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RATE CONSERVATION FOR STATIONARY PROCESSES

JOSEP M. FERRANDIZ* aND
AUREL A. LAZAR,** Columbia University

Abstract

We derive a rate conservation law for distribution densities which extends a result
of Brill and Posner. Based on this conservation law, we obtain a generalized Takacs
equation for the G/G/m/B queueing system that only requires the existence of a
stochastic intensity for the arrival process and the residual service time dis-
tribution density for the G/GI/1/B queue. Finally, we solve Takacs’ equation for the
N/GI/1/00 queueing system.

PALM PROBABILITY; STOCHASTIC INTENSITY; TAKACS FORMULA; GROUP ARRIVALS

1. Introduction

Most basic results in queueing theory are derived directly or indirectly from rate
conservation principles. These include for instance, the global balance equations for
equilibrium probabilities of Markovian queueing networks and the arrival theorem. In
general, these principles relate the so-called customer and time averages of queueing
systems. In the queueing literature, rate conservation has been extensively studied by
Franken et al. [6], [9].

In this paper, we present a rate conservation formula which extends a result of Brill
and Posner [4] to a non-Markovian setting. This formula relates the stationary distribu-
tion density of a process at a point x to the number of upcrossings and downcrossings of
level x by this process per time unit.

The rate conservation formula obtained in conjunction with Papangelou’s theorem
[1], [3], allows a simple derivation of a generalized Takacs equation for the G/G/m/B
queueing system. For its derivation, we require the existence of a stationary regime
for the queueing system and of a stochastic intensity for the arrival process. We also
apply the conservation law to obtain the residual service time density for G/GI/1/B
queues.

As a further application of the rate conservation formula, we solve, in the transform
domain, Takacs’ equation for the N/GI/1/00 queueing system [13].
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Rate conservation for stationary processes 147

Throughout this paper, we use the notation and terminology of Baccelli and Brémaud
[1] for Palm probability. For the notions related to stochastic intensity, the reader is
referred to Brémaud’s monograph [2].

In Section 2, we prove the rate conservation formula. Section 3 contains the
derivation of Takacs’ equation for the G/G/m/B queue and the residual service time
distribution density for the G/GI/1/B queueing system. In Section 4, the rate con-
servation formula is applied to the study of the workload distribution density of an
N/GI/1 queue. Finally, the conclusions of this paper are in Section 5.

2. Rate conservation for distribution densities
Let (Z(2)),eg be a right-continuous process with left-hand limits and let

Z( —Z(t
Z’( t) =lim _(ﬁ)___(__) s
elo* [
be the right-hand derivative of Z(-). We assume that this derivative exists.
We define a point process N = (T, ),ez by
Ne= X 1[Z(t)# Z(t7)],
teCc
where C is a Borel-measurable set on the real line. This point process counts the
discontinuity jumps of Z(-). We assume that N has a finite rate, i.e. A = E[N;;] < o0 and
denote the Palm probability associated with N by P .
Suppose that for x ER

2.1 PR (Z(0)=x)=P}(Z(0")=x) =0,

and that (Z(¢)),eq admits a density A(x) with respect to P. Then, the following rate
conservation formula holds.

Proposition 2.1. If (Z(t)),eg satisfies condition (2.1) at x ER and admits a density

h(-) with respect to P, then
h(x)E[Z"(0)| Z(0) = x]
(22) =AES[1(Z(07)> x)1(Z(0) = x) — 1(Z(0~) = x)1(Z(0) > x)].

Proof. Apply the inversion formula [1] between the Palm probability P$ associated
with N and the stationary probability P to Z’(t)1y, , ,,(Z(2)). It yields

(2.3) E[Z"(0)1y: x+(Z(0))] = AER [ fo § Z’(t)lwm(Z(t))dt] .

The proposition will be proved by evaluating the integral in (2.3), dividing
both members of the equation (2.3) by ¢ and letting ¢ —0. For simplicity we write
Y = [§ Z/ 0y Z ().

Let 1,=0 and

1, =inf{t:7,_,<tand (Z(t)=xor Z(t)=x + &)} AT, nzl.
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Thus, (z,),en is the sequence of crossing times of levels x and x + ¢ during [0, T}[ by the
process Z(t). Since Z(-) is continuous in [0, T}[ and since Z(z,) is either equal to x or
X + ¢, it follows that Y will be non-zero only if there is an odd number of crossings of
level x or of level x + ¢ in [0, 7}[ or both. With this observation, one can evaluate Y by
considering the different possible positions of Z(0) and Z(7,") with respect to x and
X +e.

(i) If Z(0)Elx, x + €] and Z(T7)E]x, x + €], then Y = Z(T;) — Z(0).

(i) If ZO)>x+¢ and Z(T7)E])x,x +¢], then Y=Z(T7)—(x +¢). The
symmetric case is obtained when Z(0)E]x,x +¢] and Z(T7)>x +¢. It yields
Y=x+¢—Z(0).

(iii) If Z(0)>x + e and Z(T) = x, then Y = — ¢. The symmetric case is obtained
when Z(0) =xand Z(T;)>x +¢&. Ityields Y =e¢.

(iv) If Z(0) = x and Z(T])E]x, x + ], then Y = Z(T") — x. The symmetric case is
obtained when Z(0)E€]x, x + €] and Z(T]) = x. It yields Y = x — Z(0).

v) f Z(0)>x + eand Z(T7) > x + ¢, then Y = 0. The symmetric case is obtained
when Z(0)=xand Z(T7) = x. It yields Y = 0.

Note that in all cases | Y| = ¢. It follows from Equation (2.3) that

E[Z(0)1}, . +(Z(0))]
= ABR(Z(T) — ZOD s 4 o ZODYy x4 i (Z(T7))
+(Z(T7) — (x + eDUZ(0) > x + &)y, 4 o(Z(T7))
(2.4) +(x + & — ZO) s  ZOYUZ(TT) > X + £)
+&{1(Z(0) = X)N(Z(T7) > x + &) — 1(Z(0) > x + &)1(Z(T{) = x)}
+(Z(T7) = X)UZ(0) = x)1, 14+ (Z(TT))
+(x = Z(0)1}, 1+ o(Z(ONUZ(T) = X))

Since in all the cases |Y| =&, one gets for the first term on the right-hand side
of (2.4),

|EN[(Z(TT) = ZODYye x4 ef(ZOD Yy x4 of(Z(T7 )]
= eER [Ny + i ZON s 4. (Z(T1))]
= eER (11 +o(Z(0))),

and thus, from condition (2.1), we get
o1
18131; |ER ((Z(T7) — ZO)y x4 o Z(O)1yy 44 o(Z(T )] | = 0.
Using the same method one can show that all terms but the third one (iii) on the

right-hand side of Equation (2.4) will vanish after dividing by ¢ and taking limits as
& —0. Thus, the limit
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lim E[Z'(0)1 )+ +(Z(0))] ,
el0 €

exists and, after a simple conditioning on the left-hand side of (2.4), we have
h(x)E[Z'(0)| Z(0) = x]
= AEJ[1(Z(0) = x)1(Z(TT) > x) — H(Z(0) > x)1(Z(TT) = x)].
If g(T7) = (Z(T7) > x)E[I(Z(0) = x) | Z(TT)),
ER [1(Z(0) = x)UZ(T7) > x)] = E} [¢(T7 )] = E} [g(07)],

(2.5)

by the 6y, invariance of Py . Thus,
EX [1(Z(0) = x)1(Z(TT) > x)] = ER [1(Z(0) = x)1(Z(0~) > x)],

and the result follows.
Substituting 1(Z(T7)=x)=1-1Z(T;)>x) and 1(Z(0)=x)=1—1(Z(0)> x)
into Equation (2.5), and using the invariance of the Palm probability yields

(2.6) h(x)E[Z'(0)| Z(0) = x] = AEJ[1(Z(0 ") > x) — 1(Z(0) > x)].

Equation (2.6) has also been derived in [10].

Note that Equations (2.2), (2.5) and (2.6) are all rate conservation formulas. Equation
(2.2) gives a conservation formula for the rate of crossings of level x at discontinuity
Jjump times and Equation (2.5) for the rate of crossings of level x between discontinuity
jumps.

In an ergodic context, we can interpret EJ[f(Z(0))] and EJ[f(Z(0~))] respec-
tively as

n
tim ~ § fZ(T)
and
1 »

lim - ¥ A(Z(T7)).

n=o N =]
Hence, Equations (2.2) and (2.5) also provide a practical method to evaluate the density
of (Z(t)),er by relating it to the empirical average number of upcrossings and down-
crossings at level x per time unit. This interpretation was first pointed out by Brill and
Posner [4].

Remark (Brémaud, personal communication). For Proposition 2.1 to hold we have
assumed that

(i) PY(Z(0) = x)=P%(Z(0~) = x) = 0 holds.

(i) Z(t) admits a density with respect to [P at x.

These two assumptions have implied the existence of the limit

1
lim ~ E[Z"(0)1yx x4+ (Z(0))).
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In general, the existence of this limit, does not a priori guarantee that Z(0) admits a
density with respect to P. However, in most queueing applications, (Z(t)),eg evolves
according to a differential equation of the form Z = f(Z) for some continuous function
f(-). In this case

.1 1
lelfg! " E[Z'(0)1y; x4 (Z(0))] = f(x) l,lf? " E[1y 1 (Z(0))],
and thus (Z(¢)),eg admits a density with respect to P.

3. Applications of the rate conservation formula

We apply the rate conservation formula to derive a generalized Takacs equation for
the G/G/m/B queueing system and the residual service time distribution density for the
G/GI/1/B queue. Further applications can be found in [5] where the joint distribution of
the residual service time and the queue length for an N/GI/1/B queueing system is
obtained.

3.1. Takdcs’ equation. We consider a G/G/m/B queue (m servers and a waiting
room of size B) with a work conserving discipline. We assume that its workload W(-)
satisfies Equation (2.1) for x > 0.

The arrival times to the system will be denoted by (T,),e; and we let A, =
2, 1.(T,), for C Borel measurable. The arrival rate will be denoted by 1. We assume
that the arrival process admits a (PP, %)-stochastic intensity (4,),cg, Where & D FV.
We define

A(W(0)) =E[4,| W(0)],

and, if (g,),<z is the sequence of service times,
FW(07),y)=ER[1(gy = y)| W(0)].
Let W’(¢t) be the right-hand derivative of W(t) and
r(W(0)) = —E[W(0)| W(0)]

be the system service rate (average number of busy servers given the workload). If we
denote the workload density by #(x), then Proposition 2.1 gives

3.1 h(x)r(x) = AES[1(W(0™) = x)1(W(0) > x)].

Equation (3.1) was obtained by Brill and Posner [4] for a M/GI/1 queue.
In what follows we derive Takécs’ equation for the G/G/m/B queueing system. From
Equation (3.1),

(3.2 h(x)r(x) = AEQ[M(W(07) = x)(1 — F(W(0~), x — W(0™)))),
and from Papangelou’s theorem [1],
h(x)r(x) =E[A41(W(0) = x)(1 — F(W(0), x — W(0)))]
=EAMW(O)1(W(0) = x)(1 — F(W(0), x — W(0))].
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From the work conserving discipline assumption, r(x) >0 for x >0 and thus the last
equation can be rewritten as

A0

hery=(1 - 21— Fo, %)

r(x)
3.3) ) ;
+———-f Aw)1 — F(w, x — w))h(w)dw,

r(x)Jo

where 1 — p = P(W(0) = 0). Equation (3.3) is the generalization of Takéacs’ equation to
the G/G/m/B queueing system.

3.2. Residual service times. Let R(t) be the residual service time at time ¢ of a
G/GI/1/B queueing system with a work conserving discipline. If the system is
empty, R(t)=0. Otherwise, R(¢) is the remaining service time for the customer
being served at time ¢. R(¢) has discontinuity jumps at departure times that do
not leave behind an empty system and at the arrival times that find an empty
system. These jump times form a point process N. Hence, if A is the arrival rate
of non-blocked customers, R(¢) has discontinuity jumps at a rate A. If we take
Z(t) = R(t) in Proposition 2.1, it follows that the density 4(-) of R(t) exists and is
given by

h(x)=AEJ[1(R(07) = x)1(R(0) > x)].

Butift = 0is a discontinuity of R(¢), it must be that R(0 ~) = 0 and R(0) = g, where g, is
the total amount of service required by the customer starting service at time 0. Hence, if
F(x) is the distribution of g,, we get

3.4) h(x)=A(1 — F(x)),

as expected.

4. Rate conservation for the N/G/1/c0 queueing system

The N/GI/1/c0 queueing system has been studied by Ramaswami in [13]. We begin by
defining N-processes [11] by time changes on a Markov chain [5], [7].

4.1. Construction of N-processes via time changes. Let (X,),ep be a positive
recurrent Markov process in equilibrium taking values in {1,--:,L, L + 1} and let
E={l,---,L}. The intensity matrix of (X,)ep partitioned according to E is
given by

E {L+1}
E (Q a
@.1) {L+1} (ﬁ - 1)’

where Q = (g,,) is an L X L substochastic intensity matrix, i.e., such that Q1 <0
and g, =0 for / # m. Since (X,),er is positive recurrent, the L X 1 column vector
a=(a;);515. is such that @1 +a=0 and the 1 XL row vector = (8,5, 1S
such that f1=1. Thus, if we let ¢ =2,,.,49,, then the rate out of state / is
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g, + a;, i.e., the /th diagonal element in Equation (4.1), is equal to — (g, + ),
1=I/=L.
Consider the additive functional

B(s) = fo 10X, # L + 1)du.

The above functional represents the time spent outside of state L + 1 by (X,)er,
up to time s, s > 0. Its right- and left-continuous inverses are respectively denoted by
7,and g,, i.e.,

1, =1inf{s: B(s)>1t}
and

o, =inf{s: B(s)=t}.

It follows then that the process (Y,),ep, defined by Y, =X,, t =0, is a positive
recurrent Markov process on E with intensity matrix Q + af [5]. The equilibrium
distribution of (Y,),;, will be denoted by @ = (). The process (Y,),cp, Will be
referred to as the phase process (or simply the phase). The jumps of (Y,),cg, Will be called
phase transitions. Phase transitions can be of two types depending on whether or not
they correspond to a stopping and restarting of the clock of the process (X,)er,. If
phase transition corresponds to a stopping and restarting of the clock, we say that it is a
renewal transition. Otherwise, we say that it is a pure phase transition. In what follows,
we define the N-process as a marked point process (7, U,),cz. We begin by giving the
probabilistic description of its jump times.

Consider L independent Poisson processes N',- - -, Nt of respective rates 4, - -, 4;.
We define the following point processes:

L
(4.2) a2 =3 f 1(Y, = N'(ds),
|=1JC
(4.3) Ag =3 1(Y,-# Y)1(o, =1,),
teC
(4.4) Ar = Y o, # 1),
teC

where Cis a Borel set of R... The points of 47 correspond to pure phase transition times
of (Y,),er, and those of 4" to renewal phase transition times. The process A is a doubly
stochastic Poisson process. Its points are called Poisson arrivals. Note that 4?, A7and 4"
have no common jumps.

Let A be the point process defined by

Ac=AL +Ag + AL,

where C is a Borel set of R,. The extension of 4 over the entire real line can be
easily achieved. Thus, if (7,),ez is the sequence of jump times of 4 then A =
=, (T, €C), where C is now a Borel set of the real line and (T}),ez is obtained by
merging the jumps of A7, 49 and A". Next, we define the sequence of marks of an
N-process.
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Let (U, )<z be a sequence of random variables taking values in N with the following
conditional distributions:

b(n) =EL [1(Uy = n)| Yo- =1],
ap,(n)=E3[1(Uy=n)|Yy-=1,Y,=m], ifl#m,
4.5) aj(n)=0, ifn >0,
aj(0)=1,
ap, (n) =E% [I(Uy=n)| Yo- =1, Y, =m].

Thus, b(n), 1 =/ =L, is the probability that the mark of a Poisson arrival when
the phase is / is equal to n,n = 0. We can assume without loss of generality that
b(0)=0.If 1 =/, m =L, then af,(n) is the probability that the mark of an arrival
at a renewal phase transition from / into m is equal to n, n = 0. Similarly, for / # m,
af,(n) is the probability that the mark of an arrival at a pure phase transition from
linto misequalton,n=0.

We can now formally define the N-process.

Definition 4.1. The marked point process (T,, U,),ez is called an N-process.

Intuitively, an N-process is obtained as follows. When Y, = /, there are group arrivals
at a Poisson rate 4,. Furthermore, there will also be a group arrival at every phase
transition. In all cases, the group size of an arrival is conditionally independent of the
arrival process given the phase transition and the arrival time.

4.2. A basic result for N-processes. 1In [11] it is shown that the moment generating
function of Nj,,) (number of arrivals in ]0, ¢]) is of the form

(4.6) P(t,z)= ¥ z"E[1(Ny, = n)] = mexp{R(z)t}1.
nz0

The matrix R(z) will be called the generating matrix of the N-process. In what follows we
characterize this generating matrix.

The z-transforms of (b,(n)), =0 and (af, (1)), are respectively denoted by (z) and
ak (z), k = q, r. Let b(z) be the diagonal matrix with entries by(z),- - -, b (z). Similarly,
for k = g, r, let @(z) be the matrix with entries df, (z), 1 =/, m < L.In[11] it is shown
that the generating matrix R(z) is given by

4.7 RZ)=AbE@)—I)+ Qcd'(z) + aBod'(z),
where o denotes the entrywise matrix product.

4.3. The N/GI/1/ queueing system. The arrival process to an N/GI/1/c queue is
an N-process (7,,, U, ), ez, Where (T},),ez and (U, ),z are, respectively, the sequences of
arrival times and their corresponding group size. The packet service times are indepen-
dent of the arrivals and of each other and have a distribution F(-). Group arrivals are
processed on a FCFS basis, with random order within a group.
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The system workload is denoted by W(t),cg. Takacs’ equation characterizes the
system workload distribution density as the solution of an integral equation. Its solution
in the transform domain for the M/GI/1/ system is a classical result in queueing theory
[8]. A detailed study of N/GI/1/cc queueing systems has been carried out in [13] using
matrix geometric methods [12].

4.4. The solution to Takdcs’ equation. In this section we derive Takacs’ equation
using rate conservation arguments for the N/G/1/cc queueing system. We achieve this
by applying Equation (2.6) to the process

Z({t)= WY, =m).

Finally, we obtain the Takacs equation in the transform domain.
Let A be the point process generated by the discontinuity jumps of (Z(t)),eg. Its rate
will be denoted by 4,. If

H(x,m)=P(W(Q0) =x, Yo=m), x>0,
we have from Equation (2.6)

(4.8) dH;;);m) = LEAM(W(0)> x)1(Yy, = m) — I(W(0 ™) > x)1(Yy- = m)].

Since

1(W(0)>x)1(Yo=m)= Y H(W(0)>x)1(Yy=m)I(U,= n),

nz0

we have to evaluate the expression ,EJ[1(W(0) > x)1(Y, = m)I(U, = n)].
Let F,(-) denote the n-fold convolution of F(-). We have

AEA(W(0) > x)1(Y, = m)I(Uy = n)]
(4.9) = LE1(Yy = m)I(U, = n)]
— MER[F,(x — W(0~)1(Y, = m)I(Uy = n)].

Furthermore, from the exchange formula [1], the second term on the right-hand side of
Equation (4.9) becomes

AER[Fa(x — WO~ )1I(Yy = m)I(U, = n)]
= 4B [F,(x — W(0 ) 1(Y, = m)1(Uy = n)]
(4.10) + AE%[F,(x — W(0~)1(Y, = m)I(U, = n)]
+ A B3 [Fy(x — WO )Y, = m)N(Uy = n)].

We compute each one of the terms on the right-hand side of Equation (4.10). For the first
term, applying Papangelou’s theorem to 47,
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A B [Fo(x — W(0~)1(Yy = m)I(U, = n)]
4.11) = Ayr b (N)ES: [F(x — W(0™)1(Y,- = m)]
= Anbm ()E[F,(x — W(O)1(Y, = m)].
For the second term, applying Papangelou’s theorem to 4,
AgeBQe [Fo(x — WO -N1(Y, = m)I(Up = n)]
(4.12) = ﬂw 2 afy, (M)E3« [Fy(x — W(0™)N1(Yy- = (Y, = m)]

= 1? Qim@f (N)ELF, (x — WO)I(Y, =])].

The third term on the right-hand side of (4.10) is computed in a similar fashion:
A EQ [Fo(x — W0 )N1(Y, = m)I(Up = n)]
(4.13) =Ay ZI) af (MEY [Fo(x — W0 )N1(Y,- = D1(Yy = m)]

= lea:ﬁmaz’m(n)E[F..(x — W(ON1(Y, =1)].
The first term of the right-hand side of Equation (4.9) can be obtained by letting x — oo

in Equations (4.11), (4.12) and (4.13). One gets, after summing over n,
(4.14) MEAN(Yy =m)] = Tyl + T TG + Z Moy,

I sm
Therefore, combining Equations (4.11), (4.12), (4.13) and (4.14),
AEAL(W(0) > x)1(Yy = m)] = Rph + 2 T qm + 2 Moy By

-3 (A B (ELE, (x — WONL(¥, = m)]

nz0
(@.13) + 3 Guaty (VELE, (x = WON(Ys = D]
+ by (ELF, (6~ WON(Fo = 1)1) .
Similarly,

AESLW(07) > X)1(Y,- = m)] = A ES [I(W(0~) > x)1(Y,- = m)]
+ Ao EQe [1(W(07) > X)1(Y,- = m))
+ A E3 [1(W(07) > x)1(Y,- = m)]

= (Am + G + )7 — E[(W(0) = x)1(Y, = m)]}.

(4.16)

Note that since g, = — (@m + o),
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7[,,,2.,,, +IE T Qim +;nlalﬂm _nm(j'm + 4n +Olm)=0,
*m

and thus, Equation (4.8) finally becomes

AHCCM) _ 3+ g + o Hx, m)
dx
4.17) +3 [ Ea-w (Ambm<n)H<dw, m)+ S quaty ()H(@w, 1)
nz0 + l#m

+ by (@, D).
!
Equation (4.17) is in fact Takacs’ equation. A more compact form is obtained taking
transforms on both sides of Equation (4.17). For that purpose we define

A(u, m) =f e~ H(dw, m),

R4

F(u)= f e ()

Then, one gets
ulH(u, m)— H(0, m)l = — H(u, m)A,[b,,(F(u)) — 1]

(4.18) = S 10, Dlaindty (P + coBodi (Pl

If we let H(u)=(H(u, 1), - -, H(u, L)) and H(0)= (H(0, 1),- - -, H(0, L)), Equation
(4.18) becomes

(4.19)  u[Hu) - H(O0)] = — HWIAB(F(u)) — 1) + Q * 6%(F(w)) + aB - & (F(w))].
Finally, from Equation (4.7),
H)[ul + R(F(u))] = uH(0),
which implies H(0) = H(0) and for u > 0,
(4.20) H(u)=uH©O)[ul + R(Fu))] "

Equation (4.20) is the transform form of the Takacs’ formula for the N/G/1/c0 system. It
has been derived in [13] using a more elaborate approach.

In particular, letting a; = 0, af(n) =0 for n >0, and k = g, r and b(z) = z, i.e. the
Markov modulated case, we get

Hu)=uHO)ul +Q — (1 — Fu)A]~".

5. Conclusion

The rate conservation formula we derived in this paper has a simple intuitive
interpretation. The rate out of a state of a real stochastic process with jump discon-
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tinuities is equal to the average number of upcrossings minus the average number of
downcrossings of that state by the process per time unit.

The practical importance of this result can be seen in the context of monitoring
integrated telecommunication networks. For instance, assume that one wishes to
monitor the packet delay at a network node. This delay can be studied by considering the
node workload. For voice and video connections, average delays are not sufficient for an
accurate quality assessment. Thus, one needs to monitor delay distributions. The rate
conservation formula introduced provides an empirical method for the computation of
the system delay distribution density by counting the upcrossings and downcrossings of
the load levels per time unit.

This result is particularly useful for processes that leave any given state at a con-
stant rate (Z’(0) = constant). For instance, explicit results could be obtained for
the residual service time density of a G/GI/1/B queueing system because R’(0) =
— 1. We derived a generalized Takacs formula for the G/G/m/B system but no
explicit solution was provided. The difficulty here lies in the evaluation of the
function r(-). Finally, the rate conservation formula was applied for a
compact derivation of the waiting time distribution of the N/GI/1/c0 queueing
system.
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