
IEEE Communications Magazine • October 199854

A Programmable Transport
Architecture with QoS Guarantees

0163-6804/98/$10.00 © 1998 IEEE

he emergence of distributed multimedia applica-
tions exhibiting significantly more stringent quality

of service (QoS) requirements than conventional data-orient-
ed applications calls for new transport protocols with different
characteristics to coexist and be integrated within single appli-
cations. The different delivery requirements posed by these
diverse multimedia applications often imply the need for high-
ly customized protocol implementations. Hence, application
developers are faced with the threat of code obsolescence
caused by the development of even newer delivery techniques.
Furthermore, application developers have to contend with the
fact that a single protocol stack may be insufficient to meet all
their needs.

In order to address this challenge, we propose an object-
oriented transport architecture in which the atomic processing
entity is based on the consumer/producer paradigm. The archi-
tecture consists of consumer/producer components that are
separately represented by their transport abstraction, called
an engine, their control and management abstractions, called
front-ends, and a set of controllers implementing network ser-
vices such as the dynamic binding of suitable protocol stacks.

The consumer/producer engines are software components
located in the data path set up by the multimedia communica-
tion session and are responsible for data processing (including
protocol implementation), multiplexing, and scheduling of chan-
nels. The engines also interact with the operating system when
transferring media flows through network interface cards.

The control and management front-ends define a model
for controlling and managing the consumer/producer engine
resources (e.g., resource provisioning, accounting, and QoS
control). The latter includes QoS monitoring, QoS violation
detection, QoS adaptation, and QoS renegotiation.

Controllers provide network services to the application
programmer and thereby offload work from applications. By
encapsulating domain-specific knowledge, they reduce the
amount of technical knowledge required by the application
developer for creating multimedia applications.

The protocol stack is modeled in an object-oriented man-
ner. The protocol stack builder is responsible for the construc-

tion of the protocol stack by binding a
variety of engines together. It is aware
of the variety of transport components
supported on the end system and the
order in which they can be bound
together to create useful protocol
stacks. The protocol stack builder per-
forms the dynamic binding of the com-
ponents at runtime and creates a
suitable transport protocol stack accord-
ing to application QoS requirements. It
allows, on a per-call basis, dynamic

binding of a variety of protocol stacks that are tailored to the
special needs of the application. The control and management
functionality of each producer/consumer is abstracted via a
standardized interface. This allows the protocol stack builder
to select and bind a set of consumer/producers and to create
meaningful protocol stacks at runtime. The consumer/produc-
er engines run in user space. This architecture differs signifi-
cantly from the traditional transport architecture, which
assumes preinstalled transport protocol stacks that cannot be
customized.

To illustrate some of the advantages provided by the archi-
tecture, we describe the transport component of the first ref-
erence implementation of the ISO MPEG-4 Delivery
Multimedia Integration Framework (DMIF) and demonstrate
how quickly it was implemented in our framework.

This article is organized as follows. In the next section the
programmable transport architecture is described. The media
transporter components are discussed after that. We present
some implementation considerations concerning the interac-
tion mechanisms between the various architecture compo-
nents and describe the transport component of XDMIF.
Finally, related work is reviewed.

ARCHITECTURE
The key atomic entity of the architecture is based on the con-
sumer/producer model. The consumer/producer components
can be classified into two categories: media processors and
media transporters.

Media processors refer to components that transform
media streams from one format to another by processing the
content of the stream. Examples of these include transcoders
and encryption devices. The current architecture defines two
media processors, namely, the streamed device that abstracts
media stream producers and consumers, and the encryptor.
The media stream producers grab data via a physical device
(e.g., camera or microphone) and compress it into encoded
data (e.g., a video board that compresses raw video into
MPEG-2 encoded video). The media stream consumers ren-

Jean-François Huard and Aurel A. Lazar

Xbind, Inc.

T

The emergence of distributed multimedia applications exhibiting
significantly more stringent quality of service requirements than

conventional data-oriented applications calls for new transport protocols with different
characteristics to coexist and be integrated within single applications. The different deliv-
ery requirements posed by these diverse multimedia applications often imply the need for
highly customized protocol implementations. Hence, application developers are faced with
the threat of code obsolescence caused by the development of even newer delivery tech-
niques. We present an object-oriented transport architecture that allows for dynamically
binding a variety of protocol stacks on a per-call basis. By binding protocol stacks togeth-
er, the special needs of the application can be met without the need to rewrite the code.
This differs significantly from the traditional transport architecture which assumes prein-
stalled transport protocol stacks that cannot be customized. To illustrate some of the
advantages provided by the architecture, we describe the transport component of the first
reference implementation of the ISO MPEG-4 Delivery Multimedia Integration Framework
and demonstrate how quickly it was implemented in our framework.

ABSTRACT

IEEE Communications Magazine • October 1998 55

der the data to a physical device (e.g., display or
speaker) after having decoded the compressed
data; for example, a digital signal processing
(DSP) chip set that processes encoded audio and
plays it back. Finally, the encryptor either encrypts
or decrypts data depending on whether it is locat-
ed on the sender or receiver side of the communi-
cation channel.

Media transporters carry and route media
streams without discerning or altering their con-
tents. They implement the transport functionality
such as scheduling of channels, multiplexing, flow
control, encapsulation, and deencapsulation, seg-
mentation and reassembly, and so on. On the
transmitting side of a channel, media transporters
add a header to each data unit sent to the receiv-
ing peer. The transmitting side may also fragment
the message if it is too large to be transferred to
the following media transporter in the protocol
stack. On the receiving side, media transporters
reassemble messages, and deencapsulate and for-
ward data units to the next component in the pro-
tocol stack. A chain of media transporters is
traversed until the data reaches a media processor
such as a streamed device that renders it back or
saves it in a file for future use.

In this article, the emphasis is on the media
transporter components of the architecture.
Although the design of the media processor components is
identical to the design of the media transporters, the function-
ality of the media processors is not addressed. The media
transporter components are described in detail later. First,
however, the generic description of the consumer/producer
model consisting of the consumer/producer engine and con-
sumer/producer front-ends as well as the controllers acting on
the front-ends is presented.

OVERVIEW
The consumer/producers shown in Fig. 1 are separately repre-
sented by their transport abstraction, called an engine, and
their control and management abstractions, called front-ends.
Examples are the NetP engine and NetP, the TP engine and
TP, and the MuxP engine and MuxP, respectively. By directly
acting on the latter abstractions, a binding controller (the pro-
tocol stack builder, PSB, in Fig. 1) manages and controls the
generation, consumption, and processing of streams without
being located in the data path.

The consumer/producer engines (CPGs) are responsible for
data processing (including protocol implementation), multiplex-
ing, buffering, and scheduling of channels. CPGs are located in
the data flow path of a multimedia communication session and
are the actual components that process and transport the data.
Their implementation is generally platform-dependent. Two
examples of engines are qStack [1], a lightweight transport
protocol for real-time interactive communications, and an
MPEG-2 video encoder that compresses a raw video bitstream
into a lower-bit-rate encoded video stream.

The consumer/producer front-ends (CPFs) define an abstrac-
tion layer for the signaling system to remotely control and man-
age CPGs. For example, in Fig. 1 TP abstracts the control and
management interfaces of the transport protocol component of
a protocol stack. TP controls the TP engine via a transport
protocol QoS-based engine control interface (TP qECI). A
variety of TP engines can be implemented (e.g., qStack, TCP,
RTP) as long as they provide the TP qECI interface to the TP.

Binding controllers (BCs) allow the creation, operation,
management, and programming of services. Their primary

purpose is to offload work from the application. BCs elevate
the level of abstraction needed to develop multimedia applica-
tions by encapsulating domain-specific knowledge, thus reduc-
ing the amount of technical knowledge required by the
application developers to write multimedia applications.
Examples of such controllers are the PSB and network con-
nection controller (NCC), as shown in Fig. 1.

Figure 1 illustrates some of the interactions and compo-
nents involved during the creation of a multimedia service.
Only a subset of the interactions, objects, and interfaces are
shown. Three layers of components are represented. The
engines are located in the data path at the bottom layer. The
front-ends allow for media control and management abstrac-
tions and are located in the middle layer. The binding con-
trollers are located on top. The PSB creates, binds, and
controls media processors and media transporters. Finally, the
NCC creates network connections between end systems.

The architecture allows for the dynamic creation of proto-
col stacks by binding engines at runtime. The architecture fur-
ther allows complex multimedia stream processing operations
to be constructed by cascading media processor engines.
Finally, the architecture allows for multiple implementations
of a media transporter engine to coexist and for new capabili-
ties (e.g., new consumer/producers) to be added without hav-
ing to modify any of the components of the architecture. This
differs significantly from the traditional transport architecture
which assumes preinstalled transport protocol stacks that can-
not be customized.

CONSUMER/PRODUCER ENGINES
Engines are software components that implement protocol
state machines with the capability of supporting and schedul-
ing multiple channels at once. They are implemented in user
space and are generally hardware-independent but strongly
dependent on operating system multithread programming
support. The CPGs are located in the communication data
path; their representation is illustrated in Fig. 2.

An engine has two interfaces: a qECI and a media transfer
interface (MTI). The interface represented on top of the

■ Figure 1. Protocol stack using the consumer/producer components of the
architecture.

StreamP
StreamP

BC

StreamP

PSB NCC

MuxP TP NetP

MuxP
engine

MuxP
qECI

TP
engine

StreamP
engine

Consumer/producer engines

Consumer/producer front-ends Binding controllers

StreamP
engine NetP

engine

Network

TP
qECI

NetP
qECI

IEEE Communications Magazine • October 199856

engine is the qECI. It is visible only to
the front-ends that are bound to it and
using its specific services. Engine inter-
faces are named using the front-end
acronym followed by qECI; e.g., the
transport protocol engine control inter-
face is denoted TP qECI.

The interface represented on the
side of the engine is its MTI. It is used
to move the data from one CPG to
another. Additionally, the MTI pro-
vides some I/O control capability, to
query an engine’s maximum service and
protocol data unit sizes, set the block-
ing mode, flush the engine’s buffer, and
so on. The engine’s MTI is visible only
to the adjacent engines in the data path.
Only one interface represented as the
same is used to both send and receive
data from an adjacent engine. An
opaque handle (a number identifying
the channel) is provided to distinguish
between each channel the engine pro-
cesses. Finally, as opposed to the qECI
which is specialized for each engine,
the MTI is common to all engines;
therefore, any engine can be connected
to any other engine, and any protocol
stack can be built as desired.

When a data unit is transferred using an MTI method
(e.g., via a send() or recv()), the engine processes the data
unit and schedules its transfer to the adjacent engine in the
data path. In the case of the network provisioning engine, it
schedules the data unit to be sent out into the network.
Appropriate scheduling and the elimination of unnecessary
data copies have to be carefully considered in order to achieve
satisfactory overall performance and throughput.

CONSUMER/PRODUCER FRONT-ENDS
The CPF defines an abstraction layer for the signaling system to
control the heterogeneous transport and computing resources of
the end system. Front-ends have open interfaces, and each
front-end abstracts a single segment of an end-to-end channel.
An end-to-end channel consists, therefore, of multiple seg-
ments, one for each engine it traverses. Abstracting each
channel segment allows for each of the channel’s protocol
stack state machines to be controlled. Multiple front-ends can
be attached to a single engine since each engine has the capa-
bility to support multiple channels and their scheduling.

The representation of a CPF is shown in Fig. 3. The control
and management interfaces (labeled
C and M, respectively) are drawn
on top of the object. As their name
suggests, they provide capabilities
for controlling and managing the
channels they abstract, such as
resource provisioning, accounting,
and QoS control (e.g., QoS moni-
toring, QoS violation detection,
QoS adaptation, and QoS renegoti-
ation). The front-ends management
capabilities are to dynamically load
engines, to obtain an engine’s MTI,
and to obtain the handle of the
associated channel segment. The
transport interface (labeled T) is
used for binding and the negotia-

tion of media transfer parameters (e.g.,
maximum protocol data unit size).

The front-end is a signaling abstrac-
tion which provides a way of connect-
ing a remote client (e.g., a binding
controller) with the low-level service
that implements the transport function-
ality of the consumer/producer. In
order to provide transparent access for
a front- end’s client to the engines,
each engine must support the functions
defined by its qECI. The front-end’s
client and engines do not need to use
the same language in order to commu-
nicate since they have access to their
respective middleware front-end inter-
face. Operations invoked at the front-
end are interpreted and forwarded to
the engine using the engine’s qECI.
Most of the control interface (C inter-
face) operations are mapped to a qECI
operation, and the M interface is main-
ly used to manage the front-end. Exam-
ples of C interface operations are the
establishment and release of a channel.
As for the M interface, methods for
loading an engine and configuring it
are available.

The interfaces of the collection of CPFs exposing states to
binding controllers form a repository called the binding interface
base (BIB) [2]. The BIB consists of QoS-based application pro-
gramming interfaces (APIs) used by the binding controllers and
management system to control and manage the engines. The
front-end interfaces are open, thus allowing for end-system
transport and computing resources to be remotely controlled.

The front-ends use dynamically linked libraries that allow
them to be bound to engines at runtime. In this way, a proto-
col stack can be composed and built dynamically. A front-end
needs to only know the definition of the type of engine it
abstracts in order to be bound to it.

BINDING CONTROLLERS
As opposed to the front-ends that represent the low-level
middleware services, the BCs represent high-level middleware
controllers that an application developer would normally use
to build a multimedia application. Examples of such con-
trollers are network connection control, transport monitoring,
QoS parameters translation, and protocol stack building. Col-
lectively, the BCs provide broadband kernel services [2]. A
representative BC is illustrated in Fig. 4.

A BC is composed of an algo-
rithmic component and a data com-
ponent [1]. The algorithmic
component expresses the execution
logic of the service instance, while
the data portion is an abstraction
of its state. Controllers have four
interfaces that allow the creation,
operation, management. and pro-
gramming of the controller. The
interfaces are open and allow all
binding controllers to be remotely
invoked.

The service invocation interface
is the entry point of the execution
or instantiation of a service. The
service operation interface defines

■ Figure 2. A consumer/producer engine
with its qECI and MTI interfaces.

Consumer/producer
engine

MTI

qECI

■ Figure 3. Consumer/producer front-end
with its control (C), management (M),
and transport (T) interfaces.

Consumer/producer
front-end

T

MC

■ Figure 4. A binding controller with its four inter-
faces.

O
pe

ra
ti

on Binding
controller

Invocation

Management

Program
m

ing

IEEE Communications Magazine • October 1998 57

the operational functionality of the controller and
allows for monitoring and manipulation of service
instance states during execution. It is typically the
primary interface of the controller. The interface
for programming services allows manipulation of
the logic to be performed while a service is in exe-
cution. Finally, the service management interface
allows for monitoring of the controller states and
manipulation of controller parameters.

To illustrate the use of each interface, let us
consider the service provided by the PSB. The
service invocation interface is the entry point for
creating a useful protocol stack based on the QoS
requirements and a given network endpoint, such
as a virtual path identifier/virtual connection iden-
tifier (VPI/VCI) pair in an asynchronous transfer
mode (ATM) connection. The operation interface
allows changing the QoS associated with a protocol stack or
even modifying the protocol stack while it is active. The pro-
gramming interface allows the management system to config-
ure the logic of the PSB, that is, the rules on how to create
useful protocol stacks. Finally, the service management inter-
face allows the management system to manage the PSB, for
example, by specifying the maximum number of transport
channels it may allow.

INTERACTIONS BETWEEN
CONSUMER/PRODUCER ENGINES AND FRONT-ENDS

The purpose of distinguishing between engines and front-ends
is for separating the control on two different timescales: that
of transport (i.e., at the packet level) and that of flows or virtu-
al circuits (i.e., at the call level). Furthermore, the separation
allows for remote control of the individual transport channels.
As mentioned above, each engine has capabilities of software
multiplexing, and thus, may support multiple channels, each
abstracted by a single front-end. The latter contains the spe-
cific state of the channel (e.g., the required and measured
QoS). When channel segments are initialized, the engine
assigns an opaque handle to access the channel’s state and
provides the handle to the front-end. All front-ends that are
bound to an engine can access the capabilities of the engine
via the engine’s qECI and the opaque channel’s handle.

Figure 5 illustrates the interaction model between CPGs and
CPFs. The engine under consideration is in the middle and is
bound to four other engines (CPGs A through D). The middle
engine supports three channels, each abstracted by a CPF. In
order to better illustrate the example, let’s assume that CPG A
and CPG B are audio and video streamed devices, CPG C and
CPG D are AAL5/ATM and UDP/IP network provisioning
engines, and the middle engine represents the qStack trans-
port protocol engine. qStack provides flow control and QoS
support for two audio channel segments, one going through
an IP network and one through an ATM network, and for a
video channel segment that goes through an ATM network.

The three channel segments of the middle engine are
labeled Id1, Id2, and Id3. Each of the three front-ends bound
to it abstracts and controls one channel segment and locally
maintains the opaque handle that identifies these. The audio
device connected to the ATM network has its qStack segment
labeled Id1. The data path is composed of CPG A, middle
engine, and CPG C. The qStack channel segment is controlled
by the left CPF with identifier Id1. CPG A also maintains the
identifier Id1 needed to provide data to qStack through the
MTI. The identifier was provided when the data path was cre-
ated by the PSB. Segment Id2 is controlled by the right CPF.
It abstracts the middle segment of the audio channelconnect-

ed to an IP network; that is, it consists of the data path com-
posed of CPG A, middle engine, and CPG D. The last seg-
ment, with label Id3, is controlled by the middle CPF. Again,
it is the middle segment of the data path, composed of three
CPGs, namely, CPG B, middle engine, and CPG C. As can be
seen, the middle engine performs protocol processing and is
responsible for multiplexing channels between adjacent
engines. The media transfer between engines is achieved via
the MTI using the opaque handle that identifies the proper
segment. For example, when CPG B invokes a media transfer
operation at the qStack MTI, it provides the handle with Id3.

A detailed illustration of all the protocol stack components
would have included six additional front-ends: two attached to
CPG A for controlling the two audio streams, one attached to
CPG B to control the video stream, two attached to CPG C to
control the ATM connections, and one attached to CPG D to
control the UDP/IP connection.

The next section will discuss some implementation issues
related to the actual binding of the engines and front-ends.

MEDIA TRANSPORTER COMPONENTS
By specializing the interfaces of the CPGs and front-ends, the
media processor and media transporter components of the
protocol stack are defined. In this section three media trans-
porter components and three transport services are described.
The following subsection describes the functionality of the
network provisioning media transporter. Similarly, the trans-
port protocol and multiplexer media transporters are
described in the two next subsections, respectively. The fourth
subsection describes the transport services: the PSB, a QoS
mapper that performs translation of QoS between different
protocol stack layers; and a monitoring server that performs
accounting for management purposes.

NETWORK PROVISIONING
The network provisioning (NetP) component is responsible
for data transmission across networks. It provides transparent
transfer of data for the transport protocol component
(described in the next section). In the architecture, the net-
work provisioning component provides the protocol stack base
layer (i.e., the lowest level of the end system protocol stack).
This layer includes the user plane functionality of traditional
transport protocols such as UDP/IP and ATM adaptation
layer type 5 (AAL5)/ATM.

The NetP control capability consists of the provisioning of
calls (e.g., opening/closing virtual circuits) and network QoS
control. The provisioning capability revolves around the cre-
ation and destruction of opaque network handles (e.g., sock-
ets) associated with network endpoints. Its QoS control

■ Figure 5. Interactions between consumer/producer front-ends and engines.

CPG-B
Video stream

MTI

StreamP qECI

CPG-A
Audio stream

MTI

StreamP qECI

CPG-D
UDP/IP

MTI

NetP qECI

CPG-C
AAL5/ATM

MTI

NetP qECI

qStack

Id1

Id2

Id3
MTI

TP qECI

TP
Id1

TP
Id3

TP
Id2

IEEE Communications Magazine • October 199858

capability is related to pacing the injection of packets into the
network and monitoring the packet QoS. The NetP manage-
ment capability consists of setting network QoS requirements
(when applicable) and accounting. The accounting capability
consists of counting the number of transferred packets. The
front-end does not directly perform the control capability but
maps them to its engine, marshalling the arguments of calls
whenever needed.

The control capability is typically realized by invoking sys-
tem or library calls that communicate with a network interface
card driver. For the pacing capability, if not provided by the
hardware, interval timers might be used. However, pacing is
expected to be provided by the network interface card since
software pacing is inefficient.

The processing capability of the NetP engine is related to
the per-byte (or per-bit) operations (e.g., checksum). The
engines are expected to deliver error-free packets, but could
potentially deliver packets containing bits in error, with a
proper notification to its recipient. No assumption is made
about the ordering of delivered packets. For the implementa-
tions of the ATM and IP NetP, the MTIs simply invoke the
equivalent system or library calls after performing some addi-
tional protocol processing. Examples of protocols that the
NetP engines provide are UDP/IP and AAL5/ATM.

TRANSPORT PROTOCOL
The TP media transporter is used to provide end-to-end com-
munication capability with QoS support. It is the first layer in
the protocol stack that is end-to-end QoS-aware. If needed,
the TP media transporter has the ability to ensure reliable
end-to-end communication. It relies on network provisioning
to receive error-free data, but may have to request retransmis-
sion if a segment of data is missing. Flow control resides in
this layer to manage the data flow through the channel. This
means the TP media transporter assumes that a feedback
channel is available for QoS adaptation and flow control.

The TP defines the end-to-end QoS control, management,
and accounting capability. The end-to-end QoS control API is
for setting the parameters of the TP and for monitoring the
delivered QoS. The specific capability of the control interface
depends on the transport protocol specifications; however, the
API is common for all TPs. The API can be used to set end-
to-end QoS to be delivered to the application. The manage-
ment interface allows for the selection of the TP engine
associated with the channel. It can also be used to obtain
accounting information such as the call duration and the
amount of recovered data delivered to the application. The
TP front-end also performs slow timescale monitoring of
channels and initiates QoS renegotiation procedures upon
detection of sustained QoS violations. Finally, the TP shall
have the capability to dynamically switch engines (i.e., chang-
ing the TP algorithm) to adapt to large QoS variations. This
capability is further discussed later.

The TP engine ensures the efficient delivery of data and per-
forms the “in-flow” QoS monitoring, that is, monitoring on a
fast timescale. It ensures that end-to-end QoS is provided to the
next engine bound to it upstream. Every TP engine must imple-
ment flow control, encapsulation/decapsulation, scheduling of
channels, segmentation and reassembly, buffering, multicast-
ing, and QoS monitoring and QoS adaptation mechanisms.

TRANSPORT MULTIPLEXER
The multiplexer (MuxP) media transporter provides the capa-
bility of multiplexing multiple streams into one channel. This
is a useful component when multiple media processors of a
single multimedia application are simultaneously active (e.g.,
DMIF FlexMux [3]). This capability is also useful when many

short-term channels are opened and closed on a common host
(e.g., Web browsing).

The MuxP engine performs the software multiplexing and
demultiplexing of the channels that are established within a
single transport channel. It is expected that all channels of the
MuxP engine experience the same QoS. However, each chan-
nel may have different bandwidth requirements.

The MuxP front-end must ensure that the total capacity of
the established channels is within the capacity region of the
MuxP engine. Typically, MuxP is bound to a TP, but can also
be directly bound to a NetP. MuxP provides the ability to add
and destroy channels with a given QoS and ensures that the
overall QoS budget of the channel is within the negotiated
QoS of the TP to which it is bound. There is only one MuxP
for all channels established through the multiplexer. This pre-
vents the proliferation of front-ends and ensures scalability.

TRANSPORT SERVICES
The previous sections introduced three kinds of consumer/pro-
ducers located in the data path of the protocol stack. This sec-
tion introduces three transport services that are provided in
the architecture. The PSB creates protocol stacks by invoking
the control and management interfaces of the NetP, TP, and
MuxP. The transport monitor performs accounting for man-
agement purposes (i.e., monitoring of the amount and kind of
data transferred and the channel holding time). Finally, the
QoS mapper performs translation between QoS specifications
of different protocol stack layers.

Protocol Stack Builder — As mentioned before, the proto-
col stack is modeled in an object-oriented manner. The PSB is
responsible for constructing the transport sections of the data
path by binding MuxP, TP, and NetP consumer/producers
together. The PSB can be a centralized server, but is expected
to be highly distributed (one on each end system). The PSB is
aware of the variety of engines supported on the end systems
and the order in which they have to be bound to create a use-
ful protocol stack through its management interface. The PSB
performs the dynamic binding of engines at runtime by attach-
ing front-ends together. Its functionality is similar to that of a
connection manager which creates a virtual channel in an
ATM network, but does so on the end system.

Transport Monitor — The transport monitor is used to log
accounting information for management purposes. Its inter-
face is used by the front-ends to register connections and log
QoS information. When the data path comprises a TP, only
the TP registers. When no TP is used, the NetP registers its
channel. When a front-end deregisters its channel, the
accounting information is logged permanently for future usage
by the management system (e.g., for billing, network perfor-
mance, and dimensioning purposes).

Any type of information related to the amount of data
transferred, duration of a call, and so on can be logged. Fur-
thermore, the delivered and requested QoS can be logged.
Finally, whenever QoS renegotiation is successfully performed
with a TP, the new QoS is logged.

The transport monitor receives QoS monitoring informa-
tion at regular intervals and evaluates QoS on a slow timescale
compared to that on which the TP operates. When the trans-
port monitor detects a large QoS variation for a channel, it
may initiate a transport protocol renegotiation that can result
in dynamically changing the TP engine at runtime.

QoS Mapper — The QoS mapper performs translation of QoS
specifications between the various protocol stack levels (appli-
cation, transport and network) [4]. Applications and PSBs at

IEEE Communications Magazine • October 1998 59

call establishment and QoS renegotiation time invoke its map-
ping capabilities. Unlike the PSB, which controls a variety of
front-ends, the QoS mapper does not interact with them.

INTEGRATING THE ARCHITECTURE IN ITS
RUNTIME ENVIRONMENT

As already mentioned, by distinguishing between the con-
sumer/producer engines and front-ends, a natural separation
between signaling (or control) and transport is achieved. Sep-
aration of control and transport is a well-established principle
that can be recognized in most protocol stack designs and
implementations. From the service creation and development
standpoints, this separation allows for rapid development of
multimedia applications because the signaling system and
transport components can be independently realized. This
turns out to be important during implementations since multi-
ple groups can work on the development of the transport
components in parallel without the need for constant coordi-
nation. In addition, code reuse is potentially greater since the
various implementations of the media transporters are sepa-
rated from the signaling implementations.

For example, during the XDMIF development (described
later) the specification of the MuxP engine and front-end inter-
faces allowed rapid development of the software by two groups
of developers working in parallel. Using a preliminary imple-
mentation of the engine, DMIF applications could be built
while the transport components were developed. This should
be contrasted with a monolithic approach to software develop-
ment, which calls for application development to be post-
poned until all the transport components are made available.

PROTOCOL STRUCTURE
The structure of the architecture and its implementation dif-
fers significantly from traditional transport protocol systems.
First, the runtime execution environment of the architecture is
the user space. Second, each front-end is implemented as a
class that inherits its protocol structure from a base protocol
class called the VirtualPort . Each front-end is a specializa-
tion of the VirtualPort , and implements its own control
functionality and reuses the binding functionality implement-
ed in the base protocol class. The use of inheritance imposes
the protocol structure and facilitates the dynamic construction
of protocol stacks at runtime.

The engines are located in the data path, and therefore are
optimized for speed, memory usage, and buffer management.
They are implemented in the C programming language and
built as dynamically loadable libraries. In contrast, front-ends
are signaling entities that use Common Object Request Bro-
ker Architecture (CORBA) for communications with the
binding controllers and are implemented in C++.

CPFs and CPGs run in the same address space. Engines
are loaded by front-ends at runtime using the operating sys-
tem dynamic library loading mechanisms. The engine inter-
faces (MTI and qECI) are implemented as procedure
dispatch tables. Using dispatch tables serves two purposes.
First, it is more advantageous for the front-ends since a single
call can be made to discover the entire set of entry points.
Second, this enables the layered services to be formed and
operated more efficiently.

The functionality of the front-ends control API and engines
qECI are equivalent. Every front-end control operation (e.g.,
frontEnd->Op1()) has its equivalent qECI interface (e.g.,
engine->op1()). It is the responsibility of the front-end to
convert the CORBA parameters to platform-dependent
parameters used by the qECI, and to invoke the qECI.

PROTOCOL STACK BUILDER

The PSB dynamically creates a variety of protocol stacks
tailored to the special needs of the application on a per-call
basis. It builds a specialized graph for each channel by
instantiating the media transporter engines required for
protocol processing in the data path. If the media trans-
porter class is not yet loaded, it loads it into the service
daemon. The daemon is able to support multiple engine
implementations of each type of media transporter since
each engine is loaded dynamically and provides the
required common qECI. A binding controller (not dis-
cussed in this article) manages the context (session state) of
each channel. The binding controller keeps the state of the
communication session and can tear down the channel
upon request to the PSB. The PSB is stateless and per-
forms only protocol binding. For the QoS mapping, the
QoS mapper must be invoked. The QoS mapper also
resides in the service daemon.

PERFORMANCE CHALLENGES
IMPOSED BY THE ARCHITECTURE

Implementing protocol stack components in user space
introduces performance challenges that are easier to resolve
with the traditional approach of implementing the transport
functionality into the operating system. For instance, high-
resolution timers are not always available in user space, jitter
is introduced by context switching, buffer management might
force a component to perform additional memory copies, or
a channel scheduler must be implemented. The most diffi-
cult aspect of implementing protocols in user space is associ-
ated with the scheduling of channels. A responsive scheduler
is needed on the receiver side to avoid introducing excessive
latency. If the operating system message (or signal) mecha-
nism is slow, excessive jitter can be introduced in the
scheduling process.

However, having protocol module interfaces standardized
and implemented in user space allows for the rapid develop-
ment of new protocol engines that are better tailored to new
media QoS requirements. Furthermore, user space implemen-
tations facilitate their deployment in the marketplace since
users do not have to wait for operating system manufacturers
to provide such protocols.

Performance measurements are not provided in this arti-
cle and will be presented elsewhere. Suffice it to say, howev-
er, that a multimedia application may easily require up to 20
times more resources than the protocol implementation
itself. Furthermore, simple measurements indicate that the
full deployment of a protocol stack for an MPEG-2 applica-
tion using a 6 Mb/s stream requires less than 3 percent of
the CPU resources on a 233MHz Pentium PC running Win-
dows NT.

User space implementations of lightweight TP might not
be adequate for high-performance (specialized) servers, but
are certainly adequate for multimedia end systems. The most
commonly implemented user space protocol is probably
RTP/RTCP. However, RTP is implemented as part of the
application, and its flow control algorithm is tailored for the
specific application needs. This considerably reduces the
potential of code reuse.

ILLUSTRATION: XDMIF
In this section we illustrate some of the advantages provided
by our transport architecture by describing the first reference
implementation of the ISO MPEG-4 DMIF and demonstrat-

IEEE Communications Magazine • October 199860

ing how quickly this standard and its QoS extension were
implemented in our framework.

DMIF OVERVIEW
MPEG-4 is an emerging international standard that specifies
the coding of audio and video data using object description
techniques [3]. This novel approach to coding allows multime-
dia applications to dynamically compose complex scenes from
one or more elementary multimedia streams or synthetic
objects. The scene description information, consisting of the
logical structure of the scene, spatial and temporal informa-
tion of the video/audio objects that make up the scene, object
attributes, and graphics primitives, is carried within potentially
hundreds of data channels. This calls for the establishment
and release of numerous short-term channels with the appro-
priate QoS at a high rate. Traditional methods of signaling
are not adequate to meet this demand because of the high
overhead introduced.

In addition to defining the format, structure, and rules of
composition of these objects, MPEG-4 also specifies a general
application and transport delivery framework called the Deliv-
ery Multimedia Integration Framework (DMIF). Specified by
MPEG-4, DMIF’s main purpose is to hide the details of the
transport network from the user, as well as to ensure signaling
and transport interoperability between end systems.

In order to keep the user unaware of the underlying trans-
port details, DMIF defined an interface between the user-level
applications and DMIF called the DMIF Application Interface
(DAI). The authors defined an API instance of the DAI which
conforms with the interface semantics specified in [3].

The DAI provides the required functionality for realizing
multimedia applications with QoS support. Through the DAI the
user may request service sessions and transport channels without
concern as to the selected communication protocol. Further-

more, the DAI shields legacy applications from new delivery
technologies since it is the responsibility of the underlying DMIF
system to adapt to these new transport mechanisms. The DAI
API specification is currently under consideration as a novel
contribution to the MPEG-4 standard.

XDMIF
Figure 6 depicts the system architecture of XDMIF, a realiza-
tion of DMIF within the framework of xbind [5], a broadband
kernel for multimedia networks, and illustrates some of the
interactions and components involved during the creation of a
multimedia service.

The xbind broadband kernel is an open programmable net-
working platform for creating, deploying, and managing
sophisticated next-generation multimedia services. It is con-
ceptually based on the XRM — a reference model for multi-
media networks [2]. The term broadband kernel is deliberately
used to draw an analogy to the operating-system-like function-
ality the system must support, namely, that of a resource allo-
cator and an extended machine.

The architecture of XDMIF consists of a transport plane
and a control plane; these are denoted in Fig. 6 as U-plane
and C-plane, respectively. The XDMIF C-plane functionality
is implemented around the DMIF network interface (DNI);
for a detailed description of the DNI see [3]. The transport
architecture of XDMIF allows for the dynamic creation of
protocol stacks by binding transport components at runtime.
It further allows multiple implementations of a protocol stack
layer to coexist within a single application and for new capa-
bilities to be added without having to modify any of the exist-
ing architectural components. In this way, the same
applications can interoperate across ATM, Internet, mobile,
and telephone networks.

The MuxP engine provides the capability of multiplexing

■ Figure 6. The XDMIF system architecture.

MuxP

XDMIF
C-plane

Application

DAI

DNI DNI

FMux
channel

FMux
channel

XDMIF
U-plane

XDMIF
U-plane

Application

DAI

XDMIF
C-plane

TP

Network

MuxP
engine

MuxP
qECI

TP
qECI

TP
engine•••

•••

NetP

NetP
qECI

NetP
engine

PSB

NetP TP

NetP
qECI

TP
qECI

TP
engine

MuxP

MuxP
qECI

NetP
engine

PSB

NCC

MuxP
engine

IEEE Communications Magazine • October 1998 61

data with similar QoS requirements into one transport chan-
nel. It implements the transport capabilities of the DMIF
FlexMux, the multiplexer of MPEG-4 elementary streams.
The TransMux layer of DMIF is mapped into the combina-
tion of TP and TP engine and NetP and NetP engine pairs.
These can be instantiated, for example, for interworking with
ATM Forum or IP-based networks.

xbind provides the QoS framework needed by DMIF for
QoS management. In particular, the PSB ensures that MuxP
has the needed resources available in its transport channel
before establishing a new DMIF channel. If, in order to satisfy
a new channel request, an insufficient amount of resources
are available at the FlexMux layer, the XDMIF C-plane
requests a new network channel from the network connection
controller (NCC). Subsequently, the PSB constructs a new
stack (NetP, TP, and MuxP). Hence, xbind provides QoS man-
agement capabilities to XDMIF in a natural way.

The transport architecture described in this article has
been used throughout the entire XDMIF implementation. The
only new transport component implemented was the FlexMux
engine, the special DMIF requirement for supporting the
multiplexing of MPEG-4 elementary streams.

RELATED WORK
Programmable TP stacks have been the subject of a consid-
erable amount of research in the past. Related work can be
found under the topics of flexible protocol stacks, adaptive
protocol stacks, universal asynchronous protocol interfaces,
object-oriented transport components, configurable proto-
col stacks, and so on [6–9]; all address the issue of pro-
grammable transport, but do not consider issues of QoS.
Reference [10, 11] addresses both QoS and programmabili-
ty issues; [12] presents the x-kernel, an operating system
environment that provides an explicit architecture for con-
structing and composing network protocols. Reference [13]
also provides a taxonomy of key transport system services
and illustrates the concepts with a survey of four operating
system transport architectures, namely, System V and BSD
UNIX, the x- kernel, and Choices. Finally, [14] addresses
many of the issues related to the implementation of proto-
col stacks at the user level.

In [6] a protocol environment populated by standard com-
munication functions is proposed. Applications have the abili-
ty to compose protocol stacks out of the standard protocol
entities by interconnecting them. A generic communication
bootstrap procedure is proposed, where new protocol compo-
nents can be downloaded and installed at runtime. The
approach proposed in [6] is similar to ours and deviates from
the strict layering model imposed by standards such as the
Open Systems Internconnection (OSI) protocol suite or
UDP/TCP/IP protocols.

In [7] a universal protocol interface that allows the initiator
of a communication session to define in detail the rules of
information exchange is presented. The universal asyn-
chronous protocol interface is a data link device that can
download (arbitrary) protocols and execute them. It is also
proposed that data transfer protocol logic be dynamically
switched at runtime. Finally, protocols must be specified using
a general instruction set that looks very much like an assem-
bler to which instructions specific to communication protocols
have been added.

In [8] a dynamic protocol configuration capability based
on three types of protocol elements is proposed. The proto-
col stacks’ bottom layer is called the device element and is
similar to NetP. It abstracts a particular hardware device or
kernel interface that it manages. The endpoint element

defines the API to the protocol stack. Finally, the protocol
elements are the intermediate objects in the protocol stack.
They provide transmission and reception interfaces to their
neighbors. The protocol element abstracts the various pro-
tocol stack functions (e.g., multiplexing) and specific proto-
cols such as RPC. In this framework, TP and MuxP are
protocol elements. The binding plane allows the dynamic
configuration of protocols by specifying protocol stacks via a
reference structure that the server can provide to clients
upon request.

In [9] a Java-based system with dynamic protocol stack
building capability is presented. The protocol stack elements
are Java-based and inherit the protocol stack structure from a
base protocol class. The protocol structure defines methods
for binding “higher-” and “lower-” layer protocols. The proto-
col stack is constructed dynamically at runtime by a special
service class that allocates, initializes, and interconnects the
various protocol elements.

In [10] an adaptive transport system that can be dynamical-
ly configured to meet application needs is presented. The sys-
tem allows negotiation of policies and transport mechanisms
with remote hosts and intermediate service nodes to deter-
mine the protocol stack configuration that would meet the
QoS requirements of an application. A factory of protocol
elements (kernel objects) instantiates and interconnects the
protocol elements to create useful protocol stacks. The work
presented in [10] puts special emphasis on the adaptation
capability of the system to reconfigure the transport system to
meet the application QoS requirements after drastic changes
have taken place in the network.

In [11] a function-based communication model that allows
applications to request tailored services from the communica-
tion subsystem is presented. The protocol objects implement a
single specific functionality such as sequence control, flow
control, error correction, segmentation, sequencing, and so
on. These services are known as protocol functions. Using the
available protocol functions, the protocol configurator creates
protocol finite state machines based on the application service
requirements and available resources. The approach in [11]
abandons the concept of layering and has finer control granu-
larity than the approach presented in this article. Our archi-
tecture proposes to use engine protocol objects that fully
implement protocol state machines with all of their function-
ality (e.g., TCP, XDR). In our approach, protocol stacks are
dynamically, and possibly remotely, configured. In [11] the
protocol state machines are dynamically (and locally) config-
ured based on application needs.

In [12] the x-kernel is presented. The x-kernel is an operat-
ing system with special kernel support for network protocols
(e.g., memory map, buffer management, and event managers).
Initially, protocol stacks are statically specified using a graph
when the kernel is configured. When the kernel is booted,
each protocol object is initialized and waits to receive mes-
sages. At runtime, when an operation is invoked by an appli-
cation, a message recursively traverses the graph, visiting each
protocol and session object on its path until it reaches the net-
work interface cards. Processes are associated with messages
rather than protocols. This has the advantage that messages
can in general be entirely processed with no context switch.
Although the x-kernel is configurable, the protocol graph is
not dynamic. At runtime, a message can only decide to skip a
protocol object if it does not desire its service. However, the
possible protocol stacks are predefined.

Traditionally, communication transport systems have resid-
ed entirely in the operating system. In our architecture as well
as in [6, 8, 9], it is proposed to implement lightweight protocol
elements and build the protocol stacks in user space. Refer-

IEEE Communications Magazine • October 199862

ence [14] discusses some of the implications for an overall
communication system structure to support efficient user-level
implementation of protocols.

Finally, from the standpoint of APIs our architecture is
similar in philosophy to the Microsoft Windows open software
architecture for which both the APIs and service provider
interfaces (SPIs) are specified. Software developers build
applications using the APIs independent of service providers,
who implement service components compliant with SPIs. As
long as the service providers satisfy the SPI requirements,
applications built using the APIs run properly.

CONCLUSIONS
In this article we describe an object-oriented transport archi-
tecture in which the atomic processing entity is based on the
consumer/producer model. The architecture consists of con-
sumer/producer components that are separately represented
by their transport abstraction, their control and management
abstractions, and, a set of controllers implementing network
services such as the dynamic binding of protocol stacks.

From the control standpoint, the state of the consumer/pro-
ducer is made available to the programmer and controllers
through the binding interface base. The BIB is a collection of
CORBA interfaces representing networking and end system
multimedia resources [15]. The interfaces of the
consumer/producer front-ends are part of the BIB. They con-
sist of QoS-based APIs used by the binding controllers and
management system to control and manage the engines. Since
consumer/producer front-ends are open CORBA interfaces
they allow for end system transport and computing resources
to be remotely controlled.

The protocol stack is modeled in an object-oriented man-
ner. The PSB dynamically creates a variety of protocol stacks
on a per-call basis that are tailored to the special needs of the
application. This differs significantly from the traditional
transport architecture which assumes preinstalled TP stacks
that cannot be customized.

To illustrate some of the advantages provided by the archi-
tecture, we describe the first reference implementation of the
ISO MPEG-4 Delivery Multimedia Integration Framework
and demonstrate how quickly this standard was implemented
in our framework.

REFERENCES
[1] M. C. Chan et al., “On Realizing a Broadband Kernel for Multimedia

Networks,” Proc. 3rd COST 237 Wksp. Multimedia Telecommun. and
Apps., Barcelona, Spain, Nov. 25–27, 1996.

[2] A. A. Lazar, “Programming Telecommunication Networks,” IEEE Net-
work, Sept./Oct. 1997, pp. 8–18.

[3] ISO/IEC 14496-6 CD “Delivery Multimedia Integration Framework,
DMIF,” May 1998.

[4] J.-F. Huard and A. A. Lazar, “On QoS Mapping in Multimedia Net-
works,” Proc. 21st IEEE Annual Int’l. Comp. Software and App. Conf.
(COMPSAC ’97), Washington, DC, Aug. 13–15, 1997.

[5] Project xbind at Columbia University: http://comet.columbia.edu/xbind,
Summer 1996.

[6] C. Tschudin, “Flexible Protocol Stacks,” Proc. ACM SIGCOMM ’91,
Zurich, Switzerland, 1991, pp. 197–204.

[7] G. Holzmann, “Standardized Protocol Interfaces,” Software — Practice
and Experience, vol. 23, no. 7, July 1993, pp. 711–93.

[8] J. S. Crane, “Dynamic Binding for Distributed Systems,” Ph.D. thesis,
Univ. of London, 1997.

[9] B. Krupczak, K. L. Calvert and M. Ammar, “Implementing Protocols in
Java: The Price of Portability,” Proc. IEEE INFOCOM, Mar. 1998.

[10] D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Flexible and
Adaptive Transport System Architecture to Support Lightweight Proto-
cols for Multimedia Applications on High-Speed Networks,” Proc. Symp.
High Perf. Dist. Comp., Syracuse, NY, Sept. 1992, pp. 174–86.

[11] M. Zitterbart, B. Stiller, and A. N. Tantawy, “A Model for Flexible High-
Performance Communication Subsystems,” IEEE JSAC, vol. 11, no.4,
May 1993, pp. 507–18.

[12] N. C. Hutchinson and L. L. Peterson, “The x-Kernel: An Architecture for
Implementing Network Protocols,” IEEE Trans. Software Eng., vol. 17,
no. 1, Jan. 1991, pp. 64–76.

[13] D. C. Schmidt and T. Suda, “Transport System Architecture Services for
High-Performance Communications Systems,” IEEE JSAC, vol. 11, no.4,
May 1993, pp. 489–506.

[14] C. A. Thekkath et al., “Implementing Network Protocols at User Level,”
IEEE/ACM Trans. Networking, Oct. 1993; also in Proc. ACM SIGCOMM ’93.

[15] IEEE P1520, “Programmable Interfaces for Networks,” http://www.
ieee-pin.org.

BIOGRAPHIES
JEAN-FRANÇOIS HUARD (http://www.xbind.com/~jfhuard) received a B.Eng.
(EE) in 1990 from Ecole Polytechnique de Montreal, an M.A.Sc. (EE) in 1992
from Concordia University, Montreal, and an M.Phil. in 1994 from
Columbia University, New York. He his currently a Ph.D. candidate in the
Department of Electrical Engineering at Columbia University. His current
research interests are in the area of open middleware transport architecture
and high-performance QoS-aware transport protocols. From 1992 to 1998
he was a graduate research assistant with the COMET Group in the Center
for Telecommunications Research at Columbia University. During the sum-
mers of 1994 and 1995 he was with AT&T Bell Laboratories, Murray Hill,
New Jersey. He was awarded a Centennial Scholarship by the NSERC of
Canada (1990–1994). Currently he is leader of the Transport Group of
Xbind, Inc. He is also technical editor for the IEEE P1520 standard initiative
and chair of the IEEE P1520 ATM SWG (http://www.ieee-pin.org).

AUREL A. LAZAR [F ’93] (http://comet.columbia.edu/~aurel) has been a pro-
fessor of electrical engineering at Columbia University since 1988. His cur-
rent theoretical research interests are on networking games and pricing.
His experimental work focuses on building open programmable networks.
This work has led to the establishment of the IEEE Standards Working
Group on Programming Interfaces for Networks (http://www.ieee-pin.org).
He was instrumental in establishing the OPENSIG (http://comet.
columbia.edu/opensig) international working group with the goal of explor-
ing network programmability and next-generation signaling technology. He
was program chair of the Fall and Spring OPENSIG ’96 workshops and of
the First IEEE Conference on Open Architectures and Network Programming
(OPENARCH ’98, http://comet.columbia.edu/openarch). Currently on leave
from Columbia University, he is chairman and CEO of Xbind, Inc., a high-
technology startup located in Manhattan’s Silicon Alley (http://www.
xbind.com).

