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he ability to rapidly create and deploy new and novel
services in response to market demands will be the key
factor in determining the success of the future service
provider. As the high-speed switching and communica-

tion infrastructures improve and bandwidth becomes a com-
modity, it is envisioned that the competition for product
differentiation will increasingly depend on the level of sophis-
tication, degree of flexibility, and speed of deployment of ser-
vices that a future provider can offer [1]. These factors in turn
depend heavily on the flexibility of the software architecture
in place in a provider’s operational infrastructure. 

The current generation of telecommunication networks is
based on an architecture over 30 years in age [2]. The basic
tenet behind the architecture is the implicit assumption that

Customer Premises Equipment (CPE) has no computational
capabilities and limited modes of interaction. This assumption
eventually translated into a design somewhat akin to a main-
frame cluster model where a small number of computationally
powerful processors called Service Control Points (SCPs) are
distributed throughout the network and take on the responsi-
bility of service provisioning for all connected CPEs. As in the
mainframe cluster model, the CPEs themselves act solely as
the user interface channeling simple user requests and
responses into the system. Within the network, dedicated pro-
cessors running specialized monolithic software optimized for
efficiency process, coordinate and translate these requests and
responses into the necessary data and connections that consti-
tute the service.

The primary deficiency of this architecture is its monolithic
view of the service provisioning process. The network opera-
tor assumes almost complete control over the decisions per-
taining to the design, introduction, and management of
services since it owns the SCPs. Interfaces to the service man-
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Abstract

The recent move toward market deregulation and open competition has sparked a
wave of serious introspection in the telecommunications service industry. Telecom
providers and operators are now required to open up their primary revenue chan-
nels to competing industries. The competition for product differentiation increasingly
depends on the level of sophistication, degree of flexibility, and speed of deploy-
ment of services that a future provider can offer. These factors in turn depend heav-
ily on the flexibility of the software architecture in place in a provider’s operational
infrastructure. Within this context, we examine the service architecture of two major
global communication networks — the Telephone Network and the Internet and
explore their weaknesses and strengths. We discuss the realization of an open pro-
grammable networking environment based on a new service architecture for
advanced telecommunication services that overcomes the limitations of the existing
networks. Our approach to network programmability stems from two angles — one
conceptual, the other implementational. In the first, we attempt to develop a service
model that is open and reflects the economic market structure of the future telecommuni-
cations service industry. We believe that investigating such a model will help clarify
some of the pertinent issues confronting the telecommunications service industry
today as it comes of age. Furthermore, we introduce an extended reference model
for realizing the service marketplace and present it as a vehicle for creating multime-
dia services with QoS guarantees. In the second, we investigate the feasibility of engi-
neering the reference model from an implementation standpoint. We describe a
realization of the open programmable networking environment as a broadband
kernel. Called xbind, the broadband kernel incorporates IP and CORBA technologies
for signaling, management, and service creation, and ATM for transport. We address
some of the important QoS, performance, scalability, and implementation issues,
fully aware that our work has opened new vistas that call for additional research.
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agement infrastructure are often nonexistent, proprietary or
narrow in scope and intimately coupled to the hardware they
operate on. As a result, any third-party involvement in service
programming is limited to customizing only a small set of
operational parameters. Furthermore, deploying new services
in today’s telephone networks takes up to several years pri-
marily because the software systems with which they need to
be integrated are enormously complex and prone to many
cross-service interactions. 

IP based networks like the Internet are known for their
scalability and resilience to partial failures. Their reliance on
datagram forwarding on a hop-by-hop basis makes them ideal
for the transport of short control messages with little or no
call holding times. Connection-oriented broadband networks
based on asynchronous transfer mode (ATM) technology per-
mit a much higher degree of predictability to be engineered
relatively simply, because of their inherent resource partition-
ing capability. They are thus highly suited for transport of
streams with quality of service (QOS) requirements and long
call holding times. 

The capabilities of modern computer systems has advanced
well beyond the stifling limitations imposed by these early
architectures. Modern software engineering has advanced to
the point where industry standards [3] now exist for imple-
menting platform independent distributed component based
software. These and newer emerging standards allow the con-
struction and packaging of independent software components
into suites which can further be assembled via application-
level frameworks to create a truly distributed information
infrastructure on a global scale. While these modern software
engineering aids by themselves do not solve the fundamental
problems inherent in any scalable distributed system, they do
provide an excellent infrastructure for dealing with problems
of programmability, portability, maintainability and reusabili-
ty, problems frequently faced by the telecommunications soft-
ware industry.

Our approach to these problems stems from two angles one
conceptual, the other implementational. In the first, we
attempt to develop a service model that is open and reflects
the economic market structure of the future telecommunica-
tions service industry. We believe such a model will help clarify
some of the pertinent issues plaguing the telecommunications
service industry today as it comes of age. In the second, we
investigate the feasibility of engineering this model as an open
programmable networking environment. We address some of
the important implementation issues fully aware that our work
has opened new vistas that call for additional research.

We discuss the realization of the open programmable net-
working environment as a broadband kernel. Called xbind [4, 5],
the broadband kernel is a programmable operating platform
that supports the creation, deployment and management of
networked multimedia services (e.g., virtual circuits, virtual
paths, virtual networks, multicast, etc.) and mechanisms for
efficient resource allocation (e.g., connection management,
route management, admission control, QoS mapping, etc.).
The term “kernel” is deliberately used to draw a parallel
between its role as a resource allocator and extended machine,
and that of a typical operating system. The broadband kernel
behaves as a resource allocator because it mediates and arbi-
trates between conflicting requests for resources made by vari-
ous parties in the system. It functions like an extended
machine because it provides a simplified means of accessing
fundamental system services by abstracting away the opera-
tional complexities of provisioning these services.

xbind exploits the advantages offered by IP and ATM tech-
nologies without necessarily suffering their shortcomings. This
is based on the observation that while typical inter-object

communication modes are mostly restricted to exchanges of
short messages, the transport of multimedia streams involve
typical call holding times several orders of magnitudes longer
in duration. Furthermore, while inter-object communication
requires reliability even under adverse partial failure condi-
tions, multimedia stream transport requires strict guarantees
on delay bounds and losses. In this respect, it seems almost
natural to use IP for inter-object communication (which we
term signaling) while ATM for media stream transport. 

We begin the second section by proposing a simple classifi-
cation scheme for services. We use this scheme to examine
the service structure of two prominent networks — the Tele-
phone Network and the Internet. In the third section, we
introduce the basis of an economic model for describing
future telecommunication services based on market forces.
We believe this will be the end result of a natural evolution of
the industry given the current trends in deregulation and open
competition. In the fourth section we propose a model for a
service architecture based on the principles of open APIs that
closely parallels our economic model and briefly list out some
of its principle components. In the fifth and sixth sections we
present the service creation and the resource allocation
model, respectively. The engineering aspects of architecting
the xbind broadband kernel including QoS, performance, scal-
ing, and implementation issues are dealt with in the seventh
section. Concluding remarks are presented in the final section. 

Service Architectures: A Taxonomy of the
State of the Art

Aservice architecture defines the structure and mode of
operation of a facility that offers a service. There are two

key categories of services in most communication infrastruc-
tures:

Basic Communication Services — which focus on the mecha-
nisms and the interactions between network entities so as to
enable the communication process

Content Services — which focus on the means of access, pre-
sentation, and organization of content resources in the net-
work to facilitate communication. 

A third category of services deals with value-added
enhancements over the basic communication services. Con-
ceptually these services lie between the two basic categories
described above in the sense that their utility is dependent on
the functioning of the basic communication service yet by
themselves are not considered as such. These services are
exemplified by the Advanced Intelligent Network (AIN) [6]
services and range from convenience features like call for-
warding and caller ID, to more complex services like mass
calling.

Service Requirements; The Need for Domains 
The conflicting forces of market demand for flexibility,
accountability, and robustness makes the task of architecting
an open service model a difficult technical challenge. Basic
communication services lie at the base of the service spectrum
supporting the fundamental mechanism for information
exchange upon which the other service categories are built.
Thus, the primary requirement of basic communication ser-
vices is one of robustness, high availability, and low failure
rate. Content services, on the other hand, lie at the opposite
end of the spectrum. Market forces demand these to be highly
customized, user-oriented, and easy to deploy. 

Hence, as we ascend the hierarchy of services from the
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basic communication services to
sophisticated content-driven
end-user services, the need for
programmability also rises. The
difference in requirements for
these service categories often
result in different technical solu-
tions being employed for
addressing the issues pertinent
to each category. In effect these
enforce a natural domain-like
separation between network
concerns, service concerns and
user concerns. A similar view is
reflected in the Telecommunica-
tions Information Networking Architecture Consortium
(TINAC) stakeholder domains [7] which classify TINAC ser-
vices into network provider domains, service provider domains
and user domains. 

In the Internet there is no strict distinction between net-
work provider, content provider, and user [8]. In practice,
domain-like separation (usually for security and administrative
reasons) is typically imposed through artificial means (like
addressing structure and naming). In this model, any user can
also be: 
• A network provider by achieving physical connectivity with

the Internet and offering connectivity services to other users. 
• A content provider by making available content for public

access and advertising its availability through a directory
service. 

Service Models: A Question of APIs? 
The service architectures of the Telephone Network and the
Internet differ in several aspects. In the Telephone Network,
historical assumptions about CPE capabilities have led to a
two tiered architecture consisting of a user domain and a net-
work domain. (The service architecture of ATM Networks is
closely mirroring the one of the Telephone Network.) Users
lie at the periphery of the system and access network services
via a thin interface known as the User Network Interface
(UNI) [9] while within the network domain, interconnection is
achieved via a complex Network Node Interface (NNI). In
this model, there is little distinction between network provider
and service provider, since most useful services (in particular,
Intelligent Network (IN) types) require the intimate network
support available only through an NNI. In this sense, although
there is a clear separation between bearer services and AIN
services in a technical and engineering sense, in reality, until
only recently the administrative, operational, and business
concerns of an enterprise often make it more lucrative to
merge network and service provider roles as one. For instance,
in the past, protective regulatory structures had always afford-
ed network operators the luxury of using AIN services as a
value-added component to enhance the marketing and sales
of plain old bearer services.

The recent 1996 Telecommunications Act, however, has
demolished to a considerable extent many of these protection-
ist measures, paving the way for freer competition at all levels
in the market. One of the more significant changes mandated
by the new regulations effectively require that network opera-
tors provably demonstrate capability to support third party
service provisioning. These and other emerging trends are
indicative of the need for a serious reexamination of current
telecommunication service models (and the ensuing business
practices) or risk serious financial consequences.

The intimate coupling of the communications and service
architecture makes the introduction of new services, particu-

larly those that do not conform
to the traditional point-to-point
connection paradigms, clumsy
and restrictive because: 
•The interface between the net-

work and the service architec-
ture responsible for basic
communication-services-like
connection setup procedures)
is rigidly defined and cannot
be replaced, modified, nor
supplemented — all services
must be implemented in terms
of these.

•The interface between individ-
ual services is defined by the rather restrictive Intelligent
Network Access Point (INAP) protocol which all conceiv-
able service-level signaling procedures and semantics must
map into. 
An even worst situation presents itself if we examine the

boundary between the network and the user. The potential
diversity and flexibility requirements of user level services and
applications far exceed that of typical AIN services demanding
all the more an open environment for design, installation, and
operation. The simple UNI is difficult to extend and was
never designed for these requirements. 

In terms of APIs for content provisioning, the Internet far
excels the Telephone or ATM Networks. The Java virtual
machine [10] in effect can be seen as a freely extendible API
for content services whose basic parameters are programs
instead of simple types. Even at the basic communication ser-
vices level, IP options provide, in principle, a primitive API
for influencing basic packet routing policies. In reality, most
of these APIs are usually not fully implemented or supported.
For example, the source-routing option of IPv4 is an example
of an API which, if fully supported by all IPcapable hosts,
would provide an elegant solution to the problem of host
mobility without the need for tunneling.

Support for Quality of Service
There are many commonalities between approaches to guar-
antee QoS in the Internet and ATM networks. The key QoS
concerns in telephone networks represent a subset of QoS
issues in ATM networks. For example, the Integrated Services
Architecture [8] defines the notion of flows, a notion closely
associated with virtual circuits in ATM networks. QoS require-
ments, on the other hand, associated respectively with flows
and virtual circuits, seem to be widely apart. Although they
both attempt to codify the predictable statistical characteris-
tics of multimedia streams, the traffic assumptions about these
continue to differ considerably. The key challenge in guaran-
teeing QoS is in finding the appropriate trade-off between
transport efficiency and the complexity of the network control
architecture.

To better understand the tradeoff in QoS support, let us
consider a tandem link of an ATM network consisting of
three switches (Fig. 6). Each switch accepts traffic from a set
of input links, and routes each incoming cell through a non-
blocking switch fabric to the appropriate output port, where it
is queued in a link control unit for transmission over the out-
put link. This link control unit is essentially a multiplexer. It
consists of a set of buffers, a buffer manager, and a scheduler,
and it mediates the contention among cells from different
input links and among those of different traffic classes. Calls
of each class are distinguished by a particular cell interarrival
time distribution and a particular set of QoS requirements. 

The key question is: how many calls of each class may be

■ Figure 1. The layered market model.
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simultaneously supported while
guaranteeing the QoS for all class-
es? The answer to this question
comprises the definition of the
schedulable region originally
explored in [11]. The capacity of
the link, the size of the buffer, and
the scheduling algorithm used will
determine the size of the schedula-
ble region. Note that the schedula-
ble region can be approximated by
assigning an “equivalent band-
width” [12] to each of the streams
feeding the multiplexer.

From the point of view of admis-
sion control, the schedulable region
is a sufficient representation of the link as it summarizes the
net effect of all cell-level details. The separation between
scheduling and admission control emerged as the key princi-
ple for guaranteeing QoS on multiple time scales in broad-
band networks [13]. Admission control calls for resource
reservation mechanisms to be implemented in switches in
order to provide end-to-end QoS guarantees to virtual cir-
cuits. This requires virtual circuit specific state information to
be stored in switches thereby increasing the complexity of the
network architecture. Similar conclusions are arrived at in the
context of the Internet [8, 14]. 

In summary, the service model of the Telephone and ATM
Networks is one of provider and customer. This is a clear
demarcation in terms of the technology employed (as reflect-
ed by the APIs) and responsibility between the two distinct
roles. In the Internet this distinction is less clear and a peer-
to-peer model is perhaps a more accurate analogy, since users
and providers both run on essentially the same technology.
The obvious advantage of a peer-to-peer service model is one
of flexibility since there are no technical barriers from pre-
venting any user from setting up his/her own service. On the
downside, QoS, security, policy, and standards are harder to
enforce since they require cooperation from a much larger
community. Finally, let us note that network architectures that
guarantee QoS must control resources explicitly. Thus, this
requirement should be made explicit at the fundamental mod-
eling level. 

Moving Beyond the State-of-Art: A Layered
Market Model

In the previous section, we examined two primary service
models and their respective trade-offs. We note that a key

factor influencing the service model of a network depends to
a large extent on the types and levels of APIs available. In
fact, we believe that APIs primarily reflect the flexibility and
maturity of a service architecture and good APIs at the ser-
vice level are the macroscopic counterparts of good coding
practices at the implementation level.

In this section, we propose a three-layered API-based ser-
vice model inspired by the principle of the open market which
we believe better reflects the operating structure of the future
communication services industry. The basic tenet of the model
is the premise that the future telecommunication service
industry will operate within an open market where sufficient
alternatives exist to allow services to be traded as commodi-
ties. This premise is not unreasonable given the recent trend
towards deregulation and the general move towards stream-
lined horizontal market structures. 

The model is divided into three layers with each layer rep-

resenting a market. The lowest
layer is a hardware market where
numerous equipment manufactur-
ers and vendors offer hardware
and firmware solutions for building
the basic communication infras-
tructure. The customers of this
market are typically network carri-
ers, third-party software develop-
ers who specialize in developing
software for service providers and
a handful of service providers
themselves. The APIs provided by
vendors in this market allow their
users to write basic communication
services and the associated middle-

ware components. In the second layer is a middleware service
market where carriers, software developers, and middleware
service providers offer middleware service products to cus-
tomers who are in the user service provisioning business. The
APIs provided in this market are sufficiently high to allow
development of any consumer level service. Finally, at the
highest layer is the consumer services market where consumer
service providers compete to bundle, integrate, and customize
their wares in the most appealing form for the mass market.
Within each market there may exist brokers (as rightly recog-
nized by the TINAC stakeholder domain model [15]) whose
role is to mediate dealings between buyers and sellers who,
because of regulatory or business policies, cannot transact
directly. The model is shown in Fig. 1. 

The service model just described falls somewhere between
the Internet’s peer-to-peer model and the Telephone Net-
work’s strict provider-customer model. It allows, in principle,
the cooperation of any number of entities in the network for
realizing a common service as well as the competition among
services for network resources. As will be shown in the next
section, the corresponding engineering model can be
parametrized in such a way that the basic characteristics of
the peer-to-peer model as well as the characteristics of the
provider and costumer model can be recovered. Within each
layer (or market), players are free to enter and buy, sell or
rebundle each other’s services. Across layers, the relationship
takes on more of the form of provider–customer. Once again,
APIs play the crucial role of defining market boundaries. 

Realizing the Service Marketplace

T he layered market model outlined in the previous section is
merely an economic model reflecting the author’s vision of

the future telecommunications service industry. In the remain-
ing sections of this article, we focus on designing and realizing
a novel service architecture in the technical sense which close-
ly reflects the philosophy of the layered market model. The
architecture we describe is targeted towards multimedia ser-
vices as opposed to the economics of the general market
model just presented. We begin by briefly describing the
Extended Reference Model (XRM) for multimedia networks
and its decomposition into three submodels [16]. 

The Extended Reference Model
The XRM models the communications architecture of network-
ing and multimedia computing platforms. It consists of three
components called, the Broadband Network (the R-model), the
Multimedia Network (the G-model), and the Services and Appli-
cations Network (the B-model, see Fig. 2). The broadband net-
work is defined as the physical network that consists of switching
and communication equipment and multimedia end-devices.

■ Figure 2. Overview of the RGB decomposition of
the XRM.

Binding algorithms Programming
model

Service and applications network

Service abstractions

The multimedia network

QOS abstractions

The broadband network

G

B

R

Binding interface base



IEEE Network • September/October 199712

Upon this physical infrastructure,
resides the multimedia network whose
primary function is to provide the
middleware support needed to realize
services with end-to-end QoS guaran-
tees over the physical media-unaware
network. This is achieved by deriving
from the broadband network a set of
QoS abstractions. The latter jointly
define the resource management and
control space (see also Fig. 6).

The process of service creation
calls for resource reservation and dis-
tributed state manipulation algo-
rithms. From this perspective, the
multimedia network provides a pro-
gramming model that allows service
behavior to be specified and executed. Service abstractions
represent the states of a service created using algorithms
native to the multimedia network. These abstractions are used
by the services and applications network for managing and cre-
ating new services through dynamic composition and binding.

The Power of APIs in the XRM
As was mentioned previously, the functionality and indeed the
level of sophistication of a service architecture is chiefly char-
acterized by the APIs it offers. In the XRM, two types of
APIs are available for building services. These are represent-
ed by QoS and service abstractions that lie at the interfaces
between the R- and G- (also denoted R||G)models, and G-
and B-models (G||B), respectively. 

The primary power of these APIs is the tremendous flexi-
bility available for service providers and users alike to mold
the structure of the network in a way that reflects economic
policies and business practices. By this we mean that these
various levels of APIs allow different parties or stakeholders
to influence the partitioning of resources to carve out natural
market niches or even create wholly
new markets. In other words, unlike
the service architectures of the Tele-
phone Network or the Internet which
tend to fall along the lines of “all or
nothing,” we envision a future service
marketplace to be rich in choices, vari-
ations, and sophistication. 

R||G Interface APIs: QoS
Abstractions
R||G interface APIs abstract the
states of local multimedia resources
(both logical and physical) in the
broadband network. These resources
represent the devices, switches, links,
processors, and their respective capaci-
ties. Resources representing name
spaces (e.g., VP/VC Identifiers) are
also modeled. In the XRM, R||G
interface APIs are implemented as a
collection of distributed autonomous
software entities with open interfaces.
The open interfaces allow the states of
these resources to be monitored, con-
trolled, and managed remotely. More
importantly, they allow these resources
to be treated as independent pluggable
components and services to be built by

cleverly interconnecting combina-
tions of them.

From the perspective of the G-
model, the R||G QoS abstractions
appear as a collection of interfaces
called the Binding Interface Base
(BIB) [2]. Because the APIs in the
BIB are seen as basic building
blocks of a multimedia network,
they are key to several important
new initiatives including open sig-
naling (see OPENSIG [17]) and
multimedia integration frameworks
(such as DMIF within MPEG-4:
h t t p : / / d r o g o . c s e l t . i t / m p e g /
mpeg.htm).

We have recently announced
completion of the draft specification of the BIB [18] at the
OPENSIG workshop in Cambridge. The draft document and
associated IDL templates have been made available to the
community for comments and improvement. Also within ISO
MPEG-4, a proposal for using the BIB as an interface frame-
work for the “DMIF Network and Media Dependent Parts”
has been put forward by Nortel [19, 20]. It is expected that
this work along with the rest of the MPEG-4 proposals will
reach international standard status by 1999.

G||B Interface APIs: Service Abstractions 
In contrast to the R||G interface APIs, the G-model APIs pro-
vide access to the basic resource allocation and management
services (realized as algorithms of the multimedia network). 

These algorithms operate on the BIB with the goal of
implementing a set of rudimentary communication services
that allow the creation of simple point-to-point connectivity
with guaranteed service characteristics. Collectively, these ser-
vices are termed the Broadband Kernel Services (BKS) and
are likened to networking counterparts of low-level operating

■ Figure 3. Interfaces for a G-model multimedia
service.
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system services (e.g., memory management,
file system management, etc.). They
• Communication services such as connection

management, routing, and admission control.
• Device management services.
• Transport level services such as transport

monitoring and protocol stack manage-
ment.

• QoS mapping services.
In a similar manner that BIB interfaces are

assembled to create broadband kernel ser-
vices, broadband kernel services can them-
selves be assembled together to compose
even higher level services. An especially use-
ful class of such services are network services
such as:
• Virtual circuit services
• Virtual path services
• Virtual network services
• Multicast services

These services allow the construction of complex connectiv-
ity graphs in the network with associated transport and man-
agement facilities. The collection of network services at the
G||B interface is known as the Broadband Network Services
(BNS). Similar in concept to the BIB, the BNS defines a set
of independent interworkable services that may be assembled
to create yet higher consumer level services. 

The Service Creation Model

In accordance with the model described in the previous sec-
tion, network services are obtained by invoking distributed

algorithms in the space created by the BIB objects. For an
object-oriented software implementation this requires model-
ing the service interfaces as well as providing a service cre-
ation model. Both will be described next. 

Modeling Service Interfaces
High-level services (and conceptually all services) are com-
posed of an algorithmic component and a data component.
The algorithmic component expresses the execution logic of
the service instance while the data portion is an abstraction of
its state. In order for services to interact with each other, sev-
eral types of service interfaces are defined. These interfaces
reflect the roles that a service might play in the process of its
execution. Typically these include creation, operation, manage-
ment, and programming.

The service creation interface is akin a constructor of a
class [21]. It is the primary entry point of execution or instan-
tiation of a service and is called by the server once the service
template has been completely downloaded. The service opera-
tion interface defines the operational functionality of the ser-
vice and is usually the primary interface through which
services interact. The programming interface allows manipula-
tion of the service logic to be performed while a service is in
execution. Finally the service management interface allows for
monitoring of service states and manipulation of service
parameters. This is illustrated in Fig. 3.

Recall from the previous section that the service creation
process typically requires support for a number of middleware
services. The bubble in Fig. 3 represents their invocation
points embedded in the service script. 

Although there might exist services with little or no state,
the focus of our work is on those that require state keeping
since these are typically more complex and harder to scale.
Service states exist in two forms: 
• Local states which are of purely local significance

• Distributed states which are states associated with other ser-
vices and may be geographically dispersed
An example of a local state for a teleconference service

might be the number of current users, while a distributed
state might be the list of all switches through which a confer-
ence connection passes.

The Process of Service Creation: A Simple Example 
The service creation process in broadband networks includes
the creation of a service skeleton for an application, the map-
ping of the skeleton into the appropriate name and resource
space, the association (or binding) to the application of a
media transport protocol, the binding of the transport applica-
tion to resources, creating a network service, and finally, the
binding of the service management system to the network ser-
vice, thereby creating a managed service [21]. 

As an example, consider a simple teleconferencing ser-
vice which provides point-to-point video and audio connec-
tivity services (see also Fig.  4).  When a request for a
conference session is received, a capability check must be
performed at source and destination end-points to ensure
that the appropriate multimedia devices exist and can sup-
port the requested media format. Next the appropriate
end-to-end network resources are reserved so that a con-
nection is established between source and destination
nodes. This involves mapping the end points which may be
specified in some logical names into physical nodes in the
network as well as determining the route that a connection
must take. Finally, transport selection and binding is per-
formed so that both end-devices are associated with the
correct network terminations. 

Although the above model is realizable for simple services,
the complexity of state management grows exponentially with
the number of sub-services employed. As a result, complex
services require additional support for state aggregation. This
is covered in the next section.

Is the service creation methodology described above useful
in the context of Internet applications? Take RSVP for exam-
ple. Users are demanding the use of RSVP for controlling
resources allocated to the various types of applications even if
they are “RSVP dumb.” For example, an user might be inter-
ested in assigning more resources to VLAN applications. This
capability is hard to realize using end-system RSVP. However,
it is easy to implement in our object-oriented context where a
Connection Manager, implemented as a control object, can
send upon request RSVP messages to routers supporting the
VLAN application. 

■ Figure 5. Cooperating objects enabling service managment.
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Managing Complex Services
Our approach (Fig. 5) for making a service manageable intro-
duces a new type of controller in the service control system: a
dynamic object that is created for each new session [22]. This
object, which represents a service session (or service instance),
makes itself accessible to the management system by register-
ing with a management object, the service aggregator.

For each type of service there is a service factory which han-
dles the requests for new service sessions and coordinates the
service creation/instantiation process. For example, a service
factory for unicast VCs receives requests for a new VC and
contacts the necessary VC connection managers and routers in
order to set up the new VC. The service factory abstracts the
specific scheme used for the service creation process. 

The service instance represents the status and capabilities
of an existing service session. Every service instance exports
two types of interfaces. One is accessed by the service user
and represents the control capabilities (status, modify, termi-
nate) a user has once the service session is created; the other
is accessed by the management system and represents the
management capabilities. 

The service aggregator has two purposes. First, it provides
a single point of access for the service manager to monitor
and control the existing service instances of a particular ser-
vice type. Second, it provides aggregated or abstracted views
of the service instances and allows the manager to manipulate
sets of service instances. 

An important aspect of our model is that the designer of a
service has several degrees of freedom when developing ser-
vice management functionality. The choices include the selec-
tion of the state information and functionality of the service
instances, the amount of information kept in the service
aggregators, and the consistency requirements for the man-
agement data in the aggregators. All these factors influence
the cost of managing the service in terms of design complexity
during the development phase and in terms of processing and
computational resources needed during the operational phase.

The Resource Allocation Model

The resource allocation model is based on game theoretic
principles [23, 24]. By taking an economic (market-based

and game-theoretic) approach in the engineering of multime-
dia networks, we seek solutions where the intelligence and
decision-making are distributed and thus scalable, and the
objective of a more efficient and fair utilization of shared
resources results from the induced market dynamics. Thus, we
are borrowing and adapting the tools of game theory from
Economics and using them to solve problems of resource allo-

cation (such as capacity allocation [25], virtual path
bandwidth allocation [26], routing [27], and flow control
[28]) in multiservice networks. By viewing a network as
a collection of resources which users are selfishly com-
peting for, this approach gives rise to efficient, decen-
tralized algorithms, and leads to network architectures
which provide explicit QoS guarantees. 

The players in the network economy are software
agents, rather than humans [29]. Agents acquire
resources, such as bandwidth and buffer space, from
the network on behalf of applications (video, voice,
data transfer). Under appropriate rules of interaction,
the collective actions of all the agents constitute a dis-
tributed intelligence, superior to that of any single con-
troller. Thus the challenges are to analyze
noncooperative behavior and algorithmic strategies, and
to design the mechanisms (rules of the games) that will
ensure the desired outcomes [30]. 

Resolving the contention for network resources among the
various broadband network services is one of the key chal-
lenges of the XRM. In our context virtual circuits (VCs), vir-
tual paths (VPs), virtual networks (VNs), and multicast (MC)
represent the main broadband network services.

VCs, VPs, VNs, and MC can be modeled as capacitated
graphs competing for inclusion into the network resource con-
trol and management space [31]. The latter is provided by the
interconnected set of schedulable regions. Hence, the con-
tention among the broadband network services has been
reduced to a contention problem among capacitated graphs.
We call this the service graph contention problem. In Figure 6
multiple decentralized controllers attempt to reserve VP
resources such as bandwidth and buffer space [32]. The VPs
in Figure 6 could be readily replaced with VCs, MCs, or VNs
and the service contention problems among the latter similar-
ly defined. In a more general setting all these services might
compete for network resources at the same time and in vari-
ous parts of the network.

How are these contention problems typically resolved? QoS
support can be locally achieved via resource reservation algo-
rithms. Recursive application of these algorithms along the
capacitated graphs leads to a partitioning of network resources
[31, 33]. Resources here refer to both name space, bandwidth,
and buffer space. Thus resource partitioning algorithms
become the key tool for efficiently guaranteeing QoS to
broadband network services.

There are essentially two main categories of algorithms that
can be designed for resolving the service graph contention
problem. A competitive scheme among connection managers
or a cooperative scheme that can be managed by a separate
entity that is independent of the connection managers or
switch controllers. See [34] for a competitive scheme in the
context of VCI allocation. (A competitive scheme is distribut-
ed and works with local information. A cooperative scheme
tends to be centralized and works with global information.)

Architecting the Multimedia Network

In the previous sections we described the XRM and the asso-
ciated service creation and resource allocation model for

realizing the service marketplace. We will now focus on archi-
tectural issues as well as QoS, performance, scaling, and
implementation considerations arising in the design and
implementation of an open programmable platform for service
creation on ATM networks. This platform has been imple-
mented at Columbia University as a broadband kernel called
xbind [4]. Further information including documentation and
software of our first prototypes is available on the Web [5].

■ Figure 6. Resource partitioning using schedulable regions.
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The xbind Broadband Kernel
In the fall of 1996, we completed implementation of a flexible
open programmable networking platform for creating, deploy-
ing, and managing sophisticated next-generation multimedia
services called xbind. xbind is conceptually based on the
G–model of the XRM. The power of this conceptual frame-
work comes from its seamless integration of elements from
the domains of signaling (or connection management), trans-
port, and management. This synergy allows traditionally diffi-
cult QoS networking issues to be addressed in an elegant and
natural way. 

Functionally, xbind can be viewed as a broadband kernel
for multimedia networks that guarantees QoS. xbind includes
software components for implementing mechanisms for dis-
tributed network resource allocation, broadband signaling,
realtime multivendor switch control, and multimedia transport
and device management. It is based on the industry standard
distributed object-oriented platform called CORBA and sup-
ports a simplified BIB, prototypes of all broadband kernel ser-
vices, and a simple teleconferencing service with QoS
renegotiation capabilities. 

In xbind, all controllers are modeled as objects interacting
through (remote or local) object invocations defined using the
Interface Definition Language (IDL). Figure 7 gives the high-
level system architecture of xbind. Four functional planes and
the important objects on each plane are highlighted. The
information transport, or G::U-plane, contains objects that
handle transport activities — e.g., transport protocols and
stacks. Objects on this plane interact with primitives of the
ATM protocol stacks (e.g., AAL5) in the R::U-plane. Above
the G::U-plane, the interactions among objects are on the sig-
naling level. The Binding Interface Base (G::D) is a collection
of CORBA interfaces that offers an abstract view of resources.
These include naming resources like ATM Virtual Circuit
Identifiers (VCIs) or physical resources like multimedia
devices. Calls are made to these interfaces for creating low
level services, i.e., broadband kernel services. Network ser-

vices, using BKS, are built upon the BIB. The latter provide
service abstractions and support to the B-model for building
more complex multimedia services. Examples include routing,
resource reservation, device management, and transport control.

xbind exploits the advantages offered by IP and ATM tech-
nologies without necessarily suffering their shortcomings. This
is based on the observation that while typical interobject com-
munication modes are mostly restricted to exchanges of short
messages, the transport of multimedia streams involve typical
call holding times several orders of magnitudes longer in
duration. Furthermore, while interobject communication
requires reliability even under adverse partial failure condi-
tions, multimedia stream transport requires strict guarantees
on delay bounds and losses. In this respect, it seems almost
natural to use IP for interobject communication (which we
term signaling) and ATM for media stream transport. 

The xbind 2.0 (version 2.0) broadband kernel has been
installed on a testbed of four ATM switches and interconnects
the Columbia University distance learning program (the
Columbia Video Network), to a wide area ATM testbed. In
terms of platforms, xbind 2.0 has been ported to SunOS,
Solaris, HP-UX, and Windows 95/NT operating systems and
Fore ASX100/200, NEC Model 5, ATML Virata 1, and US
Robotics TOTALcell 200 switches. The system also supports
multimedia devices ranging from high-end workstation based
JPEG video cards to entry-level real-time MPEG-1 encoders
on the PC. The state of the ATM switches is mapped into the
BIB using the GSMP and qGSMP protocols. The Connection
Managers reside on the Sun Ultra 2 and HP 7000 processors.
xbind 2.0, which is CORBA 2.0 compliant [35, 36], stands at
roughly 30,000 lines of C++ and Java code. Access to the
states of the switch hardware is via the GSMP and qGSMP
protocols. 

In conclusion, xbind’s object-oriented signaling architecture
is built on channels that are exclusively IP based, while the
transport mechanisms are native to the underlying ATM net-
work technology.

■ Figure 7. xbind system architecture.
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Mapping QoS Abstractions

In order to control the QoS at each contention point in the
network a QoS abstraction on the object level is needed.
Mapping of the states of the hardware into the software
domain can be achieved with the QoS-extension of GSMP
(the latter is a protocol proposed by Ipsilon Networks [37]
and is now an Internet RFC) that we proposed and refer to as
qGSMP [38]. The extension provides a number of key fea-
tures, including the means of specifying QoS constraints,
selecting scheduling and buffer management policies, and
transfering schedulable regions [11, 13]. 

The extensions provided by qGSMP focus on controlling
the output multiplexers and retrieving schedulable region esti-
mates. They provide means for selecting scheduling, buffer
management, and schedulable region estimation algorithms;
setting traffic parameters and QoS constraints; and collecting
QoS-related measurements. The general architecture of a
switching environment using qGSMP is available on the Web
(http://comet.ctr.columbia.edu/specs/specs.html). 

The design of qGSMP follows the spirit of GSMP in the
sense that it provides standard interfaces for development of
switch-control software. Apart from semantic changes to two
fields associated with the connection management messages,
qGSMP does not alter the original GSMP messages. More-
over, the changes to these two fields are such that qGSMP is
backward compatible with GSMP version 1.0. By providing
generic descriptions for expressing QoS-semantics, the con-
trollability and programmability of the switch control software
is significantly enhanced, allowing possibly much better
resource utilization.

Our implementation of qGSMP is supported by Advanced
Telecommunications Modules Limited (ATML) switching
technology. We plan to install the qGSMP interface on the
switches provided by Washington University to the research
community under NSF support. Finding efficient real-time
algorithms for estimating the schedulable region represents a
key research priority. Having access to the schedulable region
will create an extraordinary opportunity for experimentation
with resource partitioning algorithms that guarantee QoS. We
have devised such algorithms based on game theoretic models
in the past and believe that these can be readily implemented
on our operational network. 

Performance of the Service Delivery System 
The service creation methodology described in the fifth sec-
tion focused on the efficient realization of services in terms of
the number of states and the flexibility in accessing them. The
design trade-offs that our architectural model is enabling per-

tains to the location and the degree of cooperation among
various entities that the service creation process is based
upon. Service creation can be executed at the periphery of
the network, as in the case of the Internet, or in the net-
work itself, as is the case in the Telephone and ATM Net-
works. In the framework of our architecture there is
complete freedom in locating the objects participating in
the service creation process. In addition, there might be
multiple providers offering services at various level of
abstraction and thereby a parametrization between the “all
or nothing” capabilities of the Internet and Telephone Net-
work is made possible.

With the objective of supporting a large number of
users, it is essential that the connection management sys-
tem exhibits high performance. In [34], the elements of an
approach for realizing a high performance connection man-
ager with high call throughput and low call setup delay is
presented. (Work on evaluating and improving on the per-

formance of CORBA and Real-Time CORBA based dis-
tributed systems appears in [39].)

An efficient design of the connection manager has to take
into account that the most expensive operations in a distribut-
ed environment are remote object invocations. In particular,
the vast majority of the remote operations during connection
setup have small arguments, remote calls contribute the bulk
of the latency in call processing, and most computations are
executed in the communication layer. 

In order to design a high-performance connection manage-
ment system, the following design criteria are recommended:

Parallelization of the Object Call Request Execution — design
the system to run with a maximum amount of parallelization
so that independent operations may proceed in parallel on
idle CPUs.

Caching of Network States — minimize the number of remote
procedure calls through aggressive caching of network states
(network resources cache include name space and bandwidth).

Aggregate Access to Remote Objects — aggregate access
requests to remote objects as much as possible.

A first version of the connection manager based on the
above criteria has been implemented (Fig. 8). Running on a
cluster of SUN Sparc 10s, initial results indicate that the sys-
tem can support a throughput of about 100 calls/sec (or
360,000 calls/hour) with average latency of 200 ms. The intrin-
sic 16 ms call set up time is substantially shorter then the
latency data published by the ATM Forum [40]. 

We believe that understanding the fundamentals of allocat-
ing the resources involved, in particular the distributed alloca-
tion of the VCI space, will allow us the tuning of the key
parameters resulting in a further two to three times perfor-
mance improvement. This level of performance will bring us
in the range of the current STP processors. 

Scaling Issues
The implementation of the service architecture on the xbind
platform currently supports experimentation with small net-
works consisting of six to eight nodes. Scaling our real-time
environment is fundamentally limited by costs, however. To
experiment with the scaling properties of our architecture, we
have realized, based on a parallel simulator, a high-perfor-
mance emulation platform called TeleSoft. We intend to use
this platform to study scaling aspects of the architecture and
of the various telecommunication services.

The platform we have built over the last two years allows us

■ Figure 8. Structure of the high performance connection manager.
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to closely approximate the functional and dynamic behavior of
network control systems on the call level [41, 42]. By provid-
ing support for real-time visualization and interactive emula-
tion, it can be used to study telecommunications systems in
various scenarios, such as different load patterns, network
sizes, and management operations. 

The emulated system and emulation support modules con-
sist of a set of objects that communicate by exchanging mes-
sages, using functions provided by the simulation kernel. The
emulated system module represents the prototype system
under evaluation. Generally, each controller is implemented
as a C++ object. Objects that interact with the parallel simu-
lation kernel require minimal knowledge about the kernel —
mainly how to send and receive messages. Therefore, the
design of the emulated system follows the same rules as the
design of controllers that run on a real network platform. The
major difference is in how the interaction among controllers is
realized. In the emulated system, interaction is performed by
the simulation kernel. In a broadband network environment,
the exchange of messages is provided by a signaling system.

Both the emulated system and the simulation kernel (also
coded in C++) run on an SP2 parallel processor located at
the Cornell Theory Center (CTC) in Ithaca, New York. The
real-time visualization and interactive control module resides
on an SGI Indigo2 workstation at Columbia University. It is
written using Open Inventor, a 3D graphics tool kit based on
Open GL, and runs as a UNIX process that communicates
with the emulation support module via UNIX System V
shared memory. The emulation support module is distributed
on the two machines. These machines communicate through
NYNET, an ATM network that connects several research lab-
oratories in New York State. For more details as well as for
download of the TeleSoft source code, the reader is directed
to http://comet.ctr.columbia.edu/software. 

Implementation Issues
Object-oriented methodologies and technologies are essential
to us for developing service control and management systems.
The basic elements of an object model, namely, concurrent
objects interacting via messages, can be used to model con-
trollers and their interactions in a distributed system. Such a
model can be executed in a PDES (parallel discrete event
simulation) environment (such as TeleSoft), as well as on a
CORBA-based platform (such as xbind).

Our requirement is that the implementation design of the
service control and management systems can be done in such
a way that their code runs on both platforms. Also, the GUI
enabling service management functionality by an operator
must run on both platforms.

The servers or controllers represent perhaps the most com-
plex implementation challenge in the model. The primary dif-
ficulty comes from the inherent flexibility a server must
support — the ability to load any service script, instantiate,
externalize, transport, and store its code and state and resolve
all references to calls for broadband kernel services. The
major implementation language used is Java because of the
easy availability of its virtual machine and class loader facility.
The API stubs to the broadband kernel services are imple-
mented to make CORBA calls (or alternatively Java RMI
calls) are themselves Java classes. Several Java based ORBs
and interworking products provide this capability. Moreover,
the Sunsoft JDK 1.1 release includes facilities for serializing
[43] and externalizing Java object graphs. These facilities will
be used to implement the basic facilities component in the
servers. It is anticipated that the B-model services will be
readily implementable in Java using the Java beans [10] com-
ponent framework. This is because these services typically do

not have to deal with hardware or I/O which are usually lack-
ing in Java APIs. 

Consequently, there is a wide range of possible designs for
architecting the broadband kernel from light-weight, low-cost
systems with minimal functionality to heavy, highcost systems
with rich functionality. More precisely, we believe that a
trade-off analysis must be made, balancing various factors in
order to achieve the best combination between low cost, good
scalability, and rich functionality. There are strong reasons to
engineer the broadband kernel as a configurable system which
can be customized at the time of service deployment. More-
over, it may be necessary to allow for dynamic reconfiguration
of the system during run-time, in response to changing needs
and the availability of resources. 

Concluding Remarks

T he major theme of this article is the modeling and realiza-
tion of open programmable telecommunication networks.

Specifically we described: 
• A new architectural foundation for the creation, deploy-

ment, and management of future telecommunications ser-
vices based on the paradigm of open programmable
networking;

• Open Application Programming Interfaces (APIs) for ser-
vice creation, QoS control, and the joint allocation of com-
puting and communication resources;

• A service creation and resource allocation model;
• The need for investigating scaling issues through the emula-

tion of complex service scenarios arising in large scale
broadband networks;

• A methodology for evaluating the performance of the pro-
posed service delivery system.
Due to space limitations, we have not discussed other key

issues regarding the design and implementation of a service
architecture for broadband networks. In particular, the exten-
sion of the service architecture to wireless environments
(http:// comet.ctr.columbia.edu/wireless), problems of security,
problems of software reliability, and, more generally, prob-
lems of verification and testing of the proposed architecture
have not been mentioned at all. In addition, we have not
touched upon research on active networks [44], a collection of
strategies that allow network switches to perform customized
computations on the messages flowing through them. 

In conclusion, we believe that building programmable
telecommunication networks is one of the key research chal-
lenges that faces the networking community as we move toward
the new millennium. To address this challenge we have initiat-
ed a number of new projects and international forums (OPEN-
SIG and OPENARCH, http:// comet.ctr.columbia.edu/
openarch) to promote the ideas which drive our research. We
presented a number of research topics associated with service
creation, QoS, performance, and scaling. Our work is backed by
two software platforms currently in various phases of develop-
ment. The xbind 1.0 platform is currently being used by a num-
ber of universities and industrial research laboratories
worldwide. (See, among others, the list of participants in [17]). 
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