Crosstalk-Aware Anycast Routing and Wavelength Assignment in Optical WDM Networks Balagangadhar G. Bathula¹ Jeremy M. Plante² Vinod M. Vokkarane²

¹Lightwave Research Laboratory, Department of Electrical Engineering, Columbia University, New York, NY, USA ²Advanced Computer Networks Lab, Department of Computer and Information Science, University of Massachusetts, Dartmouth, USA

SUMMARY

- We discuss the performance of physical-layer impairment-aware anycast communication over transparent optical networks.
- > The simulation results show, that the proposed anycast routing algorithms can significantly decrease the request loss due to impairments, such as crosstalk and ASE noise.

ANYCAST: DEFINITION AND APPLICATIONS

- The anycast communication paradigm is a variation of unicast, where the source node has a choice of selecting a destination from a candidate set.
- Anycast can be used by a client (source) to find an appropriate server (destination) when there are multiple servers.

- Anycasting can be used for applications such as,
 - Grid Computing,
 - Content distribution,
 - Network storage.

PROBLEM DEFINITION

- For a given source node *s* and the candidate destination set $D_s = \{d_1, d_2, \dots, d_m\}$ with a cardinality $|D_s| = m$,
 - A source node *s* can choose any one among *m* destinations (C_1^m) .
 - Anycast configuration is denoted as m/1.
 - Request is denoted by $(s, D_s, 1)$.

CROSSTALK AWARE ANYCAST ALGORITHMS (CAAR)

Input	: Anycast Request:
Output	: Request Successfu
begin $D'_{1} \leftarrow$	SORT[D _e]
while $D' \neq \emptyset$ do	
$PATH \rightarrow (s, d'_i)$ where $d'_i \in I$	
while $\Lambda_A \neq \emptyset$ do	
for $h \in PATH(d'_i)$ do	
	$PWR(h, \lambda_i) \leftarrow PWR(h - \lambda_i)$
	$ASE(h, \lambda_i) \leftarrow ASE(h - $
	$XT(h,\lambda_i) \leftarrow XT(h,\lambda_i) +$
end	
($DSNR(d'_i, \lambda_i) = \frac{PWR(d)}{(ASE(d'_i, \lambda_i))}$
i	f $OSNR(d'_i, \lambda_i) \ge OSNR_{ti}$
	$CONFIG.SD(s, d'_i)$
	$REQ.ID(s, D_s) \leftarrow TRU$
	exit
e	end
€	else
	$\Lambda_A \leftarrow \Lambda_A \setminus \{\lambda_i\}$
e	end
enc	
1f /	$\Lambda_A == \emptyset$ then
:	$IPDATE.DES: D_s^{\scriptscriptstyle r} \leftarrow D_s^{\scriptscriptstyle r} \land$
1	$D_s = 0$ then $RF \cap ID(s D) \leftarrow FAIS$
	$DROP OSNR \leftarrow DROP$
e	end
e	else
_	CREATE.SD: (s, d'_{i+1})
e	end
enc	1
end	
end	

COLUMBIA UNIVERSITY

 $(s, D_s) = (s, \{d_1, d_2, \dots, d_m\})$ ul: TRUE/FALSE

 $D'_s; 1 \leq i \leq |D'_s|$

 $(-1, \lambda_i) - LOSS(h, \lambda_i)$ $-1, \lambda_i) + ASE.SW(\lambda_i)$ $+ XT.SW(\lambda_i)$

 $\frac{d_i',\lambda_i)}{+XT(d_i',\lambda_i)}$ th then

E

 $\setminus \{d'_i\}$

SE DP.OSNR + 1

RESULTS

Figure: Scaled NSFNET topology.

Figure: Comparison of blocking probability for various anycast scenarios.

Figure: Comparison of requests blocked due to transmission impairments (dominated by XT) for unicast and 3/1 anycast.

Parameter Channel bit rate Optical bandwidth Electrical bandwidth Input signal power Switch crosstalk ratio Number of requests Wavelengths

OSNR.

unicast and 3/1 anycast.

requests for each anycast configuration at a network load of 100 Erlang.

CONCLUSION

Our work presents a novel approach to provide required transmission quality on the WDM layer for content distribution, storage area, and data center networks.

IEEE ANTS 2010