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Abstract

What is the impact of autocorrelation of Variable Bit Rate
(VBR) video sources on real-time scheduling algorithms? Our
results show that the impact of long term, or interframe, au-
tocorrelation is negligible, while the impact of short term, or
intraframe, autocorrelation can be significant. Such results are
essentially independent of the video coding scheme employed.
To derive these results, we introduce a model that is based
on statistical analysis performed on actual video data. Our
model accurately captures the distribution and the autocorre-
lation function of the source bit stream on both the frame and
the slice level. We show that the original video data sequence
can be modeled as a collection of stationary subsequences called
scenes. Within a scene, a model is derived for both the sequence
of frames and of slices. In previous work at the slice level,
the pseudo-periodicity of the autocorrelation function made it
difficult, to develop a simple yet accurate model. One of the
new elements introduced in this work is that we present a gen-
eralization of previous methods, that can easily capture this
pseudo-periodicity and is suited for modeling a greater variety
of autocorrelation functions. The generality of our model lies in
that, by simply tuning a few parameters, it is able to reproduce
the statistic behavior of sources with different types and levels
of correlation.

1 Introduction

Video traffic is expected to be one of the major sources of load-
ing of broadband networks, along with voice and data traffic.
Variable Bit Rate (VBR) video traffic will impose very stringent
real-time constraints on the network, especially in the case of
interactive services. Since these traffic streams have a complex
structure, their effect on the network may be much more com-
plex than that found by simple, analytically tractable traffic
models.

A first model of VBR video traffic appears in [1] where a
video source is described as a first-order autoregressive process
AR(1) with marginal pdf Gaussian and an exponential autocor-
relation function. An ARMA process followed by a memoryless
nonlinear filter was used in [2]. The method is able to match
the mean, variance and autocorrelation function but not the
marginal pdf of the sequence. More work on the distribution of
frame sizes appears in [3] and [4].

In [5] the authors propose a new methodology, called TES,
for modeling video sources. The main characteristic of this
method is that it can generate an arbitrary distribution for the
number of bits in a frame as well as model the frame correlation
structure.

Our work was motivated by the need to evaluate the per-
formance of a multiplexer with various schedulers, when loaded
with VBR video traffic. Several questions related to this prob-
lem were asked: What timing aspects of the video are impacting
the performance of the multiplexer? How can this be evaluated?

In order to answer these questions, accurate video models
were needed, in particular to predict queueing behavior. Devel-
opment of models that are accurate, yet as simple as possible,
was necessary since availability of actual video data is still lim-
ited. Our motivation was to construct parametric models that
offer increased flexibility in reproducing the statistical behavior
of different types of video sources, thus allowing a greater range
of experimental results.

The novel element of our modeling approach is the intro-
duction of a new model for VBR video traffic that captures
the behavior on all three time scales: scene, frame and slice.
This model is based on statistical analysis that we performed
on actual video data that belongs to the entertainment movie
StarWars. We show that the original video data sequence can
be modeled as a collection of stationary subsequences that we
call scenes. We further show that the scene changes can be
modeled as a Bernoulli process. Within a scene, a model is
derived for both the sequence of frames and of slices.

We use this VBR video model to explore the performance
of a link scheduler associated with an ATM node. Our results
show that for real-time scheduling the impact of long term or
interframe correlation is negligible, while the impact of short
term or intraframe correlation is significant. The basic reason
this result is true, is that the duration of a frame is large enough
compared to the QOS delay requirements in the network, to
render correlation at the frame level insignificant.

This paper is organized as follows: In section 2 we de-
scribe the experimental video data used and present the rele-
vant statistics calculations. In section 3 we introduce our model
of the video data. In 4 we discuss multiplexing of the the video
sources on a link scheduler, while section 5 presents the results
describing the performance of the link scheduler. Finally, in
section 6 we present our conclusions and directions for future
study.

2 Experimental Real Time Video Data

The actual data that we have used was provided by Dr. Mark
W. Garrett of Bellcore. This data set represents the bandwidth
output of a simple variable bit rate (VBR) coder. The source
material is based on the movie “Star Wars”.

The data set includes the information content in bytes per
frame for approximately 2 hours of video. The frame rate is
24 per second and each frame is further broken down to the 30
slices, each slice consisting of 16 video lines. To allow compu-
tation of a complete movie, the coding algorithm employed is a
simplified DCT, similar but not identical to JPEG. For a more
detailed description of this data set, see [6].

The autocorrelation of the sequence of the frames sizes is
displayed in figure 1. It decreases slowly as the lag increases
(thereby showing a shortcoming of the models proposed in [1, 2]
that do not reproduce this strong correlation between successive
frames with large lags).



Figure 2 shows the autocorrelation function for the sequence
of slice sizes.As expected, a pseudo-periodicity of 30 slices can
be observed. The existence of this pseudo-periodicity is one of
the main difficulties in modeling the autocorrelation function
on the slice level, as will be explained in section 3.3.

3 Modeling VBR Traffic Streams

This section presents our models for VBR video sources on both
the frame and slice time scale. In section 3.1 we show that the
sequence of both frames and slices can be modeled as a col-
lection of stationary subsequences called scenes. We state the
conditions that identify a scene change and derive the distri-
bution of scene durations. In sections 3.2 and 3.3, we present
the frame and slice level models, respectively. The segmenta-
tion of sequences into scenes is embedded in both levels. The
TES method, mentioned in section 1, is used in both mod-
els. As already mentioned however, for previous work at the
slice level, the pseudo-periodicity of the autocorrelation func-
tion made it difficult to derive a simple, yet accurate model.
We therefore introduce a new method, which is a generaliza-
tion of the TES method that enables us to easily capture the
pseudo-periodicity of the autocorrelation function and is suited
for modeling a greater variety of autocorrelation functions.

3.1 Modeling VBR Video Sequences as a Collec-
tion of Scenes

By viewing the sample path of the original video sequence one
observes that the sequence of frame sizes (Fn) consists of seg-
ments of variable length, that expose high correlation. Within
each of these segments, sizes are very close in value. The same
is true for the sequence of slice sizes, (Sy,).

As can be easily verified, at the boundaries of these seg-
ments large changes in the magnitude of the frame or slice sizes
occur. These segment boundaries coincide in the time sequence
of both frames and slices. Intuitively one expects these seg-
ments to correspond to different scenes of the movie, i.e., por-
tions of the movie without shifts of view supplied by editing or
abrupt camera panning or zooming. By observing the actual
movie we assessed that such scene changes do indeed coincide
with large changes in the magnitude of frame or slice sizes.

Our analysis shows that scene lengths follow a geometric
distribution, with parameter

1
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where L,, denotes the scene duration series [7].

p

3.2 Modeling the Bit Stream at the Frame Level

The classic TES method [8] is used to statistically reproduce the
autocorrelation functions of empirical data, while guaranteeing
an exact match of the marginal distribution. A TES method
defines a random walk on the circular unit interval. This walk
can be equivalently expressed as a sequence of modulo-1 arith-
metic operations, i.e.,

Un=Una0Va 3 (2)

where (Vn) denotes a sequence of 1.i.d. random variables with
common density fv [8].
In our case, we can express the innovation process (V) as
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where R = —L = %, (Zn) is a sequence of ii.d. random vari-
ables with marginals in [0,1), X, is sequence of i.i.d. Bernoulli

variables with Pr{X, = 1} = p, p is the probability of having
a scene change at step n and a., o are two parameters that
affect the correlation of the U,’s. In particular, smaller values
of o, give rise to higher autocorrelation within a scene, while
smaller values of a. give rise to higher autocorrelation during
scene changes.

We found that the parameters a. = 0.28, o, = 0.02 and
IE(L,) = 100 best matched our original VBR video data. Fig-
ure 1 plots the autocorrelation function of the generated se-
quence and the original video data up to lag 500.
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Figure 1: Autocorrelation function of the frame sizes for the
original sequence and the match generated with parameters
ac=0.28, a. = 0.02, [E(L,) = 100.

3.3 Modeling the Bit stream at the Slice Level

As already mentioned in section 2 the autocorrelation at the
slice level exposes a pseudo-periodicity of 30 slices. This is ex-
pected, since in the sequence of slice sizes, slices that differ by
30, belong to the same area of different frames. This implies
that the time sequence of slice sizes exposes two forms of auto-
correlation: temporal, which is mainly interframe, and spatial
or intraframe.

Our approach models directly the slice bit stream by intro-
ducing a generalization of the TES method, namely allowing
the innovation function to be modulated by a function of time:

Upn=Un1® a(n)Vn ’ (4)

where, once again, V,, denotes a sequence of i.i.d random vari-
ables with common density f,. It still can be shown that equa-
tion 4 gives rise to a sequence (U, ) of correlated identically dis-
tributed random variables with uniform marginals in [0,1) [T7].
To give some intuition for this modification, we describe the
function a(n) used in modeling the slice sizes:

1 if0<npea<E-1,
“(”)_{—1 if £ < nmoa s <s—1, (3)

where, in our case, s = 30.

Intuitively, the random walk on the unit circle proceeds in
one direction for a duration equal to half of the frame size and
to the opposite direction for the other half. This results in
a high correlation every 30 slices. The modulating function
a(n) could also take more complex forms, making it possible
to model a wide range of autocorrelation functions, but for our
purposes we have found the function a(n) given in equation 5
to be sufficient.

The innovation function V,, of equation 4 is again given
by equation 3. The probability of a scene change is given by
equation 1 with the difference that the expected duration of
a scene in number of frames, IE(Ly), should be multiplied by



s = 30 to give the expected scene duration in number of slices,

E(L,).
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Figure 2: Autocorrelation function of the sequence of slice sizes
for the original sequence, the match generated with parameters
L =0.003, R = 0.008, a. = 0.28, ]E(Lln) = 3000 and, autocor-
relation functions with the same temporal, but different spatial
correlation than the original sequence.

Small values of R — L result in high temporal correlation,
while small values of R + L lead to high spatial and temporal
correlation. By varying these two parameters we were able to
match the autocorrelation function of the slice size sequence.
The best matching of the autocorrelation function was found for
L =0.003 and R = 0.008. The parameters a. and IE(L,) where
kept at the values of the optimal match at the frame level. The
autocorrelation function for these parameters of the modified
TES process is compared in figure 2 with the autocorrelation
of the original process.

In the same figure we plot the autocorrelation for two addi-
tional set of parameters. Both sets have the same value of step
size R— L and, hence, the same temporal autocorrelation. How-
ever, one corresponds to higher spatial autocorrelation than the
original sequence and the other to lower.

4 Scheduling of Multiplexed Video
Sources

In this and the next section, we will present the results of sim-
ulation experiments which illustrate the impact of the param-
eters of our VBR video models, on the performance of a class
of integrated networks with the capability of efficiently provid-
ing quality of service (QOS). These networks are called Asyn-
chronous Time Sharing (ATS) based because of the way the
main network resources (switching and communication band-
width, buffer space and processing capacity) are allocated [9].

In order to give a quantitative framework for evaluating the
performance of networks that provide QOS guarantees the con-
cept of schedulable region is used [10]. Informally, the schedula-
ble region is the region in the space of possible loads for which
a scheduling algorithm guarantees quality of service.

4.1 The Architecture and Framework for ATS

We consider a network with quality of service guarantees, based
on the Asynchronous Time Sharing principle. Four classes of
traffic are supported. Three of the traffic classes, Class I, IT and
11, transport user traffic and are defined by a set of performance
constraints. The fourth class, Class C, transports traffic of the

network management system, and is not subject to specific QOS
constraints.

Class I traffic is characterized by 0 % contention cell loss
and a maximum end-to-end time delay between the source and
destination, denoted by S7. Class II traffic is characterized by €
% contention cell loss. It is also characterized by an end-to-end
time delay distribution with a larger support than Class I. The
maximum end-to-end time delay is ST7. In general, ST < S77.
For Class I and II traffic, there is no retransmission policy for
lost cells. Class III traffic is characterized by 0 % end-to-end cell
loss that is achieved with an end-to-end retransmission policy
for error correction. If requested, it is also characterized by a
minimum average user throughput I' and a mazimum average
user time delay T

4.2 Real-Time Traffic Source Models

For the purposes of this section we consider each of the traffic
classes, defined via Quality of Service constraints in section 4.1,
to carry information of a very specific type. Class I is assumed
to consist of K7 video calls, and Class 1I of K7 voice calls.
Class III consists of K71 data sources.

For video sources, two cases are considered: transmission
is done either on a frame by frame or on a slice by slice basis.
Multiplexing of K7 video calls is assumed to be accomplished
by uniformly distributing the frame (slice) start at intervals of
T/KT ms, where T = Ty = 1/24s is the fixed frame duration
or T'=T, =1/720 is the fixed slice duration, respectively. For
more details see [7].

A single voice call is modeled as an on-off source with
constant arrivals. It is characterized by an exponentially dis-
tributed active period, in which cells are generated with con-
stant rate ¢’?/(Ln 4+ Lp) with ¢’ = 64 Kbit/s, and an expo-
nentially distributed silence period, in which no cells are gen-
erated [7].

Finally, the data traffic is modeled as a Poisson source.

4.3 The Schedulable Region

The fundamental concept, on the basis of which all compar-
isons of performance will be based, is that of the schedulable
region [10]. Intuitively, the schedulable region of a queueing sys-
tem is the set of points in the space of possible loads for which
the quality of service is guaranteed. The size of the schedulable
region depends on the scheduling algorithm used, the values of
the QOS parameters and the statistics of the traffic load.

For the sake of simplicity we will assume that Class C traf-
fic is negligible and, therefore limit our present study of the
schedulable region to a queueing system with three user classes
(Class I, II and III). Finally, we will assume that each of the
buffers has infinite capacity.

5 Experimental Evaluation of the
Scheduling Algorithms

In this section, we present the results of simulation experiments
which illustrate the impact of different VBR video traffic and
some properties of the scheduling algorithms and the associated
schedulable regions.

The scheduling algorithms that will be used are static pri-
ority scheduling (SPS) and MARS, the MAGNET II real-time
scheduling algorithm [10]. When static priority scheduling
(SPS) is employed, Class I cells are always transmitted ahead of
Class 11, and Class 11 cells are always transmitted ahead of those
of Class III. This scheduling scheme is simple to implement,
and is thus often considered for scheduling of real-time traf-
fic. When MARS is employed, transmission resources are time-
shared between traffic classes according to a cycle scheme [9].



MARS adaptively sets the parameters which govern this cy-
cle scheme, based on observations of cell arrivals and depar-
tures. The scheduling algorithm is based on the intuition that
in order to achieve high throughput, each cycle should serve
only the cells whose transmission cannot be further delayed to
satisfy the QOS requirements. For details on this scheduling
algorithm see [10].

All of the simulations reported in this section are based on
the assumptions of a fixed cell size of (Lp—l—Lh) = 1024 bits/cell,
a fixed cell header of L, = 98 bits/cell and a link capacity of
C = 100 Mbit/s. In addition, for every simulation run a tran-
sient period of 2 seconds was allowed before any measurements
were taken, and the simulations were run for 180 seconds. The
95 % confidence bounds for the measured performance criteria
were well within 5 % of the observed values.

To obtain each point in the plots, the values of K7 and K11
(the number of calls of Classes I and III) were fixed, and sim-
ulations were run to determine the maximum number K77 of
voice calls for which the QOS could be satisfied over the whole
period of 180 seconds. For simplicity and in order to facilitate
the interpretation of our results, only the two dimensional pro-
jections of the schedulable regions onto the plane K717 = 0 are
plotted. K! was varied from 0 to 20 video calls in steps of 1.

5.1 Performance Results for Video Sources Mul-
tiplexed on the Frame Level

When we compared the schedulable region obtained by multi-
plexing parts of the original sequence to that obtained by mul-
tiplexing Class I calls with the statistics of the matching model
that was derived in section 3.2, we obtained a very satisfactory
match. We then plotted the schedulable regions obtained for
Class I sources corresponding to two different models, one with
high and one with low autocorrelation. In both models the
average scene length ]E(Ln) = 100 and a. = 0.30. The QOS
vector used was [ST, 577 e, T] = [2ms, 2ms, 0.005, 1ms)].

What we observed is that the difference in the size of the
schedulable regions is negligible [7]. Only when most of the load
is provided by Class I traffic does a very small difference appear,
but it is still too small to be considered significant. We repeated
these experiments for a wide range of model parameters and
QOS parameter values, without being able to record significant
differences in the schedulable regions. This result can be at-
tributed to the fact that the duration of a frame is large enough
compared to the delay requirements in the network. Specifically,
the duration of a frame is 1/24sec=41.66msec, which is very
much larger than the QOS parameters ST and 5?7 that we have
used. If one attempts to increase these parameters to the point
where they are of the same order of magnitude as the frame
duration, utilization of the system approaches 100%, rendering
any difference due to autocorrelation, again, negligible.

5.2 Performance Results for Video Sources Mul-
tiplexed on the Slice Level

In this set of experiments the QOS vector used 1is
[ST, ST, e, T = [2ms, 2ms,0.005, 1ms].

Figure 3 compares the schedulable region obtained by mul-
tiplexing parts of the original sequence to that obtained by
multiplexing Class I calls with the statistics of the matching
model that was derived in section 3.3. The schedulable regions
are found using MARS scheduling. As one can observe, the
matching is very satisfactory. The fact that it cannot be con-
sidered perfect can be attributed to the fact that the original
sequence cannot be considered as stationary. On the contrary,
our data shows that the sequence consists of parts with higher
activity and parts with lower activity. In any case, the very
good match of the schedulable regions is the best verification
of our model in terms of performance criteria.
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Figure 3: Comparison of the schedulable regions as obtained
from the original sequence and from the matching model re-
spectively, for MARS scheduling and multiplexing at the slice
level.
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Figure 4: Comparison of the schedulable regions as obtained for
video sources with high and low autocorrelation respectively, for
MARS scheduling, and multiplexing at the slice level.

In our next experiment we investigated the impact of the
autocorrelation function on the size of the schedulable region.
The results are plotted in figure 4, where the schedulable region
is plotted for two different sets of video source parameters. The
two sets are the same as the ones shown in figure 2 and corre-
spond to low and high autocorrelation, respectively. It is evi-
dent that the increase in the autocorrelation function of Class
I sources has a significant impact on the size of the schedulable
region; the reduction being of the order of 10% in the number of
Class II sources that can be scheduled. One should observe the
intuitive result that the difference increases with the number of
Class I sources present in the traffic mix.

The last two experiments are repeated for SPS scheduling.
The results are shown in figure 5. In addition to the well es-
tablished fact that the schedulable region for MARS is larger
than the respective one for SPS, one can make some interesting
observations. First, the results are qualitatively similar. In par-
ticular the match in the schedulable regions between the model
and the original sequence is again very satisfactory, providing
further evidence of the general validity of our model. On the
other hand, SPS proves to be less sensitive to autocorrelation
than MARS. The intuitive explanation of this result is that
MARS is designed to increase the schedulable region by serv-
ing Class I cells only when their transmission cannot be further
delayed. As such, this mechanism is more effective when traffic
of Class I is more “random”, allowing the scheduler to delay
cells of Class I and accommodate more Class II calls. When



Class I traffic is highly correlated, there will be periods when
the best a scheduler can do is yield priority to Class I, thus
bringing the performance of MARS and SPS closer.
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Figure 5: Comparison of the schedulable regions as obtained for
video sources with high and low autocorrelation respectively, for
SPS scheduling, and multiplexing at the slice level.

6 Conclusions

In this paper we have addressed both the modeling problem
for real time video sources and the performance of scheduling
systems loaded with multiplexed video sources.

We have presented models that can accurately match the
behavior of the video bit stream both at the frame and the slice
level. At the frame level the focus is on modeling the sample
path of the video source stream as an aggregation of scenes,
representing different levels of activity. At the slice level the
emphasis was on modeling the pseudo-periodicity that the slice
bit rate sequence exposes.

Our results clearly indicate that the magnitude of this im-
pact depends on the time scale on which video transmission will
be done in ATM networks.

On the frame level, we have shown that the time distance
between successive frames is too large for the autocorrelation
function to have a significant impact. It should be pointed out
though, that these results hold in the case of real-time video
transmission. If this is not the case, as for example in remote
image retrieval systems, or in the case of off-line video trans-
mission between two distant sites, autocorrelation might have
a different impact.

The results for transmission at the slice level are quite dif-
ferent. Since the time scale of video transmission in this case
is comparable to that of QOS delay requirements, spatial or
intraframe autocorrelation has a significant impact, which in-
creases with the percentage of video traffic in the total traffic
mixture. On the other hand, temporal, or interframe autocor-
relation does not have a significant effect.

Our results suggest possible ways of transmitting video over
ATM networks, so that correlation is decreased and the number
of sources simultaneously accommodated increased: One could
for example permute the order of slices transmitted either ran-
domly or deterministically in such a way that neighboring slices
of a frame are sufficiently separated in time from each other.
Such a transmission scheme is indeed currently under investi-
gation.

The raw data that we used for our modeling purposes was
obtained with a coding algorithm similar but not identical to
JPEG. The proposed MPEG standards will probably expose
different traffic characteristics. However, we strongly believe
that our results can be easily applied to the case of video traffic

produced from MPEG encoders. This is so because we showed
that the impact of long term correlations on real-time schedul-
ing systems is negligible, while short term correlations can be of
significance. It is natural to expect that this result will apply,
regardless of the coding scheme used. On the slice level in par-
ticular, all existing work points out to similar autocorrelation
functions as the one that we modeled [11]. In addition the mod-
els that we introduced here can be useful in the study of any
future coding scheme, since they allow for reproduction of se-
quences with a wide range of distributions and autocorrelation
functions by just tuning a few parameters.
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