We discuss the performance of physical-layer impairment-aware anycast communication over transparent optical networks. The simulation results show that the proposed anycast routing algorithms can significantly decrease the request loss due to impairments, such as crosstalk and ASE noise.

Anycast: Definition and Applications

The anycast communication paradigm is a variation of unicast, where the source node has a choice of selecting a destination from a candidate set. Anycast can be used by a client (source) to find an appropriate server (destination) when there are multiple servers.

Anycasting can be used for applications such as,
- End-Computing,
- Content distribution,
- Network storage.

Problem Definition

For a given source node s and the candidate destination set $D_s = \{d_1, d_2, \ldots, d_m\}$ with a cardinality $|D_s| = m$,
- A source node s can choose any one among m destinations (C_m^1). Anycast configuration is denoted as $m/1$.
- Request is denoted by (s, D_s).

Conclusion

Our work presents a novel approach to provide required transmission quality on the WDM layer for content distribution, storage area, and data center networks.

Crosstalk-Aware Anycast Routing and Wavelength Assignment in Optical WDM Networks

Balagangadhar G. Bathula1 Jeremy M. Plante2 Vinod M. Vokkarane2

1Lightwave Research Laboratory, Department of Electrical Engineering, Columbia University, New York, NY, USA
2Advanced Computer Networks Lab, Department of Computer and Information Science, University of Massachusetts, Dartmouth, USA

This work was supported in part by the National Science Foundation (NSF) under grant CNS-0626798.