1214

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 14, NO. 7, SEPTEMBER 1996

Realizing a Foundation for Programmability of
ATM Networks with the Binding Architecture

Aurel A. Lazar, Fellow, IEEE, Koon-Seng Lim, and Franco Marconcini

Abstract—A conceptual framework, called the binding model,
for the creation, deployment and management of multimedia
services on ATM-based broadband networks with end-to-end
quality-of-service (QoS) guarantees is presented. The key function
of the associated binding architecture is to provide an open
programmable environment that facilitates the easy creation of
flexible services. We describe the implementation of a prototype
binding architecture called zbind as a middleware toolkit for
building open programmable ATM networks. Finally, we present
our initial experiences with experimenting and deploying xbind
over an ATM testbed and highlight some of the lessons learned.

I. INTRODUCTION

E describe a conceptual framework (called the binding

model [27]) for the creation, deployment and man-

, agement of multimedia services on.ATM-based broadband

networks with end-to-end quality-of-service (QoS) guarantees.

The model allows the binding of networking resources with

the goal of creating distributed services across heterogeneous

networking platforms. We present a service creation method-

ology and show how scalable multimedia distributed services
can be constructed from a set of simple network services.

A key difficulty in network programmability is finding
an agreeable definition of a service that exhibits operational
significance. For example, the TINA-C [3] service architecture
[42] defines a service as “...a meaningful set of capabilities
provided by an existing or intended network to all who utilize
it, like customers, end users, network providers, and service
providers” whereas ANSA [8] defines it as the functional
role of a computational object. In our architecture, we restrict
our definition of services to a set of reusable capabilities for
supporting the scalable development and deployment of mul-
timedia applications with QoS guarantees. Thus, our notion of
service encompasses high level activities related to multimedia
distribution like video on demand as well as the low level
support functions needed to realize such a service.

Based on this understanding, we observe that typical mul-
timedia distribution services require support from four di-
mensions, Specifically, these services need support for name
and resource mapping, support for resource management and
reservation, support for a media stream transport and support
for service management functionality. They require name and
resource mapping in order to translate the logical service
abstractions into physical resources. They also require a re-

Manuscript received May 7, 1995; revised March 15, 1996.

The authors are with the Department of Electrical Engineering and Center
for Telecommunications Research, Columbia University, NY 10027-6699
USA. . .

Publisher Item Identifier S 0733-8716(96)06982-X.

source reservation procedure since the service must guarantee
QoS, they require a stream transport for distribution of its
media streams with QoS and finally they require management
functionality for monitoring and control. It is also implicit from
the description above that some form of state abstraction is
needed for characterizing the dynamic elements of the service
while it is executing. .

The binding architecture [24] is a formal description of
the binding model. Its principal aim is to provide an open
programming environment that facilitates the easy creation of
distributed services. By open, we mean the architecture must
support functional application programming interfaces (API’s)
for resource control and management that service providers
can use for developing useful services. By programmable, we
mean that these API’s should be “high-level” enough to allow
the service specification and creation process to be carried out
via a high-level programming language.

The Binding Architecture consists of an organized collection
of interfaces, called the binding interface base [28] (BIB), and
a set of algorithms that run on top of these. BIB interfaces
provide an open and uniform access to abstractions that model
the “local” states of networking resources. Binding algorithms
play a key role in the service creation: process through the
process of interconnecting (binding) networking resources.
QoS is explicitly modeled in the architecture via a set of
abstractions that characterize the multiplexing capacity of
networking and multimedia resources under QoS requirements.
These abstractions allow admission control tests to be executed
in real time during the resource reservation process.

We describe our initial experience with an implementation
of the binding architecture, called xbind [39], a middleware
toolkit for building scalable multimedia services on top of

‘heterogeneous computing and networking platforms. xbind

achieves interoperability between the different resource control
and management algorithms of a multimedia network by
giving these open access to the BIB. By adopting the common
object request broker architecture (CORBA) [37], an industry
standard for distributed computing platforms, xbind achieves
interoperability in terms of data representation across diverse
operating systems and machine architectures.

This paper is organized as follows. In Section II, the
binding model as a framework for network programmability is
introduced. To give the proper context, an extended reference
model (XRM) [22] for networking is first introduced. The
Binding Model is identified as a service creation model within
one of the components of the XRM. Finally, the service
creation model is briefly described. In Section III, elements of

0733-8716/96$05.00 © 1996 IEEE

LAZAR et al.: REALIZING A FOUNDATION FOR PROGRAMMABILITY OF ATM NETWORKS WITH THE BINDING ARCHITECTURE

Service Abstractions

inding Algorithms '
Binding Interface Be

S
QOS Abstractions

The Broadband Network

Fig. 1. Overview of the RGB decomposition of the XRM.

the binding architecture are given. These include a description
of the BIB and a specification of the service creation process.
In Section IV, our experience with xbind is discussed. Related
work is presented in Section V. Finally, concluding remarks
appear in Section VI. '

II. THE BINDING MODEL AS A FRAMEWORK
FOR NETWORK PROGRAMMABILITY

The ability to create multimedia services requires three
key components. First, there must be a means of obtaining
information about the state of resources in the system. Second,
a middleware layer is necessary for providing appropriate state
abstractions. Third, a general service architecture is needed for
structuring the relation between services and their interactions
so that more complex services can be systematically composed
from simpler ones. To put the latter in the proper context,
we will start our presentation by giving more structure to the
XRM. This will be followed by a description of the Binding
Model and its embedding into the XRM. We will close this
section by discussing the associated service creation model.

A. The RGB Decomposition of the XRM

The XRM models the communications architecture of net-
working and multimedia computing platforms. It consists of
three components called, the broadband network, the mul-
timedia network, and the services and applications network
(see Fig. 1). The broadband network is defined as the phys-
ical network that consists of switching and communication
equipment and multimedia end-devices. Upon this physical
infrastructure, resides the multimedia network whose primary
function is to provide the middleware support needed to realize
end-to-end QoS guarantees over the physical media-unaware
network. This is achieved by abstracting from the broadband
network a set of QoS abstractions. Based on the latter, resource
management and control can be performed. However, QoS
abstractions, by themselves, are a passive representation of
resource states. Services, on the other hand require activity in
terms of resource reservations and distributed state manipula-
tion. These activities can be viewed as part of an algorithm
which when executed creates the service. In this perspective,
the multimedia network provides a programming mode] which
together with the QoS abstractions it receives from the broad-
band network, allows service behavior to be specified and
executed. Service abstractions represent the states of a service
created using algorithms native to the multimedia network.

1215

These abstractions are used by the services and applications
network for managing and creating new services through
dynamic composition and binding.

The three component networks of the model above can
be refined further. As shown in Fig. 2, each of the original
RGB component networks is decomposed into five planes.
The decomposition results in three submodels are collectively
known as the RGB decomposition.

The RGB decomposition represents detailed viewpoints of
the broadband network, the multimedia network, and the
services and applications network, respectively. The interface
between R-, and G-models is a set of QoS abstractions
typically structured as graphs that quantitatively represent
various resources in the physical network. The G-model uses
these graphs for creating service abstractions that are provided
to the B-model for building more complex services. Thus,
the interface between the R- and G-models and the interface
between the G- and B-models are abstractions that are similar
in structure but differ in usage. In the following paragraphs, we
describe each plane of the RGB models in detail. Throughout
this document the full scoping notation will be used to refer to
a particular plane of the XRM (e.g., XRM::M) or a submodel
(e.g., XRM::G). The interface between planes will be denoted
by using two bars. For example R||G represents the interface
between the R- and G-models.

The N-plane functionality of the R-model is one of net-
work and system management and comprises monitoring and
control of individual states. These states might correspond
to the status of a link, the temperature of a interface card,
etc., and are enveloped as managed objects residing in the
MIB. A client/server interaction is the basis of the N-plane
manager/agent model for monitoring and controlling network
elements. The M -plane models the resource control tasks.
For example, at the switch or multiplexer level the main
resource functionality is in terms of buffer management and
link scheduling [13]. At the workstation or PC level these
same tasks appear as operating system scheduling and mem-
ory management. Flow control is another important resource
control mechanism—it acts on the frame/cell level. The D-
plane abstracts the main network components, i.e., switches,
multiplexers and media processors as a global distributed
memory. Specifically, communication links are modeled as
FIFO memory and, switches and processors as random ac-
cess memory. These and higher level abstractions thereof are
entities included in the management information base (MIB).
The C-plane supports exchange of state information among
distributed buffer management and link scheduling entities.
Exchange of state information is required in cooperative dis-
tributed scheduling and buffer management [26]. Finally, the
U-plane of the R-model defines cell level adaptation protocols
for segmentation and reassembly as well as reliability checks.
This includes the ATM layer and the ATM adaptation layer
functions.

Monitoring the behavior of distributed systems is a key
requirement for the N-plane of the G-model. The task of the
N-plane is, among others, the monitoring of distributed object
oriented systems (such as CORBA) and their interactions.
The M-plane offers orchestration as well as other resource

1216

W

QOS Abstractions

Broadband Network

Fig. 2. The RGB decomposition of the XRM.

allocation mechanisms. The key resource allocation algorithms
are routing and admission control. The D-plane consists of
a BIB, a distributed repository containing information about
entities that might participate in the creation of network
services (a binding process). Services are defined as a set
of interconnected resources. In addition, there is a need for
directory, trader or broker, and naming services. The C-plane
supports stream control as well as connection management
and, more generally, distributed algorithms. Stream control
refers to protocols required for temote control of multimedia
devices such as tape drives, multimedia on demand systems,
etc. Both unicast as well as multicast connection management
algorithms belong to the C-plane. Finally, the functionality of

the U-plane of the G-model includes the support of a number

of media stream protocols such as a native ATM stack [12] and
other real-time protocols. These protocols can co-exist with a
number of already widely used transport protocols that offer
best effort service (such as TCP). :

The management of services is a functionality of the N-

plane of the B-model. Here we identify management support
for access, security, configuration, billing and. auditing ser-
vices, among others. Service admission control is defined both
in the V- and in the M -plane. How to control services and
negotiate networking and computational resources is a key
requirement of the M-plane. The D-plane is a repository
of services such as multimedia mail, computer supported
cooperative work, video on demand, parallel virtual machines,
etc. Navigation and service creation tools are the services
of the C-plane. Finally, application protocols belong to the
functionality of the U-plane.

B. The Binding Model

The binding model defines a conceptual framework for
the creation, deployment, and management of multimedia

Multimedid Network

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 14, NO. 7, SEPTEMBER 1996

G B

Service Abstracti ns

W

Services and
Applications Network

Multimedia Capacity Region
. i _2 Schedulable Region

@ Workstation Model

O Switch Model

Fig. 3.
graph.

The physical connection graph and multimedia networking capacity

services on ATM-based broadband networks with end-to-end
QoS guarantees. Binding refers to the activity of creating a
requested multimedia service with QoS guarantees. It entails
the association of a set of network and end system resources
with a media transport protocol and the service management
system.

The binding model gives the XRM::G its operational ca-
pability through a model of service creation. In this context,
service creation is defined as a process of object composition
whereby objects are manipulated by algorithms residing in
various XRM::G-planes. The binding model describes how to
marshall and compose resources into network services startirig
with services offered at the R||G interface.

LAZAR et al.: REALIZING A FOUNDATION FOR PROGRAMMABILITY OF ATM NETWORKS WITH THE BINDING ARCHITECTURE

RHG
QOS Abstractions

Fig. 4. Network view of the service creation process.

There are a number of services provided at the R||G
interface including the physical connection graph [22] and the
multimedia networking capacity graph (Fig. 3). The physical
connection graph carries all the topological information about
the physical network and the associated resources. Fig. 3
also depicts the multimedia networking capacity graph. The
capacity of networking as well as media resources is charac-
terized through the concepts of schedulable and multimedia
capacity regions as given in [25]. Suffices to say here, that
the multimedia networking capacity graph consists of a set
of interconnected interfaces denoting the access to objects
representing quality of service abstractions. There are also
a number of other services offered at the same interface
such as network management services in support of plane
management. However, because of space limitations, these
will not be covered here.

The binding model consists of two building blocks: a set of
(enveloped) states organized in the BIB and a set of binding
algorithms operating on these interfaces. The two building
blocks structure of the binding model is justified through a
separation principle. This principle gives a clear focus toward
what should be and what needs to be standardized within the
XRM::G. Our proposal is to standardize the access to the BIB
and leave the algorithms and the service creation proprietary.

The BIB is a repository of interfaces modeling the access
to resources such as switches, links, multimedia devices, etc.
Within the XRM, the BIB is located in the Telebase (G::D-
plane). The physical connection graph and the multimedia
capacity graphs are both logically represented in the BIB.

At the G|B interface, the XRM::G model also offers a
number of network services. Among others, we mention,
virtual circuits, virtual paths [1], virtual networks [2], and
multicast [5]. The reader is recommended to consult these
references for details.

C. A Framework for Service Creation in the Binding Model

The functionality of the G-Model is one of mapping the
services provided by the R-Model into network services pro-
vided to the B-Model at the G||B interface. The network
view of service creation describes how binding algorithms
that participate in the process of service creation interact and
co-exist in the G-Model.

G::M- or C- Plane Algorithms

1217

GlIB
Service Abstractions

Fig. 5. Service view of the service creation process.

The process of service creation consists of generating, start-
ing from a set of objects (states) residing in the BIB, another
set of objects (states). The generation process is executed by
a service provisioning entity. Multiple such entities execute in
parallel and in a distributed fashion. The role of the Binding
Model is to define the overall organization of distributed
operations for service creation. These operations or services
can be used to create other services. All operations reside in
the N-, M-, C-, and U-planes.

Fig. 4 shows the distributed nature of BIB interactions,
and suggests possible distributed interactions among differ-
ent binding algorithms during the service creation process.
Binding algorithms arise in connection set up for broadband
networks, distributed systems implementing synchronization
protocols, resource allocation protocols such as routing, mul-
timedia computing platforms, etc. New applications can be
supported without changing the underlying binding model. In
addition, several proprietary binding algorithms can operate at
the same time.

The service (or local) view toward the service creation
process highlights the steps that lead to the creation of the
service. The process of service creation consists of five steps.

1) Create a service skeleton for an application such as a

virtual circuit, virtual path, virtual network or multicast.
The structure of the skeleton for a virtual circuit, for
example, consists of a graph from a source node to
destination.

1218

VirtualResource

(CInterface)—(BIBInterface

" { MediaProcessor

MediaTransporter

VirtualCapacityRegion

Fig. 6. The binding interface base.

2) Map the skeleton into the appropriate name and resource
space and thereby create a network application.

3) Associate (bind) to the application a media transport
(stream) protocol and thereby create a transport appli-
cation.

4) Bind the transport application to resources and thereby
create a network service.

5) Bind the service management system to the network
service and thereby create a managed service.

Fig. 5 illustrates the individual service view of the service
creation process. First, a skeleton is created using name
and resource mapping services [5]. The resulting network
application is bound to a transport protocol, resources, and
service management. When a service is required, the ap-
plication process issues.a service request to the responsible
service provisioning entity that in response will invoke the
corresponding binding algorithm(s) for establishing a service
instance.

IIT. ELEMENTS OF THE BINDING ARCHITECTURE

The binding architecture is a formal description of the
binding model. In what follows, we will presents some of
its ‘better understood elements, These include the BIB, a
switch control API, a set of broadband kernel services, and
a model for developing high level broadband services from
these elements.

A. The Binding Interface Base

The binding architecture specifies all interfaces defined in
the BIB in CORBA'’s interface definition language (IDL).
Because the focus of the BIB is on abstracting only resource
states, a number of interfaces present in the original proposed
BIB of [23] have been omitted. The new streamlined binding
architecture BIB is given in Fig. 6.

Besides interfaces, the BIB also defines a specialized class
of factory interfaces for instantiating all other interfaces.
These interfaces are used during the bootstrap of the system

[EEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 14, NO. 7, SEPTEMBER 1996

DisplayDevice

VirtualDevice

VirtualCPU |

VirtualLink

irtualSwitch

SchedulableRegion

MultimediaCapacityRegion)

for creating the appropriate interfaces to existing physical
and logical devices. The IDL definition of the generic BIB
factory interface called the BIBFactory allows the creation,
destruction of an interface and querying of the list of interfaces
currently instantiated by a server. All other factory interfaces
are derived from this interface and customized to create
specialized interfaces specific to the resource concerned.

. The VirtualSwitch controls the manner in which VPI/VCI
pairs are allocated and deallocated. The VirtualSwitch interface
gives therefore access to the abstraction of the valid VPI/VCI
pairs for both an ATM switch as well as an ATM adapter card.
Obviously, the two have substantial hardware differences: in
the case of the switch the methods of the interface are mapped
to the functionality of the hardware. In the case of the adapter,
however, the fabric component is absent. We expect that in
the future the internal bus of the workstations or PC’s will
have a design very close to an ATM switch and thus VC’s
will terminate not onto an adapter but directly to the target
or source device. The primary methods of the VirtualSwitch
interface are for requesting for free VPI/VCI pairs as well as
for specifying the mapping between incoming and outgoing
VPI/VCI pairs in a switch fabric. These are given by the meth-
ods getOutputChannelldentifier(), getInputChannelldentifier(),
and the set of commitChannel() calls, respectively (see Table
D. ‘

On the other hand, the VirtualDevice interface abstracts
the functionality of a multimedia stream device. The current
interface models a multimedia device as either a source or
a sink. The interface allows multimedia streams to be added
to a device or dropped from a device by specifying the end
VPI/VCI’s used by the stream. Individual active streams can
also be paused or resumed. A list of these methods is given
in Table II.

B. The Switch Control API

The implementation of the hardware specializations of the
VirtualSwitch for all the platforms listed in Table III required
considerable development effort. Our goal of having access

LAZAR et al.: REALIZING A FOUNDATION FOR PROGRAMMABILITY OF ATM NETWORKS WITH THE BINDING ARCHITECTURE

1219

TABLE 1
VIRTUALSWITCH INTERFACE

typedef short VCI;
typedef short VPI;
typedef short PortId;

in PortId inpid);

in PortId outpid);

in PortId inpid):
in PortId outpid):
commitChannel (in VCI invci,

in VPI outvpi,
removeChannel (in VCI invcei,

BIBStatus
in VCI outvci,
BIBStatus
in VCI

BIBStatus
BIBStatus

BIBStatus
BIBStatus

interface VirtualSwitch: MediaTransporter {

BIBStatus setInputChannelldentifier(in VCI invci, in VPI invpi,

BIBStatus setOutputChannelldentifier(in VCI outvei, in VPI outvpi,

BIBStatus getInputChannelldentifier(inout VCI inveci,

BIBStatus getOutputChannelldentifier (inout VCI outvei,

in VPI invpi,
in PortId outpid);
in VPI invpi,
outvci, in VPI outvpi, in PortId outpid);

commitInputChannel (in VCI invei,
removeInputChannel (in VCI invei,

commitOutputChannel (in VCI outvci,
removeOutputChannel (in VCI outvci,

inout VPI inwvpi,

inout VPI outvpi,

in PortId inpid,
in PortId inpid,

in VPI invpi);
in VPI invpi);

in VPI outvpi,
in VPI outvpi,

in PortId outpid);
in Portld outpid);

TABLE 1I
VIRTUAL/DEVICE INTERFACE

struct StreamInfo {
short Id;
VCI veci;
VPI vpi;

};

typedef sequence<StreamInfo> streamList;

interface VirtualDevice: MediaProcessor {
BIBStatus addStream(out short 1Id,
BIBStatus removeStream(in short Id);
BIBStatus getStreams(in short dir,

BIBStatus pauseStream({in short Id);
BIBStatus resumeStream(in short Id);

in short dir,

out streamList idList);

in VCI veci, in VPI vpi);

to low level control API’s that directly operate on the routing
tables of various ATM switches is currently difficult to achieve
since these are not open to third parties. However, through
direct collaboration with the switch manufactures we were
able to implement the VirtualSwitch on an individual basis.
This approach is rather time consuming and, obviously, not
scalable.

In order to speed up the implementation process, we pro-
posed a set of API’s, called the switch control application
programming interface (SCAPI) [29], for the general control
and management of ATM switches. The same motivation

(albeit through a different approach) has also prompted Ipsilon
Networks to propose a wired protocol called the general switch
management protocol (GSMP) [36] with similar functionality
to allow remote switch management. The main differences
between the two proposals lie in the area of QoS control
and their intended use. In the SCAPI proposal, QoS issues
play a central role. In the current version of GSMP, however.
QoS issues have not been explicitly addressed. Moreover
while GSMP is meant to allow remote access to switch
control functionality, SCAPI is a programming interface for
developing high level control software on a switch. In the

1220

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 14, NO. 7, SEPTEMBER 1996

TABLE III
NETWORK AND MULTIMEDIA DEVICES CURRENTLY SUPPORTED BY xbind

VirtualSwitch
Switches Fore ASX-100 Sun0S5 4.1.3
Fore ASX-200 Sun05 4.13
NEC Model 5! Sun0s 4.1.3
Adapters
o SunOS 4.1.3, Solaris 2.3, 2.4, 2.5
Fore Adapter 200-Series UP-UX A.09.07/A.09.05
Irix 5.3
VirtaalDevice
Native Audio Devices of:
SpeakerDevice * Sun Sparc 5,10, 20 SunOS 4.1.3, Solaris 2.3, 2.4, 2.5
MicrophoneDevice s HP 9000 UP-UX A09.07/A.09.05
o SGI Iris Indigo Trix 5.3
Parallax Graphics Xvideo on:
CameraDevice «" Sun Sparc SunOS 4.1.3, Solaris 2.3, 2.4, 2.5
DisplayDevice + HP 90060 UP-UX A.09.07/4.09.05
SunVideo Solaris 2.3

i. The controller board of the NEC Model 5 switch was replaced with a bus converter attached to a Sun

Sparc.2 workstation acting as controlier.

2

‘0

=

]
| /'QOS Controt APT Switch Fabric AP\ /Switch cqmﬁgumtffgl : y
~getNumTrafficClasses | | - addVC at}é Ma'nagement » §
| -set ClassQOS - removeVC - inirSwitch I
41 -getClassQOS - queryVC - resetSwitch e
1| -gerSchedulableRegion | | - addVP - resetPort g =
: - removeVP :
. - query¥YP '
4 - setPort .
N\ - queryPort / : g
R O B
l Switch Resources I g‘
\& : =/

Fig. 7. Relationship between BIB interfaces and SCAPL

Binding Architecture, this is represented by the software that
implements the VirtualSwitch interface. Fig. 7 illustrates the
SCAPI proposal.

C. Broadband Kernel Services

The broadband kernel services refer to low level “oper-
ating system” like functionality provided by the middleware
for deriving higher level multimedia services. These include
services for connection management, routing, device man-
agement, and transport. The connection management service
provides connection setup and tear down functionality between
a number of network endpoints. The routing service provides
a route location functionality for traversing any two network
endpoints. Together; they implement the basic connectivity

services in the network component of the system and can be
used to built switched virtual circuits (SVC’s). On the host
end, a device management service provides the functionality
of tracking and managing the numerous multimedia devices
spread throughout the system. Ensuring format compatibility
and presentation translation are also aspects of this service.
Finally the transport management service defines the function-
ality required for sustaining transport streams in the network.
These include functionality for rate control and bandwidth
renegotiation.

These services are realized in accordance to the service
framework of the binding model. All services with the ex-
ception of -the routing service (which currently implements
only static shortest path) are encapsulated in servers which
expose the four basic interfaces for service instance creation,

LAZAR et al.: REALIZING A FOUNDATION FOR PROGRAMMABILITY OF ATM NETWORKS WITH THE BINDING ARCHITECTURE

1221

Logical Name Mapping
Resource Reservation
Transport Selection

. 17
\ Service Factory / ,' L0 3
/
\ a0 /! ¥
Server Scrt
cripty {7 2
N - States pts vé
~ sy A U
~ P m == = Jrr—” é
—
—I— *

B

\E T 7'~ Service : !)
S+ + Skeleton Seripfs ::
Q]

2 i

z

5,

@

e 1
service instance lJI

Fig. 8. Interfaces for multimedia distribution services.
programmability, control and management. The relation and
the interplay between these services and their interfaces will
be detailed in the next section.

D. Broadband Services

Based on the service creation process described in Section
II-C, we define the following object framework for service
creation [30]. Services are offered by servers which support
the creation and maintenance of their state. When a request for
a service is made to a server, a service instance is instantiated
or created. Each service instance is composed of an algorithmic
part and a data part. The algorithmic part expresses the logic
of the service instance while the data portion is an abstraction
of its state. Individual service instances can be customized
by modifying the logic of its algorithmic part. Similarly
control can be effected on an executing service instance by
the modification of its states. Servers also have an algorithmic
component which specifies how service instances are created,
deployed and managed and a data part which models the state
of the server and its policies.

Typical servers expose four interfaces. These are the service
factory interface, the service programming interface, the ser-
vice control interface, and the service management interface.
The service factory interface is used to request the creation
of a service instance. The service programming interface
allows customization or modifications to be made to the
algorithmic component of the server or service instance. The
service control interface is the operational interface to the
service instance and allows the monitoring and manipulation
of service instance states during execution. Finally the service
management interface allows for monitoring and control of
the server and the setting of management policies as Fig. 8
below illustrates. i

It is possible for some services to have no state (e.g., a
simple database lookup service). Such services do not create
instances and have only factory and logic interfaces. We
exemplify the operational significance of the service creation
process by briefly describing below a realization of a video
conferencing service.

Service Management

As an example, consider a simple video conferencing ser-
vice as illustrated in Fig. 9. In order to realize this service,
a small number of supporting services must be defined. In
this case, we say that the video conferencing service is
composed of a transport management service, a device man-
agement service, a connection management service and a
route management service. The video conferencing session
manager upon receiving a request for a new session from
its service factory interface activates two other services, the
connection management service (point 1) and the device
management service (point 2). The connection management
service contacts the routing service (point 1:2) to obtain a
source route and then proceeds to set up the connection (point
1.3). The device management service first checks to see if
the end-devices involved in the session are compatible and
have correct access permissions before activating them (point
2.1). The information passed between the device manager
and the devices include the VCI/VPI's to use as well as
the media stream protocol for transport. The end-devices
upon activation register themselves with the transport manager
(point 2.2) which in return registers itself with the video
conference manager (point B). If during the course of the
session the end-devices detect congestion or fault in the
network, they can trigger transport renegotiation through the
control interface of the transport manager (point A). The
transport manager in turn can trigger the control interface
of the video conference manager to request corrective action
through its control interface (point B). Similarly if there is
a user request for change of bandwidth or QoS requiring
transport action, the video conference manager can trigger the
control interface of the transport manager (point C) which in
return can trigger corrective flow control actions on the device
(point D). A service manager can monitor and manage the
video conferencing service through its management interface
(point E) or modify the service logic (e.g., to upgrade or
enhance the service) through its logic interface (point F).

1IV. EXPERIMENTING WITH xbind

Since the Fall of 1994, we have been experimenting with
xbind [39], an implementation of the binding architecture. The

1222

Video Conference

Device Manager

Fig. 9. High level video conferencing service architecture.

objective of xbind is the system level validation of the binding
model. xbind currently supports a subset of the functionality
defined in the binding architecture. Important components
whose implementation has been left to future releases are the
mechanisms- for supporting QoS for some of the resources.
We delayed the implementation of this important part of the
Binding Architecture because of the lack of support in the first
generation ATM switches for traffic classes with associated
QoS specifications. Similarly the currently available worksta-
tions or personal computers cannot guarantee allocation of
computational resources, and therefore any implementation of
the multimedia capacity region mentioned in [23] would have
been very limited in scope. We decided instead to focus the
first implementation of xbind on interoperability aspects.

In the following sections, we will examine some impor-
tant elements of xbind including its signalling infrastructure,
its deployment, and from an implementational perspective,
an example service, the video conferencing service already
described in Section III-D.

A. The Basic Signalling Infrastructure

The term “signalling” refers to the functional role of the C-
plane, namely the transport of control information. From this
perspective, the basic signalling infrastructure is somewhat
akin to the CCSS #7 of the telephone network or the dis-
tributed processing environment (DPE) of the TINA reference
model. In xbind, the signalling infrastructure is composed of
a collection of CORBA object request brokers (ORB’s) which
provide a homogenous name space across a distributed set

* of heterogeneous platforms. The signalling infrastructure also
provides location transparency and well defined call semantics
through its remote procedure call (RPC) interface.

Using CORBA for signalling requires having CORBA ob-
jects reside directly on the networking or media resources—it
requires the capability to run CORBA objects such as the
VirtualSwitch on the ATM switch hardware. In our case where
an off-the-shelf CORBA implementation by Iona Technologies

Connection Manager

F.

Service Manager

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 14, NO. 7, SEPTEMBER 1996

o [

I
Route Manager

to VirtualSwitches/Links

to VirtualDevices

(Orbix [13]) was the platform of choice, this was possible for
some of the earlier generation groupware ATM switches (like
the Fore System ASX-100 and ASX-200) which employed
a conventional microprocessor with standard UNIX operating
system as the switch controller. On newer switch platforms
where the controller runs on an embedded board with a real
time operating system, realizing a similar configuration would
be more difficult.

One of the drawbacks of the current generation of CORBA
implementations is that these are usually not supported by
different lower level transport protocol stacks. As a result,
there is usually little alternative to the use of TCP/IP. We did
some preliminary investigation with Postmodern Technologies
on the possibility of replacing IP with a native ATM network
protocol stack in their ORBline product but concluded that
it would require too much effort in rewriting portions of the
ORB.

In addition, this aspect of CORBA implementations turned
out to be secondary to the initial interoperability objective of
the Binding Architecture. Moreover, the typical semantics of
object invocations favored short messages on a highly flexible
connectionless transport, which in fact made IP the ideal
transport! We therefore concentrated on solving the problem
of how to support IP [21] communication services on an ATM
network prior to the establishment of any wired signalling
protocol.

To this end, we decided on a combination of two different
approaches to solve the problem, namely:

1) Whenever possible, we took advantage of a switch’s na-
tive signalling mechanism for establishing IP over ATM.
In the case of Fore System switches, the switches auto--
matically create SVC’s for the IP traffic using SPANS
during bootup.

Otherwise, an IP network: is configured through scripts
that add static IP routes or create ad hoc VC routes in
the routing table of the switches through CORBA calls
to the local VirtualSwitch interfaces.

2)

LAZAR et al.: REALIZING A FOUNDATION FOR PROGRAMMABILITY OF ATM NETWORKS WITH THE BINDING ARCHITECTURE

" Cornell U,

1223

Rome Laboratory

NN/

L | JOME Fore
2271 P ASX-100 ASX-200

NYNEX S&T

workstation i
[J = with Af
devices

----- = PV(s

Fig. 10. Deployment of xbind on NYNET.

The implementation of OMG CORBA currently used in xbind
is Orbix. Interworking with other implementations is planned
with compatibility among the different ORB implementations
achieved through the OMG Internet Inter-ORB protocol (IIOP)
[4].

B. xbind Deployment

As we have already explained in Section I, interoperability
is achieved in the binding architecture through the separation
of binding algorithms from logical resources. In Table III, we
list the hardware and software platform specializations of the
VirtualSwitch and VirtualDevice interfaces available in xbind.

The first implementation of xbind was completed at the
beginning of 1995 and its binaries were made available in

the public domain in the of summer 1995. Starting with

the summer of 1995, we have been deploying xbind on
the Columbia Campus ATM network by first installing it on
three ATM switches. Since then we have been experimenting
with xbind on the New York State ATM testbed, NYNet, in
collaboration with NYNEX S&T and with the Air Force Rome
Laboratory. Fig. 10 shows the network topology used in some
of the experimentations.

The rapid deployment of xbind into NYNET was possible
for two main reasons. Firstly, the flexibility of the reservation
system for VC’s in the VirtualSwitches allowed transparent
use of a set of permanent VC’s interconnecting NYNET sites.
Secondly, in xbind the specializations of the VirtualSwitches
to the Fore Systems ATM switches were designed to coexist
with the existing FORE ATM switch controllers so that the
switches participating in the experiments could continue to be
fully operational throughout the period of the experimentation.
This eliminated the need for a complex reservation system or
for limiting our experimentation to off-hours.

Columbia University

Finally, in October 1995 and April 1996 we organized
two workshops at Columbia University (see OPENSIG [38]),
focusing on technologies related to open signalling such as
the Binding Architecture. At present, several research labora-
tories and universities have been experimenting with xbind
after installing the binaries on their hosts and switches (see
http://www.ctr.columbia.edu/opensig/sites.html).

C. The xbind Video Conferencing Service

A number of simple multimedia services have been im-
plemented in xbind. These include an ATM LAN traffic
monitoring service, a connection monitoring service and a
video conferencing service that allows setup of multiparty
video conference sessions using the connection, device man-
agement and transport management services of the broadband
kernel services layer. However due to the constraints of
space, we will only describe the architecture of the video
conferencing service. An overview of its architecture is given
in Fig. 11. It consists' of four software functional layers.

The lowest layer of software is formed by the BIB, a
collection of interfaces that offers an abstract view of resources
in the Binding Architecture. These include logical resources
like ATM virtual circuit identifiers (VCI’s) or physical re-
sources like multimedia devices. Calls are made to these
interfaces to bind the underlying resources to create low level
services, i.e., broadband kernel services. Upon these, network
services are built. Examples of the former include routing and
device management, and of the latter, virtual circuits, virtual
paths and virtual networks. These services are used to build
the multimedia services layer. The multimedia services layer
consists of very high level services for multimedia content
search, retrieval, distribution and interaction. These include
conference management services, multimedia agent-based ser-

1224

=D
:

B

C

ve
2

B

.-D

ve

G

Fig. 11. Java-xbind calling séquence.

Fig. 12. The Java-xbind video conferencing service.

vices, Java [40], [41], and the World Wide Web (WWW)
enabled services. At the highest layer of the architecture lie
the user level applications which may be WWW browsers or
conventional interactive applications.

Located at the application layer, Java-xbind [32] is a multi-
party desktop teleconferencing service whose functionality is
offered through a Java applet loaded with a Java-enabled Web
browser. The applet supports typical graphical user interface
(GUI) features like scrolled-lists, check boxes, push buttons,
bitmaps, etc. that achieve the standard “Motif-like” look
and feel. In addition, the applet also contains the logic and

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 14, NO. 7, SEPTEMBER 1996

Software

Hardware

-

data structures for managing a multiparty conference. Fig. 12
shows the applet during the modification of media stream
characteristics of a conference session. The interface design
assumes that the back-end system provides a directory service
that allows easy access to the frequently participating parties.
Ideally, the system should be able to perform functions of
name mapping and retrieve the actual location of the user and
their availability upon a connection request.

To illustrate the relation between the software components
of the functional layers of the xbind architecture and their
interactions, we will describe the calling sequence of the

LAZAR et al.: REALIZING A FOUNDATION FOR PROGRAMMABILITY OF ATM NETWORKS WITH THE BINDING ARCHITECTURE

Java-xbind video conference service that we implemented for
demonstrating the capability of xbind. Note that the discussion
here is merely in terms of object invocations. Previously, we
described the same service from the perspective of the service
architecture.

Referring to Fig. 11, when a client application requests a
video connection, the call is translated from the Java applet
into a CORBA call. In this case, the call is directed to the
video conferencing service entity which in turn makes two
calls to the broadband kernel. The first call is to the connection
manager to set up an ATM connection between the requested
hosts, and the second to the device manager to setup the

mulitimedia devices at the end hosts. The connection manager

in turn invokes the routing service to obtain a route for the
connection and then invokes a series of calls to the network
resources (in this case the VirtualSwitches and VirtualLinks)
to reserve the required bandwidth and buffer space. Similarly,
the device manager invokes the appropriate series of calls to
the multimedia devices to initiate the generation of audio/video
streams to the appropriate VCI/VPI’s previously reserved. At
this stage, the call is complete and the Java-applet is notified
of the success or failure of its request.

The communication with the CORBA-based Conference
Manager on the back-end is achieved using the orbixweb
[14] Java-CORBA integration toolkit made recently available
by IONA Technologies. Through this library the applet can
perform CORBA calls directly to the ORB resident on the
same host of the Web server where the applet was loaded
from. This restriction was imposed to the Java applets by the
Web browsers because of security issues.

V. RELATED WORK

There has been tremendous interest in the area of service
creation and deployment primarily from the direction of the
Advanced Intelligent Networks (AIN’s) community. In re-
sponse to this, the Telecommunications Information Network
Consortium [3] (TINAC) has recently defined a framework
[42] for building TINA-compliant telecommunications ser-
vices. The primary emphasis of the document is on specifying
a broad set of guidelines for building services that must
interwork with other TINA defined components. In addition,
the framework also identifies and specifies the architecture of
specific essential services like subscription, billing, etc.

In terms of standardization efforts of services, the ITU-T has
recently specified a series of recommendations [18] for build-
ing interworking multimedia conferencing applications. The
recommendations specify protocols for transport, conferencing
control and multipoint communications as well as application
protocols for binary file transfer, still image exchange and
annotation. The Multimedia Communications Forum (MMCF)
is also working on specifying a set of middleware services [34]
for building multimedia desktop collaboration applications that
must interoperate across software components implemented
by different vendors. Its first series of recommendations have
addressed several important aspects of multimedia applica-
tion interworking including a set of commonly agreed upon
application QoS requirements [35].

1225

Historically, one of the earlier groups to investigate the
problem from a distributed systems perspective was ANSA
[33]. The ANSA architecture specifies a set of components,
rules, recipes and guidelines for building scalable distributed
applications. The architecture also contains a set of five
models for structuring the specification of systems. Although
the original target of ANSA was never intended to be the
telecommunications industry, a number of its concepts and
models were later adopted by the ITU for standardization as
part of the open distributed processing reference model [17]
(ODP-RM). These recommendations in turn influenced the
architecture proposed by TINA [3].

In the area of wireless personal communications systems
(PCS), a cluster based distributed call processing architecture
has been proposed [20] where call and service processing is
delegated away from the switching elements and distributed
to specialized servers. This separation of call and service pro-
cessing from transport and switching simplifies the signalling
requirements for mobility management significantly and al-
lows complex PCS services to be more readily implemented.

In the area of object oriented distributed computing tech-
nology, work by the Object Management Group (OMG) on
CORBA as an industry standard has led to a large number
of commercial implementations. Although the initial specifi-
cations of CORBA were significantly lacking in the support of
services necessary to realize a practical large scale distributed
system, its IDL [11] standard enjoys enormous popularity
as the language of choice for specifying interfaces. The
subsequently proposed OMG object services addresses some
of these shortcomings. Recently there have also been a number
of proposed extensions to CORBA. Reference [10], for ex-
ample, proposes real-time extensions to CORBA for building
QoS sensitive” applications while the SUMO [7] project is
investigating the addition of stream interfaces into the CORBA
computational model. Others [9] have reported results of
benchmarks of commercial implementations of CORBA over
ATM networks to test their performance for time sensitive
applications.

A number of research projects have also been recently de-
fined for investigating the application of TINA/DPE concepts
in telecommunications systems. Among them are the ACTS
ReTINA [16] project aimed at developing and demonstrating
an industrial-quality DPE, the DCAN [31] project aimed at
applying TINA/ANSA philosophies to building a distributed
control platform of ATM LAN’s and ATM peripherals, and the
Magenta [19] project aimed at introducing mobile intelligent
agent concepts into TINA.

VI. CONCLUSION

As seen from the brief survey of the related work, there
has been substantial interest and research in the area applying
DPE concepts to service creation and deployment in telecom-
munications. Our work, however, differs from the efforts
reported in the literature in two fundamental aspects. Firstly,
the emphasis of our approach is on identifying a programming
model consisting of a set of states (the BIB) and a set of
binding algorithms operating on these states. Secondly, QoS
abstractions are an integral component of our model.

1226

INTERNET. MOBILE i

? Broadbond (ATM) 1

Fig. 13. Realizing interoperability between ATM, Internet, and mobile net-
works using the binding architecture.

Performance is one of the primary concerns in telecommu-

nications. Therefore, extreme care must be taken at the design
stage to ensure that OO techniques like decomposition are not
overly applied since they can lead to designs that are too fine
grained. Because of these concerns and from our experience
with the original BIB design presented in [24], our current BIB
reflects only resource state abstractions. Furthermore, explicit
abstractions for modeling QoS were introduced so that the
issue of performance is factored into our architecture. We
believe these two issues to be tantamount in any architecture
based on distributed computing for telecommunications.

The primary challenge in the next phase of our work is
extending the programming model to the Internet and mobile
networks (see Fig. 13) [5]. This requires a better understand-
ing of the scaling properties of the binding architecture. To
this end, we believe that the current generation of CORBA
development tools are not sufficiently sophisticated to allow
scaling without requiring substantial effort on the part of the
users. For example, the default location service in Orbix uses
a list of hostnames stored on a file as the primary means of
locating other ORB servers. Even the set of OMG object
services which are being standardized by OMG of which
a subset has been recently made available in commercial
implementations, are not expected to give appropriate answer
to the scaling problem. Other more fundamental problems like
partial failures and inconsistency also exist. In this respect,
traditional distributed system techniques should in the long
run provide answers to these problems so long timeliness and
reliability, the cornerstones of telecommunications engineering
is not compromised.

ACKNOWLEDGMENT

The authors would like to thank Fore Systems Inc. and NEC
USA for their support and help in enabling us to implement
the hardware control components of the Virtual Switches on
some of their ATM LAN products. The authors would like
to also thank the Air Force Rome Laboratory and NYNEX
for helping them implement xbind on their premises and for
supporting the experimentation across NYNET.

REFERENCES

[1] N. G. Aneroussis and A. A. Lazar, “Managing virtual paths on XUNET
1II: Architecture, experimental platform and performance,” in Proc. 4th
Int. Symp. Integr. Network Management, Santa Barbara, CA, May 1-5,
1995, pp. 370-384.

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 14, NO. 7, SEPTEMBER 1996

[2] C. Aurrecoechea, A. Campbell, H. Hadama, and L. Hauw, “A model for
multicast in the binding architecture,” Center for Telecommunications
Research, Columbia University, New York, CTR Tech. Rep. 413-95-19,
May 1995.

[3] W. I. Barr, T. Boyd, and Y. Inoue, “The TINA initiative,” IEEE
Commun. Mag., Mar. 1993.

[4] BNR, Expersoft, IBM, ICL, IONA, SunSoft, ORB 2.0 RFP Submission,
OMG TC Document 94.9.32, Sept. 28, 1994.

[5] A.T. Campbell and A. A. Lazar, “xbind extensions for QoS controlied
mobility,” submitted to 2nd Int. Workshop Multimedia Inform. Syst.,
West Point, NY, Sept. 26-28, 1996.

[6] M. C. Chan, H. Hadama, and R. Stadler, “An architecture for broadband
virtual networks under customer control,” Center for Telecommuni-
cations Research, Columbia University, New York, CTR Tech. Rep.
416-95-22, 1995.

[71 G. Coulson, The SUMO Home Page: Support for Multimedia in Oper-
ating Systems, http://www.comp.lancs.ac.uk/computing/research/sumo/.

[8] J.-P. Deschrevel, “The ANSA model for trading and federation,” APM
Limited, ANSA Architecture Rep. APM.1005.01, July 1993.

[9] A. Gokhale and D. C. Schmidt, “Measuring the performance of com-
munication middleware on high-speed networks,” in ACM SIGCOMM
Conf., Stanford University, Stanford, CA, Aug. 1996.

[10] A. Herbert, “CORBA extensions for real-time ~and interactive
multi-media,” APM Limited, ANSA Phase III Architecture Rep.

. APM.1311.02, Oct. 1994.

[11] Hewlett-Packard, IONA, and SunSoft, IDL C++ Language Mapping
Specification Joint Submission to the Object Request Broker 2.0 Task
Force’s C++ Request for Proposals, OMG document number 93-4-4,
1993.

[12] J.-F. Huard, I. Inoue, A. A. Lazar, and H. Yamanaka, “Meeting QoS
guarantees by end-to-end QoS monitoring and adaptation,” presented
at Proc. 5th Int. Symp. High Performance Distributed Computing, Syra-
cuse, NY, Aug. 6-9, 1996.

[13] J. M. Hyman, A. A. Lazar, and G. Pacifici, “Real-time scheduling with
quality of service constraints,” IEEE J. Select. Areas Commun., vol. 9,
No. 7, pp. 1052-1063, Sept. 1991.

[14] Iona Technologies Ltd., * Programmers Guide, Release 1.3,
http://www.iona.ie, July 1995.
[15] Tona Technologies Ltd.,, “Orbix for Java,” White Paper,

http://www.iona.ie:8000/www/ Orbix/Java/index.html, Feb. 1996.

[16] D. Irlande, ReTINA—An Industrial-Quality TINA-Compliant Real-Time
DPE, http://media.it.kth.se/SONAH/Acts/AC048.html.

[17] ISO and ITU, Open Distributed Processing Reference Model, Part 3:
Architecture, ITU-T Rec. X.903, ISO/IEC 107463-3, 1995.

[18] ITU-T, T.120 Data Protocols for Multimedia Conferencing, Proposed
Draft, Study Group 8—Contribution D255/c Revision 2, Mar. 1995,

[19] S. Krause, The Magenta Project, http://www fokus.gmd.de/oks/research/
magenta.e.html.

[20] T. F. LaPorta, M. Veeraraghavan, P. A. Treventi, and R. Ramjee,
“Distributed call processing for personal communications services,”
IEEE Commun. Mag., vol. 33, no. 6, pp. 6675, June 1995.

[21] M. Laubach, “Classical IP and ARP over ATM,” Hewlett-Packard
‘Laboratories, Network Working Group RFC 1577, Jan. 1994.

[22] A. A. Lazar, “Challenges in multimedia networking,” in Proc. Int. Hi-

. Tech Forum, Osaka’94, Osaka, Japan, Feb. 24-25, 1994, Available at
URL: http://www.ctr.columbia.edu/comet/ xbind/references.html.

[23] A. A. Lazar, “A research agenda for multimedia networking,” posi-
tion paper at the Workshop on Fundamentals and Perspectives on
Multimedia Systems, International Conference Center for Computer
Science, Dagstuhl Castle, Germany, July 4-8, 1994. Available at URL:
http://www.ctr.columbia.edu/comet/xbind/references html. '

[24] A. A. Lazar, S. Bhonsle, and K. S. Lim, “A binding architecture for
multimedia networks,” IEEE J. Parallel Distributed Comput., vol. 30,
no. 2, pp. 204-216, Nov. 1995. Also in the Proc. Multimedia Transport
Teleservices, Vienna, Austria, Nov. 14-15, 1994,

[25] A. A. Lazar, “A binding model for service creation in multimedia
networks,” in Workshop High-Speed Networks, International Conference
Center for Computer Science, Dagstuhl Castle, Germany, June 19-23,
1995. Available at URL: http://www.ctr.columbia.edu/comet/sbind/refe-
rences.html.

[26] A. A.Lazar and G. Pacifici, “Control of resources in broadband networks
with quality of service guarantees,” IEEE Commun. Mag., vol. 29, no.
10, pp. 66-73, Oct. 1991.

[27] A. A. Lazar, K. S. Lim, and F. Marconcini, “Binding model:
Motivation and description,” Center for Telecommunications Research,
Columbia University, New York, CTR Tech. Rep. 411-95-17, June
1995. Available under URL: http://www.ctr.columbia.edu/comet/
xbind/xbind.html. .

LAZAR et al.: REALIZING A FOUNDATION FOR PROGRAMMABILITY OF ATM NETWORKS WITH THE BINDING ARCHITECTURE

28] , “The binding interface base,” Center for Telecommu-
nications Research, Columbia University, New York, CTR
Tech. Rep. 412-95-18, June 1995. Available under URL:

http://www.ctr.columbia.edu/comet/xbind/xbind.html.

A. A. Lazar and F. Marconcini, “Toward an open API for ATM

switch control,” Center for Telecommunications Research, Columbia

University, New York, CTR Tech. Rep. 441-96-07, Feb. 1996. Available

under URL: http://www.ctr.columbia.edu/comet/xbind/xbind.html.

A. A. Lazar and K. S. Lim, “Programmability and service creation

for multimedia networks,” presented at Proc. 5th Int. Symp. High

Performance Distributed Computing, Syracuse, NY, Aug. 6-9, 1996.

1. Leslie, Distributed Control of ATM Networks, http://www.ansa.co.uk/

DCAN.

K. S. Lim and F. Marconcini, “Java-xbind—A Java-enabled xbind video

conferencing application,” Columbia University, New York, CS 6998

Project Report, http://www.ctr.columbia.edu/~franco/java-xbind.html,

Jan. 1996.

R. V. D. Linden, “An overview of ANSA,” APM Limited, ANSA

Architecture Rep. APM.1000.01, July 1993.

MMCF, MMCF Middleware, MMCF/95-005 DRAFT 3.2, Suite 201-

931, Brunette Avenue, Coquitlam, BC, Canada, V3K 6T5.

MMCF, Quality of Service, MMCF/95-010 Approved Rev 1.0,

http://www.mmcf.org/ QoS9510.zip.

P. Newman, R. Hinden, E. Hoffman, F. C. Liaw, T. Lyon, and G.

Minshall, General Switch Management Protocol Specification, Version

1.0, Ipsilon Networks, Inc., Feb. 1996.

Object Management Group (OMG) and X/Open, The Common Object

Request Broker: Architecture and Specification, Revision 1.2, Dec. 1993.

OPENSIG: http://www.ctr.columbia.edu/opensig/opensig.html.

Project xbind: http://www.ctr.columbia.edu/comet/xbind/xbind.html.

Sun Microsystems Inc., “The Java Language Environment,” White

Paper, Mountain View, CA, Oct. 1995.

Sun Microsystems Inc., The Java Language Specification, Version 1.0

Beta, Mountain View, CA, Oct. 1995,

[42] TINA-C, Service Architecture Version 2.0,
TB_MDC.012.2.0.94, TINA-C, Mar. 1995.

{291

[30]

31
[32)

[33]
[34]
[35]
[36]

[37]

[38]
(39
{40]

(41]

Document No.

Aurel A. Lazar (S’77-M’80-SM’90-F’93), for a photograph and biography,
see this issue, p. 1212.

1227

Koon-Seng Lim received the B.Sc. degree in com-
puter science from the National University of Sin-
gapore (NUS), Singapore, in 1991, and the M.S.
degree in electrical engineering from Columbia Uni-
versity, NY, in 1996.

He joined the Institute of Systems Science as
a full time software engineer in May 1991 and
he has been working in the area of performance
management since then. In 1994, he was awarded
a scholarship from the National Umvers1ty of Sin-
gapore to pursue a Ph.D in electrical engineering at
Columbia University, NY. He is currently with the COMET Group at the
Center for Telecommunication Research at Columbia University working on
architectural issues of multimedia networks.

Mr. Lim was the recipient of the Halbrecht Associates Book Prize awarded
in 1991 by the National University of Singapore for his work on the
performance analysis of multimedia backbone FDDI LAN’s in his final year
dissertation (http://www.ctr.columbia.edu/ ~koonseng).

Franco Marconcini received the B.S. degree in
computer science from the University of Milan,
Italy, in 1990, and the M.Sc. degree in electri-
cal engineering from Columbia University, NY, in
1996.

After graduation, he worked as software engineer
designing and developing distributed information
systems for commercial applications. His work ex-
perience includes the development of quality sys-
tems compliant with the ISO 9002 standard. He has
research interests in support systems for multimedia
services creation and in the market-based analysis of the driving forces
that will enable the global deployment of multimedia services. In 1993, he
was awarded a Postgraduate Fellowship from the University of Milan and
joined the COMET Group at the Center for Telecommunication Research -
at Columbia University as a Visiting Scholar. He is currently working as a
software designer at Columbia University. In the COMET Group, he played a
major role in the design, development, and deployment of the ATM network
services of the “xbind” project as well as in the experimentations over the
NYNet testbed. He represents Columbia University in the NYNet Technical
Committee (http://www.ctr.columbia.edu/ ~franco).

