e.g., Lucent Wavelan 10 Mbps
- wider-area wireless access
 - CDPD: wireless access to ISP router via cellular network

Physical Media

- physical link: transmitted data bit propagates across link
- guided media:
 - signals propagate in solid media: copper, fiber
- unguided media:
 - signals propagate freelye.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps ethernet
 - Category 5 TP:

Physical Media: coax, fiber

Coaxial cable:

- wire (signal carrier)
 within a wire (shield)
 - baseband: single channel on cable
 - broadband: multiple channel on cable
- bidirectional
- aamman ilaa in

Fiber optic cable:

- glass fiber carrying light pulses
- high-speed operation:
 - 100Mbps Ethernet
 - high-speed point-to-

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Radio link types:

- microwave
 - e.g. up to 45 Mbps channels
- LAN (e.g., waveLAN)
 - 2Mbps, 11Mbps
- wide-area (e.g., cellular)
 - e.g. CDPD, 10's Kbps
- satellite
 - up to 50Mbps channel (or multiple smaller channels)
 - 270 Msec end-end delay
 - geosynchronous versus LEOS